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ABSTRACT: The aim of this study was to develop a methodology for mapping land use and land cover in the northern region of 
Minas Gerais state, where, in addition to agricultural land, the landscape is dominated by native cerrado, deciduous forests, and 
extensive areas of vereda. Using forest inventory data, as well as RapidEye, Landsat TM and MODIS imagery, three specific objectives 
were defined: 1) to test use of image segmentation techniques for an object-based classification encompassing spectral, spatial and 
temporal information, 2) to test use of high spatial resolution RapidEye imagery combined with Landsat TM time series imagery for 
capturing the effects of seasonality, and 3) to classify data using Artificial Neural Networks. Using MODIS time series and forest 
inventory data, time signatures were extracted from the dominant vegetation formations, enabling selection of the best periods of 
the year to be represented in the classification process. Objects created with the segmentation of RapidEye images, along with the 
Landsat TM time series images, were classified by ten different Multilayer Perceptron network architectures. Results showed that the 
methodology in question meets both the purposes of this study and the characteristics of the local plant life. With excellent accuracy 
values for native classes, the study showed the importance of a well-structured database for classification and the importance of 
suitable image segmentation to meet specific purposes.

Keywords: image segmentation, object-based classification, time series.

USO DE REDES NEURAIS ARTIFICIAIS E OBJETOS GEOGRÁFICOS NA CLASSIFICAÇÃO DE        
IMAGENS DE SENSORIAMENTO REMOTO

RESUMO: Conduziu-se este trabalho, com o objetivo de se alcançar o desenvolvimento de uma metodologia para a criação de um 
mapa de uso e cobertura do solo na região norte do estado de MG, onde, além de atividades agropecuárias, predominam vegetações 
nativas de cerrado, florestas estacionais deciduais e extensas áreas de vereda. Utilizando parcelas inventariadas e imagens dos sensores 
Rapideye, Landsat TM e MODIS, foram traçados três objetivos específicos: testar o uso de técnicas de segmentação de imagens para 
uma classificação baseada em objetos contemplando informações espectrais, espaciais e temporais; Testar o uso de imagens de alta 
resolução espacial (Rapideye) combinadas a séries temporais Landsat-TM, visando a captar os efeitos da sazonalidade, e a classificação 
dos dados por meio de Redes Neurais Artificiais. Por meio da série temporal de imagens MODIS e parcelas inventariadas, foram 
extraídas as assinaturas temporais das principais fisionomias presentes na região, observando-se, assim, os melhores períodos do ano 
a serem representados no processo de classificação. Os objetos criados na segmentação das imagens Rapideye, juntamente com a série 
temporal Landsat TM, foram classificados por dez diferentes arquiteturas de redes MultiLayerParceptron. Os resultados mostraram 
que metodologia atende aos propósitos do estudo e as características das fisionomias presentes na região. Com excelentes valores 
de acurácia para as classes nativas, o estudo mostra a importância da adequação da base de dados em trabalhos de classificação e da 
importância de uma segmentação que atenda aos propósitos do trabalho.

Palavras-chave: segmentação de imagens, classificação baseada em objetos, séries temporais.
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1 INTRODUCTION

Mapping of land use and land cover is crucial for 
understanding, monitoring and predicting the effects of 
the complex man x nature interaction at local, regional 
and global scales (CLARK et al., 2010). Yet, using field 
inventories alone to map extensive areas of vegetation 
is prohibitively expensive, thus resulting in increasingly 
more frequent use of aerial and satellite imagery to meet 
the same purposes (BRADTER et al., 2011).

Having both the capability and potential for 
making systematic observations at various scales, 
remote sensing can provide data over entire previous 
decades (XIE et al., 2008), and the technology has 
been successfully applied to mapping through image 
classification techniques. Classification of land cover 
ideally requires use of multisource data so as to enable 
extracting as much information as possible about the area 
of interest (GISLASON et al., 2006). Use of time series 
imagery is extremely important to capture the effects of 
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seasonality in forests, particularly in regions where rainy 
periods are well defined. However, acquiring data at 
suitable spatial and temporal scales is key to achieving the 
accuracy required for mapping (CARVALHO et al., 2004).

Object-based analysis is based on use of image 
segmentation algorithms for creation of clusters of 
spectrally similar pixels that deal with such objects as 
an atomic unit, that way enabling spatial analysis and 
classification of image data (SMITH, 2010). Compared 
with pixel-based classification, which only uses spectral 
characteristics, object-based imagery knows its neighbors, 
even prior to being classified, while carrying additional 
information such as texture, shape, correlations with 
subobjects etc (ANDERSEN et al., 2004). Working with 
mean values and standard deviation of reflectance within 
objects, Navulur (2006) argues that the object-based 
approach can offer advantages in terms of spectral, spatial, 
morphological, contextual and temporal information.

 Several classification algorithms are used in 
remote sensing. Many studies have demonstrated the 
effectiveness of Artificial Neural Networks (ANN) in 
remote sensing classification (PRATOLA et al., 2011). 
ANNs are suitable for analysis of virtually every data type, 
regardless of their statistical properties (XIE et al., 2008). 
The Backpropagation training algorithm and Multilayer 
Perceptron (MLP) networks are surely responsible for 
the popularization of this technique in various fields of 
knowledge. MLP networks are architectures in which each 
node receives inputs from previous layers and information 
flows in one direction to the output layer (PRATOLA et al., 
2011). The number of nodes in the intermediate layer(s) 
defines both the complexity and the power of a neural 
network model to describe underlying relationships and 
structures inherent in a training data set (generalization 
power) (KAVZOGLU, 2009), and what more nodes in such 
layers may be required for classification of more complex, 
grainy satellite images (JARVIS; STUART, 1996).

Bearing that in mind, the overall purpose of this 
study was to develop a methodology for classifying land 
cover in northern Minas Gerais state. Technically speaking, 
the region poses a challenge to mapping due to its highly 
heterogeneous landscape that combines deciduous forests, 
cerrado, transitional areas, agricultural land, pastureland 
and degraded areas. The following specific objectives 
were thus defined: 1) to test use of image segmentation 
techniques for an object-based classification encompassing 
spectral, spatial and temporal information, 2) to test use 
of high spatial resolution RapidEye imagery combined 

with Landsat TM time series imagery for capturing effects 
of seasonality, and 3) to test data classification using 
Artificial Neural Networks, with different MLP network 
architectures.

2 MATERIAL AND METHODS

To help understand the proposed methodology, 
all stages and processes are summarized in a flowchart 
(Figure 1).

Figure 1 – Methodology flowchart.

Figura 1 - Fluxograma da metodologia.

2.1 Study Site

The study site is located in northern Minas Gerais 
state, Brazil, and is delimited by three mosaics, each 
consisting of four RapidEye satellite images (Figure 
2), with an area of around 690,000 hectares. According 
to the mapping and inventory report Mapeamento e 
Inventário da Flora Nativa e dos Reflorestamentos de 
Minas Gerais (SCOLFORO; CARVALHO, 2006), the 
middle mosaic is crossed by the São Francisco river 
and represents a transitional zone between the mosaic to 
the right, where deciduous forests predominate, and the 
mosaic to the left, where the cerrado predominates. With 



Cerne, Lavras, v. 20, n. 2, p. 267-276, abr./jun. 2014

269Use of artificial neural networks ... 

peculiar vegetation formations which include the veredas 
of Veredas do Peruaçu state park, today the region boasts 
rainforest remnants and the largest fragments of native in 
the state, being home to a wealth of fauna and flora species 
threatened with extinction.

Figure 2 – Study site.

Figura 2 - Área de estudo.

2.2 RapidEye Mosaics 

To conduct the study, 12 RapidEye images were 
used comprising the three different regions intended for 
classification (Figure 2). The RapidEye sensor produces 
5-meter resolution imagery and consists of five broad 
bands with wavelengths that range from the visible to the 
near-infrared region. 

2.3 Time Series 

The seasonal pattern of the dominant local 
vegetation formations was observed using a time series 
with 12 NDVI images from the MODIS sensor taken in 
2010, along with the RapidEye mosaics and the plots used 
in the forest inventory of Minas Gerais state (SCOLFORO; 
CARVALHO, 2006).

With the above data at hand, the next step was to 
segment the RapidEye images, and the objects created 
where the plots had been inventoried were identified 
according to the vegetation formation they belong to. These 
objects had their NDVI values depicted in a graph, and then 
time signatures were generated for the local physiognomies 
cerrado and deciduous forest (Figure 3).

Figure 3 - Time signatures of the vegetation.

Figura 3 - Assinatura temporal da vegetação.

With deciduous forests shedding over 50% of their 
leaves in the dry season, the minimum NDVI values for 
such forests, as well as the amplitude values, indicate a 
distinctive characteristic from other types of land cover, 
providing valuable information for use in classification of 
land use and land cover (SILVEIRA et al., 2008).

Based on that information, four Landsat TM images 
were selected to best represent the variability in NDVI 
values, observing maximum, minimum and mean values 
(Figure 3), in other words the idea was to represent at 
different dates the annual cycle of the vegetation.

In order to compare images taken at different dates or 
using different sensors, the images have to be all registered to 
the same coordinate system (ERBEK et al., 2004). To ensure 
a perfect data overlap, the registration of all Landsat images 
was based on a new mosaic containing forty RapidEye 
images that included the twelve images constituting the three 
mosaics over the study site. During the registration process, 
meticulous care was taken in collecting and identifying 
ground control points to ensure a perfect image overlap.

Following registration, the Landsat images had their 
NDVI values extracted. To try and reduce the computational 
costs involved in the process, a subset was created in each 
NDVI scene so as to leave them with the dimensions of 
the study site mosaics. As with the RapidEye images, no 
atmospheric corrections were made to the Landsat images.

2.4 Image Segmentation

For creation of objects, the Multiresolution 
Segmentation algorithm was used, as it enables extracting 
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segments based both on pixel value (reflectance) and on 
object shape. Due to having better spatial resolution, 
segmentation was done with weights being assigned only 
to the bands of RapidEye images, while the four NDVI 
– Landsat TM images were used only for extraction of 
attributes (temporal information) for the classification 
process.

A major prerequisite for classification of remote 
sensing data using object-based conceptions is that the 
segmented objects should have descriptive force and 
should contain only pixels from one semantic class in the 
same group (BAATZ; SCHÄPE, 2000). Different values 
of shape and smoothness were tested in a segmentation 
with multiple scales (Table 1) for better representativeness 
of the landscape.

Segmentation was assessed for quality by visual 
analysis of the different input parameters, comparing 
shape and size of formed objects as well as their 
representativeness. 

17 that included mean reflectance of objects in each of the 
five bands, total brightness, contribution ratio of a given 
band to the overall brightness (bands 4 and 5), maximum 
difference between the mean intensities of each band, 
maximum difference between the pixel values of objects 
(bands 4 and 5), NDVI RapidEye, Standard Deviation 
(bands 4 and 5).

2.6 Artificial Neural Networks 

For data classification with ANN, the software 
application JavaNNS was used (available at http://www.
ra.cs.uni-tuebingen.de/software/JavaNNS/welcome_e.
html). Multilayer Perceptron (MLP) networks with a 
sigmoid activation function were used, trained by the 
Backpropagation algorithm. To attenuate effects of the 
saturation zone of the sigmoid function, all attribute values 
were normalized between 0.1 and 0.9 by Equation 1, which, 
according to Gorgens et al. (2009), also equalizes data, thus 
helping improve neural network predictability.

Valor transformado = 0.1 + [0.8(x-min)/(máx-min)]    (1)

The number of neurons in the input layer was 
defined according to the number of attributes to be used 
per sample, each neuron receiving one input only.

The number of neurons in the output layer was 
determined according to the number of classes to be 
acknowledged. As classes included agricultural land, water, 
cerrado, eucalyptus, deciduous forest, other, pastureland 
and vereda, the response vector presented to the output 
layer had eight binary positions (1 = belongs and 0 = does 
not belong). Even having only binary values in the output 
data of each trained sample, results of classifications 
obtained by the trained network are values between zero 
and one, contained in the codomain of the sigmoid function 
[1,0] being used. As in Heinlet et al. (2009), such values 
are adopted as the value of pertinence of each sample in 
the respective class, and as in Chini et al. (2008) and Erbek 
et al. (2004), a competition model was adopted (winner 
takes all) in deciding the final classification.

The number of hidden layers, as well as the number 
of neurons in each layer, is an empirical process determined 
by test running. The networks were thus tested with one, 
two and three hidden layer(s) and with a different number 
of neurons in each layer (Table 2).

All networks were trained by the Backpropagation 
algorithm with a learning rate of 0.01 and a momentum 

Shape Compactness Scale
0.3 0.8 250, 350, 450, 550, 650, 750, 800, 900
0.3 0.4 250, 350, 450, 550, 650, 750, 800, 900
0.4 0.8 250, 350, 450, 550, 650, 750, 800, 900
0.4 0.4 250, 350, 450, 550, 650, 750, 800, 900

Table 1 – Parameters tested in segmentation.

Tabela 1 - Parâmetros testados na segmentação.

2.5 Classification

Classification was based on the local physiognomies, 
according to an official mapping of the state proposed by 
Scolforo and Carvalho (2006), and included cerrado, 
deciduous forest, vereda, eucalyptus, water and other 
(agricultural land, pastureland, bare soil, urbanized areas). 
Looking to improve the existing mapping and seeking 
information gains, agricultural land and pastureland were 
mapped as individual classes, leaving a total of eight 
classes.

Following segmentation, in all three RapidEye 
mosaics a total of 724 significant samples were collected 
from the existing classes, 30% of which was reserved for 
validation of the training results.

Other than the four NDVI values from the Landsat 
TM images, another 13 attributes were selected relating to 
the RapidEye images to describe each object, to a total of 



Cerne, Lavras, v. 20, n. 2, p. 267-276, abr./jun. 2014

271Use of artificial neural networks ... 

Figure 4 shows that even highly fragmented areas 
had very well defined objects that were in conformity with 
the landscape. The same occurred in other areas of the 
study site, demonstrating the success and effectiveness of 
the segmentation process.

Network Input Neurons Hidden Layer(s) Output Neurons
1 17 16 8
2 17 34 8
3 17 51 8
4 17 35_15 8
5 17 40_20 8
6 17 51_24 8
7 17 40_30_20 8
8 17 40_40_40 8
9 17 60_60_60 8

10 17 70_40_20 8

Table 2 - Architectures tested in data classification.

Tabela 2 - Arquiteturas testadas na classificação dos dados.

rate of 0.1. In all trainings, a set of samples was introduced 
randomly at each iteration, and the stopping criterion 
adopted was cross-validation.

2.7 Accuracy Measures 

For mapping assessment, a third set of independent 
samples was collected. The set was based on the mapping 
of land use and land cover created by Scolforo and 
Carvalho (2006) for sample stratification. 450 random 
points were generated, distributed across all vegetation 
types (physiognomies) present in the study site. All points 
generated, in each class of land use and land cover, were 
checked for veracity with the help of RapidEye images and 
Google Earth software so as to prevent result inaccuracies.

3 RESULTS AND DISCUSSIONS

Optimal segmentation parameters may differ 
according to the region. Presence of a very fragmented, 
heterogeneous area leads to use of lower scale values so 
that each formed object will contain only pixels of one 
same class (Figure 4).

Since the area of interest has a diverse landscape 
that includes plains, mountains and valleys with different 
types of land cover, the choice was to select the parameters 
that produced the best independent segmentation of the 
region, that is, for each of the three mosaics the same 
parameters of Shape, Compactness and Scale were 
adopted. The best overall results found were 0.4 for Shape 
and Compactness and 350 for Scale.

Figure 4 - Segmentation of a highly fragmented area. 

Figura 4 - Segmentação obtida em uma área altamente frag-
mentada.

Network Number of iterations SMSE Network Validation 

1 55,000 0.2224 0.9892
2 60,000 0.2103 0.9919
3 55,000 0.1958 0.9919
4 25,000 0.0223 0.9866
5 22,000 0.0206 0.9892
6 19,000 0.0309 0.9919
7 8,500 0.0119 0.9866
8 15,000 0.0037 0.9973
9 12,000 0.0053 0.9919

10 7,000 0.0235 0.9946

Table 3 – Training results.

Tabela 3 - Resultado dos treinamentos.

3.1 ANN Training 

All tested architectures reached a satisfactory 
convergence of the summed mean squared error (SMSE), 
and the training data are illustrated in Table 3.

Accuracy values were extremely similar for all 
tested networks, only really differing in the number 
of iterations (epochs) required to reach convergence 
and error stability.
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The number of iterations set for each network 
training is closely related to the number of hidden 
layers and neurons in the architectures. Networks 1, 
2 and 3, due to having only one hidden layer and thus 
greater difficulty in learning complex patterns, required 
a larger number of iterations for the training. 

With the intersection of stratified sampling 
points and the maps generated by each network, a 

confusion matrix was applied to each network along 
with the respective values of Kappa Index, Overall 
Accuracy, User’s Accuracy and Producer’s Accuracy 
(Table 4).

Network seven had the highest values of Overall 
Accuracy (0.8310) and Kappa Index (0.7963), and 
the classification result is illustrated in Figure 5. The 
classification quality expressed by the accuracy measures 

Network  Overall 
Accuracy

Kappa 
Index

User’s Accuracy Producer’s Accuracy
Classes Classes

I II III IV V VI VII VIII I II III IV V VI VII VIII
1 0.81 0.77 0.94 0.97 0.92 0.92 0.93 0.50 0.61 1 0.85 0.97 0.83 0.82 0.93 0.84 0.53 0.95
2 0.80 0.76 0.97 1 0.92 0.93 0.93 0.53 0.51 0.95 0.82 0.94 0.85 0.79 0.93 0.76 0.58 1
3 0.81 0.77 0.94 1 0.94 0.91 0.93 0.55 0.56 0.95 0.85 0.94 0.85 0.80 0.93 0.84 0.56 0.95
4 0.81 0.77 0.91 1 0.92 0.89 0.81 0.53 0.61 1 0.91 0.94 0.80 0.83 0.93 0.82 0.56 1
5 0.81 0.77 0.93 1 0.90 0.89 0.87 0.56 0.60 1 0.82 0.97 0.81 0.83 0.93 0.84 0.56 1
6 0.81 0.77 0.97 1 0.91 0.89 0.93 0.53 0.60 1 0.88 0.97 0.80 0.82 0.93 0.84 0.56 1
7 0.83 0.80 0.78 1 0.93 0.87 0.93 0.61 0.68 1 0.94 0.97 0.84 0.88 0.93 0.80 0.55 1
8 0.81 0.77 0.88 0.97 0.89 0.91 0.93 0.57 0.60 1 0.88 0.97 0.82 0.80 0.93 0.80 0.60 1
9 0.81 0.77 0.90 1 0.92 0.90 0.93 0.54 0.57 1 0.82 0.97 0.84 0.83 0.93 0.80 0.55 1

10 0.81 0.77 0.91 0.94 0.93 0.91 0.93 0.52 0.62 0.95 0.88 0.97 0.81 0.85 0.93 0.80 0.55 1

Table 4 - Map accuracy measures of each network.

Tabela 4 - Medidas de precisão do mapeamento de cada rede.

Where: I: Agriculture; II: Water; III: Cerrado; IV: Deciduous Forest; V: Eucalyptus; VI: Other; VII: Pastureland; VIII: Vereda.

is visually noted, since no postclassification or editing 
technique was adopted.

The result obtained from image segmentation was 
crucial in determining the detailing of the final maps, as 
is illustrated in Figure 6.

As with network validation, all maps had very 
close accuracy values, showing no clear correlation with 
the number of hidden layers and neurons in them.

With good accuracy values in the remainder of 
the classes, the classes Other and Pastureland are surely 
responsible for the drop in Overall Accuracy and Kappa 
Index values.

The classes Cerrado, Deciduous Forest and Vereda 
were in good conformity with the validation samples. 
With accuracy values close to 90% and even 100% in the 
case of Veredas, the study methodology proved effective 

in recognizing the seasonal and spectral pattern of the 
local native physiognomies.

Several studies were conducted in the same area 
as this study, including the works of Acerbi-Junior et 
al. (2006) who classified the cerrado using merging 
techniques with MODIS and Landsat TM imagery, 
Silveira et al. (2008) who used decision tree algorithms 
and MODIS imagery to characterize and classify cerrado 
and seasonal forests, and Oliveira et al. (2010) who 
classified cerrado and seasonal forests with MODIS 
and Landsat TM imagery merged by ANN, all of which 
produced similar accuracy results. However, the scale 
factor should be compared in all of them, noting that 
use of better spatial resolution imagery increases image 
granularity, and that intensifies problems associated with 
pixel-based classification.
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Figure 5 – Classification of mosaics obtained by network 7.

Figura 5 - Classificação dos mosaicos obtidos pela rede 7.

Figure 6 – Detailing achieved with mapping.

Figura 6 – Detalhamento alcançado com o mapeamento.
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In a study to classify savannas in Namibia using 
MODIS imagery,  Hüttich et al. (2009) found that, given 
the highly heterogeneous structure of the savannas, the 
RapidEye satellite seems promising for accurate mapping 
of the vegetation. With the excellent accuracy results found 
for the Cerrado class (Brazilian savanna), this hypothesis 
is confirmed.

With 70% of its land cover being native forest, the 
study site boasts the state’s largest forest fragments. Despite 
representing a minute portion of the land cover though 
very well delimited and mapped, the Veredas are very 
representative of the region and have great environmental 
importance. Typically formed by valley-side marsh and 
palm groves with upwelling groundwater and water 
springs, the Veredas provide shelter to a wealth of local 
fauna and flora species, therefore it should be well grasped 
in order to ensure its preservation and maintenance.

4 CONCLUSIONS

The proposed methodology proved highly effective 
in mapping land use and land cover in a region with such 
high diversity of flora and occupancy classes, therefore 
using multisource data in combination with object-based 
analysis is both desirable and recommended.

Time signatures of the local vegetation and 
Landsat TM imagery did provide valuable information 
about spectral-temporal variations in the local plant 
physiognomies.

While integrating the spatial and spectral 
information of RapidEye imagery with the spectral and 
temporal information of Landsat TM imagery, the image 
segmentation technique enabled combining the best of both 
worlds with no loss or compromise of data.

The number of hidden layers in a MLP network, 
as well as the number of neurons in each layer, seems 
to have no direct correlation with mapping accuracy, 
proving capable of classifying data with great accuracy 
and differing only by the number of iterations required for 
each network to learn the input patterns.
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