COMPARISON OF PREDICTOR SELECTION PROCEDURES IN SPECIES DISTRIBUTION MODELING: A CASE STUDY OF Fagus hayatae
Main Article Content
Abstract
Selecting predictors for species distribution models (SDMs) is a major challenge. In this study, we evaluated a comprehensive set of 62 environmental predictors that may be related to the occurrence of Fagus hayatae. We modeled F. hayatae as a case study to compare model performance through different environmental predictor subsets according to three selection procedures, namely correlation coefficients between predictors, contribution level of predictors, and expert choice of biologically relevant predictors. The three selection procedures provided satisfactory results with high performance using about 10 valid predictors but had their respective limitations. Consequently, we suggest an approach of predictor selection. Accordingly, the first step was identifying and eliminating ineffective variables with nonidentifiability, such as coldness index, by using bivariate scatterplots. Next, correlation coefficients between other candidate predictors were calculated. Finally, predictors were selected within lower correlated (|r| < 0.7) candidate subsets on the basis of high contribution level predictors and expert knowledge of biologically relevant predictors for target species.
Article Details
The published articles are freely distributed among researchers and social media, and all authors transfer the copyright to Cerne. The research findings can also be used in classroom teaching, conferences, dissertations/theses, and other applications without any restriction. We strongly recommend citing the article to reach a wider audience. The Author also declares that the work is original and free of plagiarism. The authors agree with the publication and are responsible for the accuracy of the information.