MAPPING DECIDUOUS FORESTS BY USING SERIES OF FILTERED MODIS NDVI AND NEURAL NETWORKS
Main Article Content
Abstract
Multi-temporal images are now of standard use in remote sensing of vegetation during monitoring and classification. Temporal vegetation signatures (i. e., vegetation indices as functions of time) generated, poses many challenges, primarily due to signal to noise-related issues. This study investigates which methods generate the most appropriate smoothed curves of vegetation signatures on MODIS NDVI time series. The filtering techniques compared were the HANTS algorithm which is based on Fourier analyses and Wavelet temporal algorithm which uses the wavelet analysis to generate the smoothed curves. The study was conducted in four different regions of the Minas Gerais State. The smoothed data were used as input data vectors for vegetation classification by means of artificial neural networks for comparison purpose. A comparison of the results was ultimately discussed in this work showing encouraging results and similarity between the two filtering techniques used.
Article Details
The published articles are freely distributed among researchers and social media, and all authors transfer the copyright to Cerne. The research findings can also be used in classroom teaching, conferences, dissertations/theses, and other applications without any restriction. We strongly recommend citing the article to reach a wider audience. The Author also declares that the work is original and free of plagiarism. The authors agree with the publication and are responsible for the accuracy of the information.