AN APPROACH TO DIAMETER DISTRIBUTION MODELING USING CELLULAR AUTOMATA AND ARTIFICIAL NEURAL NETWORK
Main Article Content
Abstract
This study presents a diametric distribution model based on a one-dimensional cellular automata model (CA) and artificial neural network (ANN). Each cell of CA represents a dbh class, with the future state predicted in function of the present state of this cell, of the four neighboring cells and of its present and future age. An ANN was used as rule of evolution. Accuracy was evaluated by applying: statistical procedure proposed by Leite and Oliveira (2002); relation between observed and estimated frequency; and biological realism of the built model. Of the trained networks, were selected the ten representing the evolution of the diameter distribution with greater accuracy. Among these ten ANN, seven had estimated values statistically equal to observed (p>0.01). The proposed modeling approach estimates accurately future diameter distributions.
Article Details
Issue
Section
Article
The published articles are freely distributed among researchers and social media, and all authors transfer the copyright to Cerne. The research findings can also be used in classroom teaching, conferences, dissertations/theses, and other applications without any restriction. We strongly recommend citing the article to reach a wider audience. The Author also declares that the work is original and free of plagiarism. The authors agree with the publication and are responsible for the accuracy of the information.