CELLULOSE NANOSTRUCTURED FILMS FROM PRETREATED AÇAI MESOCARP FIBERS: PHYSICAL, BARRIER, AND TENSILE PERFORMANCE
Main Article Content
Abstract
Background: During de-pulping of açai (Euterpe oleracea) for juice production in the Amazonia, large amounts of fibrous waste are daily discarded, a promising substrate for production of high-value cellulose nanofibrils. Therefore, this study sought to evaluate the modifications of açai surface fibers submitted to chemical pretreatment steps and compare the quality of nanostructured films produced with different cycles of mechanical nanofibrillation..
Results: A 2-hour pretreatment (at 5% of NaOH) followed by two NaOH/H2O2 bleaching steps resulted in fibers with increased length and reduced diameter compared to raw fibers while preserving fiber integrity and cellulose I structure. The increase of fibers’ grinding cycles from 3 (minimum to gel point) to 21 (maximum suspension thickness) resulted in nanofibril films with higher crystallinity properties, uniform thickness, compacted morphology, and smoother surface. Nanofibril films formed after different numbers of passages exhibited similar mechanical strength, but distinct barrier properties.
Conclusion: Açaí waste films produced with fibers submitted to 3 grinding cycles can be recommended for packaging applications that demand easily dissolving, such as instantaneous food. Oppositely, açaí fibers subjected to 21 cycles in grinder provide films suitable for water-resistant packaging, ideal for secondary coatings of papers and paperboards.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms: a) Authors retain copyright and grant the journal right of first publication (original form ); b ) Authors are permitted and encouraged to post and share their work online (e.g. in institutional repositories or on their website).