INFLUENCE OF BELT SPEED, GRIT SIZES AND PRESSURE ON THE SANDING OF Eucalyptus grandis WOOD
Main Article Content
Abstract
The sanding process is important to the quality of wood products. Sanding reduces imperfections in wood surfaces and it is important to the final product and application of paints or varnishes. There are few studies about sanding in the literature and finding out the relationship between the input parameters (i.e., species of wood, grit size, abrasive) on the output parameters (i.e., roughness, force, pressure) will help to improve this process. This study analyzed the influence of input parameters as belt speed (cutting speed), grit size and pressure on the output parameters as surface roughness, cutting force (sanding force) and power consumption on cross-grain sanding of Eucalyptus grandis wood. The tests were performed with 3 types of grit sizes (80, 100 and 120 grit), 3 belt speeds (10, 11 and 12 m/s) and 2 pressures (219.89 and 283.44 g/cm²). The surface roughness was analyzed based on roughness average (Ra). Sanding efforts were analyzed by cutting force and power consumption. It was found that the 100 grit size provided the lowest cutting force. It was observed that the belt speed, pressure and grit size influenced the surface roughness, cutting force and power consumption. The best surface finishes were obtained in tests with higher pressure.
Article Details
The published articles are freely distributed among researchers and social media, and all authors transfer the copyright to Cerne. The research findings can also be used in classroom teaching, conferences, dissertations/theses, and other applications without any restriction. We strongly recommend citing the article to reach a wider audience. The Author also declares that the work is original and free of plagiarism. The authors agree with the publication and are responsible for the accuracy of the information.