Appraisal of arp images and machine learning to detect Sapajus nigritus attacks on loblolly’s pine stands in Southern Brazil
Main Article Content
Abstract
Background: This study aimed to evaluate UAV images of Pinus taeda L. stands for classifying trees attacked by Sapajus nigritus in Southern Brazil. UAV images were acquired on March 2018, using a DJI Phantom Pro 4 over 18.73 hectares. We evaluated different band compositions and vegetation indices. Using photo interpretation based on the color of the crown and field measurements, the
trees were manually labeled as not attacked, dead, and attacked. The classified trees were divided into training (75%) and validation (25%), considering three tree crown diameters (0.5, 1, and 1.5 m) and three region-oriented classification algorithms. The classification accuracy was assessed by overall accuracy and the kappa index.
Results: A total of 3,773 trees were manually detected, of which 39% were attacked, 5% died and 56% were not attacked. The results also indicated that the best-chosen diameter was 0.5 meters, the best classifier algorithm was the SVM, and the highest accuracy was represented by the composition of the ExG index associated with the original spectral bands.
Conclusion: We argue that the attacks can be monitored using UAV images and such results provide insights for forest management initiatives.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The published articles are freely distributed among researchers and social media, and all authors transfer the copyright to Cerne. The research findings can also be used in classroom teaching, conferences, dissertations/theses, and other applications without any restriction. We strongly recommend citing the article to reach a wider audience. The Author also declares that the work is original and free of plagiarism. The authors agree with the publication and are responsible for the accuracy of the information.