Site classification for eucalypt stands using Artificial Neural Network based on environmental and management features

Main Article Content

Diogo Nepomuceno Cosenza http://orcid.org/0000-0001-8495-8002 Álvaro Augusto Vieira Soares Aline Edwiges Mazon de Alcântara Antonilmar Araujo Lopes da Silva Rafael Rode Vicente Paulo Soares Helio Garcia Leite

Abstract

Several methods have been proposed to perform site classification for timber production. Frequently, however, there is need to assess site productive capacity before the forest establishment. This has motivated the application of the Artificial Neural Network (ANN) for site classification. Hereby, the traditional guide curve (GC) procedure was compared to the ANN with no stand feature as input. In addition, different ANN settings were tested to assess the best setting for site classification. The variables used to train the ANN’s were: climatic variables, soil types, spacing and genetic material. The results from the ANN and the GC methods were compared to the observed classes the Kappa coefficient (K) and descriptive analysis. The results showed that the cost function “Cross Entropy” and the output activation function “Softmax” were the best for this purpose. The ANN classification resulted in substantial agreement with the observed indices against a moderate agreement of the GC procedure. The change in growth patterns throughout the rotation may have hindered the proper classification by the CG method, which does not happen with the ANN. However, in the cases in which data from stands at the age close to the reference age are available, the GC method should be prioritized instead of ANN using no stand feature.

Article Details

How to Cite
COSENZA, Diogo Nepomuceno et al. Site classification for eucalypt stands using Artificial Neural Network based on environmental and management features. CERNE, [S.l.], v. 23, n. 3, p. 310-320, sep. 2017. ISSN 2317-6342. Available at: <http://cerne.ufla.br/site/index.php/CERNE/article/view/1550>. Date accessed: 23 oct. 2017.
Keywords
tree plantation; productive capacity; artificial intelligence; site index;
Section
Article

References

ADAMEC, Z.; DRÁPELA, K. Comparison of parametric and nonparametric methods for modeling height-diameter relationships. iForest - Biogeosciences and Forestry, v. 9, p. e1–e8, 2016.

AERTSEN, W.; KINT, V.; VAN ORSHOVEN, J.; ÖZKAN, K.; MUYS, B. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological modelling. v. 221, n. 8, p. 1119-1130, 2010.

ALDER, D. Forest volume estimation and yield prediction rediction: vol. 2 - yeld prediction. Rome: FAO Forestry Paper, 1980. 194p.

ALMEIDA, A. C.; SOARES, J. V.; LANDSBERG, J.J.; REZENDE, G. D. Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. Forest Ecology and Management, v. 251, n. 1–2, p. 10–21, 2007.

BARTHOLOMÉ, J.; SALMON, F.; VIGNERON, P.; BOUVET, J.; PLOMION, C.; GION, J. Plasticity of primary and secondary growth dynamics in Eucalyptus hybrids: a quantitative genetics and QTL mapping perspective. BMC Plant Biol, v. 13, p. 120, 2013.

BATTAGLIA, M.; SANDS, P.; WHITE, D.; MUMMERY, D. CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support. Forest Ecology and Management, v. 193, n. 1–2, p. 251–282, May 2004.

BETTINGER, P. BOSTON, K.; SIRY, J. P.; GREBNER, D. L. Forest Management and Planning. New York, USA: Academi Press, 2009.

BINKLEY, D.; STAPE, J. L.; BAUERLE, W. L.; RYAN, M. G. Explaining growth of individual trees: Light interception and efficiency of light use by Eucalyptus at four sites in Brazil. Forest Ecology and Management, v. 259, n. 9, p. 1704–1713, 2010.

BINOTI, M. L. M. D. S.; LEITE, H. G.; BINOTI, D. H. B.; GLERIANI, J. M. Stand-level prognosis of eucalyotus clones using artificial neural networks. Cerne, v. 21, n. 1, p. 97–105, 2015.

BISHOP, C. M. Neural networks for pattern recognition. Oxford, U.K.: Oxford University Press, 1995. v. 92

BLACKARD, J. A.; DEAN, D. J. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Computers and Electronics in Agriculture, v. 24, n. 3, p. 131–151, 1999.

BONTEMPS, J. D.; BOURIAUD, O. Predictive approaches to forest site productivity: Recent trends, challenges and future perspectives. Forestry, v. 87, n. 1, p. 109–128, 2014.

BORGES, J. S.; NEVES, J. C. L.; LOURENÇO, H. M.; BARROS, N. F.; DIAS, S. C. M . Parameterization of the 3-PG model for eucalypt in the region of Cerrado in Minas Gerais State. Ciência Florestal, v. 22, n. 3, p. 567–578, 2012.

BURKHART, H. E.; TOMÉ, M. Modeling Forest Trees and Stands. Dordrecht: Springer, 2012. 457p.

BRAGA, A. P.; CARVALHO, A. P. L. F.; LUDEMIR, T. B. Redes neurais e aplicações. 2ª ed. Rio de Janeiro, Brazil: LTC editora, 2007. 238p.

Campbell Scientific. Disponível em: . Accessed in april 28, 2017.

CAMPOS, J. C., LEITE, H. G. Mensuração Florestal: perguntas e respostas. 4ª ed. Viçosa, Brazil: Editora UFV, 2013. 605p.

CASTRO, R. V. O.; SOARES, C. B. P.; LEITE, H. G.; SOUZA, A. L. de; NOGUEIRA, G. S.; MARTINS, F. B. Individual Growth Model for Eucalyptus Stands in Brazil Using Artificial Neural Network. ISRN Forestry, v. 2013, p. 1–12, 2013.

CLUTTER, J. L. Compatible growth and yield for loblolly pine. Forest Science, v. 9, n. 3, p. 354–371, 1963.

COHEN, J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, v. 20, n. 1, p. 37–46, 1960.

CONGALTON, R. G.; MEAD, R. A. A quantitative method to test for consistency and correctness in photointerpretation. Photogrammetric Engineering & Remote Sensing, v. 49, n. 1, p. 69–74, 1983.

COSENZA, D. N.; LEITE, H. G.; MARCATTI, G. E.; BINOTI, D. H. B.; ALCÂNTARA, A. E. M. de; RODE, R . Site classification with support vector machine and artificial. Scientia Forestalis, v. 43, n. 108, p. 955–963, 2015.

DIAMANTOPOULOU, M. J.; ÖZÇELIK, R.; CRECENTE-CAMPO, F.; ELER, Ü. Estimation of Weibull function parameters for modelling tree diameter distribution using least squares and artificial neural networks methods. Biosystems Engineering, v. 133, p. 33–45, 2015.

EMBRAPA (BRAZILIAN AGRICULTURAL RESEARCH CORPORATION). Brazilian System of Soil Classification (Sistema Brasileiro de Classificação de Solos). 3. ed. Brasília, DF, Brazil: Embrapa. 2013. 353p.

FERRAZ FILHO, A. C.; SCOLFORO, J. R. S.; FERREIRA, M. Z.; MAESTRI, R.; ASSIS, A. L. de; OLIVEIRA, A. D. de; MELLO, J. M. de. Dominant height projection model with the inclusion of environmental variables. Cerne, v. 17, n. 3, p. 427–433, 2011.

FONTES, L.; BONTEMPS, J.; BUGMANN, H.; OIJEN, M. Van; GRACIA, C.; KRAMER, K.; LINDNER, M.; RÖTZER, T.; SKOVSGAARD, J. P. Models for supporting forest management in a changing environment. Forest Systems, v. 19, p. 8–29, 2010.

FORRESTER, D. I.; MEDHURST, J. L.; WOOD, M.; BEADLE, C. L.; VALENCIA, J. C. Growth and physiological responses to silviculture for producing solid-wood products from Eucalyptus plantations: An Australian perspective. Forest Ecology and Management, v. 259, n. 9, p. 1819–1835, 2010.

GONÇALVES, J. L. M. de; STAPE, J. L.; LACLAU, J. P.; SMETHURST, P.; GAVA, J. L. Silvicultural effects on the productivity and wood quality of eucalypt plantations. Forest Ecology and Management, v. 193, n. 1–2, p. 45–61, 2004.

GÖRGENS, E. B.; LEITE, H. G.; SANTOS, H.do N.; GLERIANI, J. M. Estimação do volume de árvores utilizando redes neurais artificiais. Revista Árvore, v. 33, n. 6, p. 1141–1147, 2009.

HAYKIN, S. Neural Networks: a comprehensive fundation. 2ª. ed. Prentice Hall International, Inc., 2001. 842p.

HILBERT, D. W.; VAN DEN MUYZENBERG, J. Using an artificial neural network to characterize the relative suitability of environments for forest types in a complex tropical vegetation mosaic. Diversity and Distributions, v. 5, n. 6, p. 263–274, Nov. 1999.

HUDSON, W. D.; RAMM, C. W. Correct formulation of the kappa-coefficient of agreement. Photogrammetric engineering and remote sensing, v. 53, n. 4, p. 421–422, 1987.

JAIN, A K.; MAO, J. C.; MOHIUDDIN, K. M. Artificial neural networks: A tutorial. Computer, v. 29, n. 3. p. 31-44 1996.

LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical data. Biometrics, v. 33, n. 1, p. 159–174, 1987.

LANDSBERG, J. J.; SANDS, P. Physiological ecology of forest production: principles, processes and models. v. 4. 1ª ed. Amsterdam: Elsevier, 2011. 352p.

LEITE, H. G., SILVA, M.L.M., BINOTI, D.H. B., FARDIN, L.; TAKIZAWA, F. H. Estimation of inside-bark diameter and heartwood diameter for Tectona grandis Linn. trees using artificial neural networks. European Journal of Forest Research, v. 130, n. 2, p. 263–269, Mar. 2011a.


LEITE, H. G.; CASTRO, R.; SILVA, A.; JÚNIOR, C.; BINOTI, D.; CASTO, A. F.; BINOTI, M. Site quality classification of eucalyptus stands using dominant diameter. Silva Lusitana, v. 19, n. 2, p. 181–195, 2011b.

MARCATTI, G. E.; RESENDE, R. T.; RESENDE, M. D. V; RIBEIRO, C. A. A. S.; DOS SANTOS, A. R.; DA CRUZ, J. P.; LEITE, H. G. GIS-based approach applied to optimizing recommendations of Eucalyptus genotypes. Forest Ecology and Management, v. 392, p. 144–153, 2017.

MIEHLE, P.; BATTAGLIA, M.; SANDS, P. J.; FORRESTER, D. I.; FEIKEMA, P. M.; LIVESLEY, S. J.; MORRIS, J. D.; ARNDT, S. K. A comparison of four process-based models and a statistical regression model to predict growth of Eucalyptus globulus plantations. Ecological Modelling, v. 220, n. 5, p. 734–746, 2009.

PAULO, J. A.; PALMA, J. H. N.; GOMES, A. A.; FARIAS, S. P.; TOMÉ, J.; TOMÉ, M. Predicting site index from climate and soil variables for cork oak (Quercus suber L .) stands in Portugal. New Forests, v. 46, n. 2, p. 293–307, 2014. RODRÍGUEZ, R.; REAL, P.; ESPINOSA, M.; PERRY, D. A. A process-based model to evaluate site quality for Eucalyptus nitens in the Bio-Bio Region of Chile. Forestry, v. 82, n. 2, p. 149–162, 2009.

SANQUETTA, C. R.; PIVA, L. R.; WOJCIECHOWSKI, J.; CORTE, A. P.; SCHIKOWSKI, A. B. . Volume estimation of Cryptomeria japonica logs in southern Brazil using artificial intelligence models. Southern Forests, v. 2620, n. February, 2017.

SCHUMACHER, F. X. A new growth curve and its applications to timber-yield studies. Journal of Forestry, v. 37, p. 819–820, 1939.

SCOLFORO, H. F.; SCOLFORO, J. R. S.; STAPE, J. L.; MCTAGUE, J. P.; BURKHART, H.; MCCARTER, J.; DE CASTRO NETO, F.; LOOS, R. A.; SARTORIO, R. C. Incorporating rainfall data to better plan eucalyptus clones deployment in eastern Brazil. Forest Ecology and Management, v. 391, n. May, p. 145–153, 2017.

SKOVSGAARD, J. P.; VANCLAY, J. K. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry, v. 81, n. 1, p. 13–31, 2008.

STAPE, J. L.; BINKLEY, D.; RYAN, M. G.; FONSECA, S.; LOOS, R. A.; TAKAHASHI, E. N.; SILVA, C. R.; SILVA, S. R.; HAKAMADA, R. E.; FERREIRA, J. M. de A.; LIMA, A. M. N.; GAVA, J. L.; LEITE, F. P.; ANDRADE, H. B.; ALVES, J. M. SILVA, G. G. C.; AZEVEDO, M. R. The Brazil eucalyptus potential productivity project: influence of water, nutrients and stand uniformity on wood production. Forest Ecology and Management, v. 259, n. 9, p. 1684–1694, 2010.

STATSOFT INC. Sostoft. Disponível em: . Acesso em: 10 feb. 2015.

TESCH, S. D. The evolution of forest yield determination and site classification. Forest Ecology and Management, v. 3, p. 169–182, 1981.

WALTERS, D. K.; GREGOIRE, T. G.; BURKHART, H. E. Consistent estimation of site index curves fitted to temporary plot data. Biometrics, v. 45, n. 1, p. 23–33, 1989.