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ABSTRACT: The Pantanal climate presents marked seasonality and eventually strong winds occur, especially in the beginning
of the rainy season, which may last from September or October until April. A phytosociological study was conducted to evaluate
the effects of a strong wind on the composition and structure of two forest formations in Pantanal wetland, a semideciduous forest
(19°15°32”S and 55°45°23.7”W) and a forested savanna - “cerraddo” (19° 17’ 21”’S and 55° 45° 8.9” W), with trees with diameter
at breast height (DBH) > 5 cm. After the strong wind, a reduction of 6% of the basal area and volume in the semideciduous forest
was observed, mainly due to the uprooting of Xylopia aromatica trees. In the forested savanna, the basal area and volume reduction
was even higher; an estimated 10%, representing 69 uprooted trees per hectare, mainly of Copaifera martii trees. In both areas it
was observed that the uprooted trees presented an average height and diameter bigger than the trees that remained intact. Usually,
the trees that were uprooted presented higher wood density and the species that had broken branches had a lower density.
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ALTERACOES NA ESTRUTURA DE AREAS FLORESTADAS CAUSADAS
POR VENTANIA FORTE NO PANTANAL, BRASIL

RESUMO: O clima do Pantanal é sazonal e eventualmente podem ocorrer ventanias fortes, especialmente no inicio do periodo
chuvoso, que comega em setembro ou outubro e se estende até abril. Um estudo fitossociologico, para avaliar o efeito de ventania
forte na composigdo e estrutura em drvores com diametro a altura do peito (DAP) > 5 cm, foi realizado em duas formagées florestais
no Pantanal, uma floresta semidecidua (19°15°32”S e 55°45°23.7”0) e um cerraddo (19°15°32"S e 55°45°23.7"0). Depois da
ventania forte, ocorreu a redugdo de 6% da area basal e do volume na floresta semidecidua, principalmente por queda de arvores
da espécie Xylopia aromatica. No cerraddo, a redugdo da darea basal e do volume foi mais alta, estimada em 10%, com 69 arvores
caidas por hectare, principalmente da espécie Copaifera martii. Em ambas as areas observou-se que as arvores caidas apresentaram
altura e diametros maiores do que as arvores que permaneceram intactas. Geralmente, as espécies das darvores caidas apresentaram
alta densidade de madeira, enquanto que as espécies que quebraram tém densidade de madeira menor.

Palavras-chave: Area basal, disturbio natural, cerraddo, floresta semidecidua.

1 INTRODUCTION

The tropical forest is subject to different natural
disturbances including strong winds, fire (SANFORD
JUNIOR et al., 1985), and tree uprooting (BROKAW,
GREAR, 1991) causing alterations in the forest
structure (WALKER, 1991) and succession changes
in species composition (DITTUS, 1985; WEAVER,
1989). The occurrence of these phenomena are of great
importance to maintain species diversity in tropical
forests (TERBORGH, 1992), many a time exerting direct
influence over the mortality and recruitment process in
these formations (WHITMORE, 1990). Adult trees may
resist damages caused by strong winds, presenting high
probability of surviving and re-establishment, however,

the probability may vary among species (WALKER,

1991).
Authors report structure and composition changes

in tropical and savanna forests (COOK; GOYENS, 2008;
LAURANCE; CURRAN, 2008) because of strong winds,
storms, and hurricanes. Several articles report structural
changes in forest formation due to these events in Central
America, where tropical storms are frequent (BROKAW;
GREAR, 1991; ZIMMERMAN et al., 1995). Storm
effects were also evaluated in the vegetation formation
in southwest (BATISTA; PLATT, 2003) and southeastern
of the United States (GRESHAM et al., 1991). Nechet
(2002) reported that the occurrence of strong winds in the
Amazonian Forest in Brazil, caused the uprooting of small
trees, twisted branches, and tearing away of small trees.
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The Pantanal region presents strong climate
seasonality. There are strong winds, mainly during the
beginning of the rainy season, which may last from
October to April. Not much is known about the effects
of this natural phenomenon over the structure and
composition of the forest formation in the Pantanal area.
The objective of this study is to evaluate the effect of a
strong wind over a semideciduous forest and a savanna
forest (cerraddo) in the Pantanal of Nhecolandia, Mato
Grosso do Sul State, Brazil.

2 MATERIAL AND METHODS
2.1 Study site

The studied areas are located in Baia das Pedras
Farm, Pantanal of Nhecolandia, Aquidauana County,
Mato Grosso do Sul State, and they are approximately 4
km apart. The semideciduous forest is located between
the coordinates 19° 15° 32”’S and 55° 45’ 23.7”W and
the savanna forest (cerraddo), between 19°17°21” S and
55°45° 8.9”W.

According to the Koppen classification, the climate
of the region is Awa, tropical, high altitude, mega-thermal,
with average temperature during the coldest month above
18°C, dry winters and rainy summers (SORIANO, 2002).
The measurements were carried out in November 2005, in
Baia das Pedras Farm, approximately five days after a strong
wind had damaged several trees, which were uprooted or
broken. To estimate the wind velocity, the Beaufort scale
was verified, according to Sonnemaker (2000).

2.2 Sampling and data analysis

The phytossociological study was carried out
using the transect method (BROWER; ZAR, 1984). Four
transects were used in the semideciduous forest (two of
150 m x 10 m and two of 200 m x 10 m) and one in the
savanna forest (520 m x 10 m). All trees with diameter at
breast height (DBH) > 5 cm, including broken or uprooting
trees, were sampled.

To avoid counting trees damaged before the
wind effects, it was considered and sampled only trees
with green leaves in the broken branches and trunks. To
estimate the initial height of the trees (before the wind)
it was measured for the broken trees, the length of fallen
branches adding to the length of its remaining trunk, or
the measure was taken from the fallen tree on the ground.

The trees were identified using specialized
literature and by comparison with dried specimens from
CPAP Herbarium of the Embrapa Pantanal.
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The phytossociological parameters (absolute
density, basal area, volume, and synthetic index of
importance value), as discriminated by Martins (1991), were
calculated using the Fitopac software (SHEPHERD, 1995).
To each sampled physiognomy, two phytossociological
analyses were carried out: in the first analysis all trees were
included and in the second analysis, the uprooting trees
were excluded, to evaluate the effect of the strong wind
on the vegetation structure. The broken trees remained in
the second analyses because they could sprout and still be
part of the vegetation structure.

Statistical analyses were carried out (T test for
two samples) by comparing the diameter and height of
the uprooting or broken trees and the ones that remained
intact.

3 RESULTS AND DISCUSSION

According to Beaufort scale, the wind speed was
estimated between 67 and 90 km/h, characterized by
the capacity to cause damage to the exposed parts or to
uproot trees.

In the semideciduous forest, 245 trees from 44
species were recorded in 0.7 ha, representing an estimated
absolute density of 350 trees.ha!. When excluding the
uprooted trees from the analyses, a reduction to 339 trees/ha
(Table 1) was observed, resulting also in a reduction
of around 6% of the basal area and volume in this site,
representing around 10m?3.ha! of fallen wood. Changes
in the average height and diameter were also observed
considering the population sampled (Tables 1 and 2). In
this forest, around 9% of the sampled trees were damaged
by the wind, 3% were uprooted, and 6% were broken. The
percentage of uprooted trees was similar to that observed
by Franklin et al. (2004) in a lowland tropical rain forest
in Tonga (2%), whereas, for broken trees the values were
much lower than the 16% observed in Tonga and the 26.5%
broken trees in a semideciduous forest in southeast Brazil
(MARTINI et al., 2008). Gresham et al. (1991) reported
severe damage in 11% of the sampled trees in a swamp
forest after a strong hurricane in South Carolina, USA,
and the damaged individuals usually presented high DBH
and height. Dittus (1985) observed a similar pattern for
a mountain forest in Sri Lanka, where the individuals of
higher diameter suffered more severe damage. Inga laurina
was the species that presented the higher importance value
index (IVI) in the first analysis. Excluding the fallen trees,
Xylopia aromatica and I. laurina present similar IVI,
followed by Hymenaea stigonocarpa (Table 2). Changes
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Table 1 — Structure of a semideciduous forest and a savanna forest, before and after (values in parenthesis) the strong wind in

Pantanal of Nhecolandia, Mato Grosso do Sul State, Brazil.

Tabela 1 — Estrutura de uma floresta semidecidua e de um cerraddo, antes e depois (valores entre parénteses) da passagem de uma
ventania forte no Pantanal da Nhecoldndia, Mato Grosso do Sul, Brasil.

Parameters Semideciduous Forest Savanna Forest
Average height (m) 7.3 £4.0 (7.244.0) 6.1+£2.7 (6.1£2.8)
Average diameter (cm) 18.8+£14.4 (18.6+14.3) 13.4+£8.4
Absolute density (trees.ha) 350 (339) 577 (517)
Basal area (m2.ha™') 15.36 (14.49) 11.36 (10.18)
Total volume (m*.ha™') 164 (154) 95 (85)
Number of trees of uprooted (tree.ha') and % 11=3% 69 =10%
Number of trees of broken (tree.ha') and % 21=6% 121 =21%

in the species absolute density were observed in /. laurina,
Xylopia aromatic and H. stigonocarpa (Table 3), but the
number of species remained the same.

Twenty-one broken trees were observed in one
hectare of semideciduous forest, mostly Xylopia aromatica
(10 trees), Licania octandra (4) and Inga laurina (3). It
was observed in one hectare eleven uprooted trees of
the following species: X. aromatica, I. laurina, Eugenia
egensis, and Hymenaea stigonocarpa. Hymenaea
stigonocarpa is among the tallest tree (with average height
above 12 m) and with higher number of individuals (13)
when compared to the others, so it would be expected to
be more vulnerable to damages by strong wind. However,
although there were 13 trees of this species in the area,
only one was damaged, and it was uprooted. As this is a
species with high density wood (0.78 g.cm?) (VALE et al.,
2002), considered a hard and resistant wood, that might
have being the cause of the tree being uprooted, without
breakage of the trunk.

Walker (1991) also observed the fall of Inga
laurina after a strong storm in Porto Rico. According
to this author, the difference in the falling down of trees
between species is directly related to the diameter and
height, as individuals of higher dimensions were uprooted
in significantly larger numbers. In semideciduous forest
trees of Inga laurina were uprooted and broken too,
probably because this species presents a moderate dense
wood (0.71 g.cm™), which is not resistant (LORENZI,
1998). Xylopia aromatica presents also a low density and
coarse texture, according to Lorenzi (1992), which may be
the reason why most of the trees of this species on the site
were broken by the strong wind. Putz et al. (1983) observed
higher occurrence of snapped trees with lighter wood in a
semideciduous forest in Panama and Martini et al. (2008)

in a semideciduous forest in Brazil. These authors also
observed that the trees with higher wood density were
uprooted, as observed with Hymenaea stigonocarpa.

In the savanna forest, 300 trees from 42 species
in 0.52 ha were observed, representing an estimated
absolute density of 577 trees.ha™! (Table 3). In the analyses,
excluding the uprooted trees, a reduction to 517 trees/ha
was observed (Table 1), due mainly to the uprooting of
Copaifera martii (25 individuals in one hectare), Protium
heptaphyllum, and Qualea grandiflora with two individuals
each (Table 3). The wind occurrence through this savanna
forest area resulted in 31% of the trees being damaged
(three times higher than in semideciduous forest), with
10% (69) fallen trees, and 21% (121) broken ones (Table
1). The 69 fallen trees caused reduction of basal area and
volume in the tree community, which was estimated at 10%,
representing 10 m*.ha™! of wood. Dubs (1992) reported that
for most of the species from the savanna forest, most of the
lateral roots tend to grow very close to the soil surface, do
not head very deep, which in a certain way provides a low
mechanical resistance to these species.

Qualea grandiflora presented the highest IVI in
the savanna forest in both analyses. It had been noted that
among the fallen trees in the evaluated site, there were two
individuals that were representative of only two species
(Kielmeyera coriacea and Rhamnidium elaeocarpum),
resulting in a reduction of the species number from 42
to 40 species. Due to the high number of trees that were
uprooted after strong winds, several changes in the IVI and
absolute density (AD) were observed for Q. grandiflora,
Hymenaea stigonocarpa, and Protium heptaphyllum,
among others. What can be pointed out is the considerable
reduction in AD and IVI observed for Copaifera martii
after the wind (Table 3).
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Table 3 — Continued...

Tabela 3 — Continuagdo...

Diameter (cm)
maximum

average

13.7

Height (m)
maximum

average

Basal area
(m?)
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R
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g <
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< 8
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<
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Q
2
5]
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(=¥
wn

13.7

0.015

1.9
1.9
1.9

1
1
1

3.0 (3.2)
3.0 3.2)
3.0 3.2)
3.0 (0)

2.9 (0)

2.8 (3.0)
2.8 (3.0)
2.8 (3.0)
2.8 (3.0)
2.8 (3.0)
2.8 (3.0)

Hancornia speciosa Gomez

12.1

12.1

4.0

0.012

Eugenia aurata O. Berg

12.1

12.1

6.0

0.012

Ocotea diospyrifolia (Meisn.) Mez

12.1 (0)
7.6 (0)
7.0
6.4
5.7
5.1

12.1 (0)

8 (0)
5(0)

8.0 (0)
5.0 (0)

3.0

0.012 (0)
0.005 (0)
0.004
0.003

1.9 (0)
1.9 (0)

1.9
1.9
1.9
1.9
1.9

1.9

1 (0)
1 (0)

1
1
1
1
1
1

Kielmeyera coriacea Mart.

76 (0)

7.0
6.4
5.7

5.1

Rhamnidium elaeocarpum Reissek

Chomelia obtusa Cham. & Schltdl.
Strychnos pseudoquina A. St.-Hil.

5.0

0.003

Pouteria ramiflora Radlk.

3.5 3.5

0.002

Alchornea discolor Hook f.

54
5.1

5.4
5.1

3.0

0.002

Eriotheca gracilipes (K. Schum.) A. Robyns

Qualea multiflora Mart.

2.0

0.002

5.906
(5.292)

300 576.9
(269)  (517.3)

300

Total

393

Copaifera martii, mainly species uprooting,
presents hard wood, with 0.98 wood density (CORREA,
1931). Therefore, most of the trees did not break with
the wind due to trunk resistance. However, the uprooted
trees were mainly those above 6 m in height. The most
affected species in this site were: Protium heptaphyllum
(21 trees), Qualea grandiflora (19), Mouriri elliptica (15),
and Lafoensia pacari (8). These species present moderate
wood density, varying between 0.77 and 0.80 (LORENZI,
1992), with medium texture, which might have been the
reason they broke.

The diameters and height of fallen and intact
trees presented statistically significant differences when
comparing the damaged trees in the semideciduous (P <
0.001) and savanna forest (P = 0.014). In this case, all
the trees were considered for both areas. Brokaw and
Grear (1991) reported similar reduction of the average
tree height in a tropical forest in Porto Rico after a storm,
suggesting that higher trees were more susceptible to
hurricanes and tropical storms. Another analysis for the
two species, Copaifera martii and Xylopia aromatica,
was carried out with the highest number of broken or
uprooted trees. Copaifera martii presented the higher
number of fallen trees in the savanna forest. The uprooted
trees presented an average height and diameter at breast
height bigger when compared to those that were not
damaged by the wind (P = 0.014) (Figure 1). However,
Xylopia aromatica, did not present this pattern (Figure
2), probably because this species has a low density and
a coarse wood texture (LORENZI, 1992), resulting in
being vulnerable to strong winds, independent of their
height and diameter.

By comparing the two sampled sites, it was possible
to emphasize that in the savanna forest the wind caused
severe damage, as was seen by the percentage of uprooted
and broken trees. This difference in damage intensity
could be due to the structure and floristic composition
in the areas. In the savanna forest, the trees were thinner
(mean diameter of 13.4 ¢cm) and there were many trees
with low density wood, although with higher tree density
per area, which would be more susceptible to wind
damage. According to Zimmerman et al. (1995), stronger
wind effects were observed in the fast growing and soft-
wooded species. Franklin et al. (2004) also observed higher
proportion of broken trees, with trees having 10 — 15 cm
diameter at breast height (DBH), whereas, trees with
higher DBH (20 — 30 cm) would be more susceptible to
be uprooted.

Cerne, Lavras, v. 18, n. 3, p. 387-395, jul./set. 2012



394
11~
10 - °
9,
s 8- (1) oo
;‘: 7+ o000 °
.80
£ 61 (Y e00000000
°
S5+ ° (Y YY)
4 ° o0
°
3 ° ee0000
2 ! ! |
Uprooted/broken Intact trees

trees
Figure 1 — Height of fallen (uprooted and broken) and intact
trees of Copaifera martii (Fabaceae) that presented significant
differences among the averages (P = 0.014; t = 2.552) in the
savanna forest site, in Pantanal of Nhecolandia, Mato Grosso
do Sul State, Brazil.

Figura 1 — Altura das drvores afetadas (caidas e quebradas) e
intactas de Copaifera martii (Fabaceae), mostrando diferengas
significativas entre as médias (P = 0,014, t = 2,552) na area de
cerradado, Pantanal da Nhecolandia, Mato Grosso do Sul, Brasil.
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Figure 2 — Height of fallen (uprooted and broken) and intact
trees of Xylopia aromatica (Anonnaceae) that did not present
significant differences among the averages (P=0.852; t=1.596)
in the semideciduous forest site, Pantanal of Nhecolandia, Mato
Grosso do Sul State, Brazil.

Figura 2 — Altura das drvores afetadas (caidas e quebradas)
e intactas de Xylopia aromatica (Anonnaceae), mostrando
diferengas significativas entre as médias (P = 0,852; t = 1,596)
na area de floresta semidecidua, Pantanal da Nhecolandia, Mato
Grosso do Sul, Brasil.
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