USING GENETIC ALGORITHM IN FOREST PLANNING CONSIDERING ITS SELECTION OPERATORS
Main Article Content
Abstract
This study tested and analyzed four selection operators (Elitist, Tournament, Roulette wheels and Bi-classist) and defined the best one. The forest planning problem test was based on the Johnson & Schermann (1977) type I model encompassing 52 eucalyptus stands, where 254 forest management prescriptions were created. The genetic algorithm (GA) was built in Visual Basic® Microsoft® and its sets of parameters were: initial population (300), crossover (10%), mutation (10%) and replacement (60%). The measuring variables were: minimum, median and maximum values; coefficient of variation for the fitness and the processing time. It was also applied the nonparametric Kruskal-Wallis test with 5% of the probability to check the differences among selection operators of 30 samples. The results showed that the selection operators presented different efficiency and effectiveness according to Kruskal-Wallis test for 5% of probability. The decreasing sequence of efficiency was: Roulette wheels, Tournament, Elitist and Bi-classist. The lower percentage deviations matched from the exact solution were: 2.75% (Elitist), 2.15% (Tournament), 0.90% (Roulette wheels) and 2.40% (Bi-classist). The best selection operator tested was the one that follows the Roulette wheels.
Article Details
The published articles are freely distributed among researchers and social media, and all authors transfer the copyright to Cerne. The research findings can also be used in classroom teaching, conferences, dissertations/theses, and other applications without any restriction. We strongly recommend citing the article to reach a wider audience. The Author also declares that the work is original and free of plagiarism. The authors agree with the publication and are responsible for the accuracy of the information.