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ABSTRACT: This paper reviews the main concepts of several methods of phenotypic stability analysis and points out their
advantages and limitations. It was concluded that the simple linear regression method of Eberhart & Russel (1966) and the bi
segmented regression method of Silva & Barreto (1985) have only historical importance nowadays. Moreover, based on factors
discussed in the paper, it is recommended that the regression models of Toler & Burrows (1998) and the Additive Main effects and
Multiplicative Interactions (AMMI) model should be used simultaneously to study and to estimate phenotypic stability effects.
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MODELOS  ESTATÍSTICOS  NA  AGRICULTURA:  MÉTODOS  BIOMÉTRICOS  PARA  AVALIAR
A  ESTABILIDADE  FENOTÍPICA  NO  MELHORAMENTO  DE  PLANTAS

RESUMO: Este trabalho revisa os principais conceitos de diversos métodos de análise da estabilidade fenotípica e aponta suas
vantagens e limitações. Concluiu-se que os métodos de regressão linear simples de Eberhart & Russel (1966) e o de regressão bi-
segmentada de Silva & Barreto (1985) têm apenas importância histórica nos dias atuais. Além disso, considerando-se os aspectos
discutidos, recomenda-se que os modelos de regressão de Toler & Burrows (1998) e o modelo com efeitos principais aditivos e
interação multiplicativa (AMMI) sejam usados simultaneamente para estudar e estimar os efeitos da estabilidade fenotípica.

Palavras-chave: AMMI, modelos estatísticos não-lineares, modelos lineares de regressão.
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1 INTRODUCTION

In the last phase of plant breeding programs,
candidate varieties with market potential should be
evaluated under a range of conditions similar to the real
conditions that they will experience when in use. To be
successful, a new variety should have high productivity
and high performance for agronomic traits over a wide
range of environmental conditions. Plant breeders usually
agree about the importance of high production stability,
but not necessarily about the appropriate definition of
stability.

The basic cause of differences among genotypes
(varieties) in relation to production stabilities is the
genotype x environment (GE) interaction, so that the
performance of the genotypes depends on the specific
environmental conditions where they are grown. Part of
the interaction can be explained by known environmental

factors such as the incidence of disease or pests, annual
rainfall, severity of dry-season, soil fertility, soil
waterlogging, soil depth, photoperiod, etc. However, the
most of GE interactions cannot be explained by these known
factors.

Several methods have been developed by
statisticians and applied by plant breeders to explain the
GE interaction at the end of plant breeding programs. The
main concepts of these methods are reviewed in this article
and their advantages and limitations are pointed out.

2 BASIC  CONCEPTS

In the last phase of plant breeding the new varieties
are grown in several locations under different conditions
of climate and soil fertility, and also in different seasons of
the year (ACCIARESI & CHIDICHIMO, 1999; BECKER &
LÉON, 1988). The different conditions, as defined by



374

Cerne, Lavras, v. 12, n. 4, p. 373-388, out./dez. 2006

FERREIRA, D. F. et al.

(2.1)

locations and seasons, are considered to be a single factor
for environmental conditions. In these experiments,
randomized complete blocks and incomplete block designs
are usually used. For incomplete block experiments lattices
designs are usually used due to the large number of
varieties (genotypes) to test. For all designs, the interest
of plant breeders has focused on modelling the genotype
means estimated in the jth environment. Thus, one may
consider the linear model:

ij i j ij ijY g e ge

where: Y
ij 

is the ith genotype mean observed in the jth
environment, for i = 1, 2, ..., p, and j = 1, 2, ..., q; is an
overall constant; g

i
 is the fixed effect of the ith genotype,

with ; 
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with
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ge ge ; ij  is the mean error related to

the observed Y
ij
, which is assumed to be normal with a

mean 0 and a variance, 2 / n , where n is the number of
replications associated to the yield mean Y

ij
;  p is the

number of genotypes; and q is the number of environments.

In Table 1 the general form of the results observed
from the evaluation of p genotypes in q environments is
presented. Thus, iY represents the marginal genotypes

means, jY  the marginal environments means, and Y  the

overall mean.
The GE interaction term ge

ij 
(in equation 2.1)

represents the differential genotype yield responses under
different environmental stimuli. In most situations, the
relative performances of two genotypes change with the
environment conditions, as a direct consequence of GE
interaction. Therefore, one of the most important objectives
of the analysis of phenotypic stability is to identify the
genotypes whose phenotypic performance remains stable
even when the environmental conditions change. These
analyses only make sense if GE interactions are present
(HUSSEIN et al., 2000). 

Environments Marginal   
Genotypes 1 2 

 

q Mean iY

 

1 Y11 Y12 

 

Y1q 
1Y

 

2 Y21 Y22 

 

Y2q 
2Y

       

p Yp1 Yp2 

 

Ypq 
pY

 

Mean jY

 

1Y

 

2Y

  

qY

 

Y

  

In Figure 1, the mean performances of two
genotypes (A and B) are shown in two environments (E1
and E2) to illustrate the environmental effect, the presence
and the absence of an interaction effect, and the two basic
types of interaction. Figure 1 (a) and (b) show the absence
of an interaction effect. In these cases the genotype lines
are parallel, with genotype A showing a higher response
than genotype B, and absence of environmental effect in 1
(b). Figure 1 (c) and (d) show interaction effects. In 1 (c)
the interaction is of a simple type, with genotype B superior
for both environments E1 and E2. In 1 (d) the interaction is
complex. This is the most important case for the plant
breeder, because genotype A has the lowest mean in
environment E1, but the highest mean in environment E2.
Most real situations show a mixture of cases 1 (a) to 1 (d).

Phenotypic stability has two concepts, static and
dynamic (BECKER & LEON, 1988). The static phenotypic
stability exists when a genotype maintains its performance
independently of variations in the environmental
conditions. This type is called biological stability. A
genotype has dynamic stability if its performance varies
with environmental changes but in a predictable way. This
kind of stability is called agronomic stability.

There are several methods to measure phenotypic
stability by modelling the GE interaction. These include

a) Univariate parametric methods including simple
and bi-segmented linear regression, variance components
with mixed models, descriptive statistics, and non-linear
regression models;

b) Non-parametric methods including variance of
genotype rank values; and

Table 1 

 
Estimates of the p genotype means in each of the q

environments.

Tabela 1 

 
Estimativas das p medias genotípicas em cada um

dos q ambientes.
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c) Multivariate methods including AMMI (Additive
Main effects and Multiplicative Interactions) analysis.

3 METHODS  FOR  ESTIMATING  PHENOTYPIC
STABILITY

3.1 Methods based on analysis of variance

All the methods described in this section are based
on the model of equation (2.1). For the specific case of
measuring phenotypic stability by using the static concept,
Roemer (1917) proposed the use of the variance of each
genotype over the environments. Thus, to estimate the

Figure 1 

 

Patterns of the genotype behaviors in different environments outlining the two fundamental types of interaction,
considering only a simple case of two genotypes and two environments.

Figura 1  Padrões de comportamento dos genótipos em diferentes ambientes destacando os dois tipos fundamentais de interação,
considerando somente um caso simples de dois genótipos e dois ambientes.
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(b) Illustration of null GE interaction, 
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(d) Illustration of complex GE effect 

 

static phenotype stability of the ith genotype, the following
estimator could be used:

2

12

1

q

ij i
j

i

(Y Y )

S
q

(3.1)

A genotype is then considered to be stable if the
sample estimate is not significantly different from zero, i.e.,
if the hypothesis H

0
: 2

i  = 0 is not rejected, which means
that this genotype will not have yield changes with changes
in the environment. A problem with this method is that, in
general, genotypes with high phenotypic stability
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(3.2)

measured through the environmental variance show low
yield. In consequence, plant breeders do not use this
method to evaluate the phenotypic stability of the
genotype yields, or other related random variables.
However, it is useful to evaluate the phenotypic stability
of traits that should maintain their levels. Among these are
qualitative traits such as resistance to diseases or tolerance
to environmental stresses.

The simplest method to evaluate the stability by
using the dynamic concept is due to Wricke (1964). In this
method, it is proposed to use the sum of square of the GE

populational effects 
2

1

q

i ij
j

g  and a sample estimator is

given by:

2

1

q

ij i ji
j

Y Y Y YW

This statistics for the ith genotype represents the sum

of squares of the GE estimate interaction effects. If 0i ,

the genotype is considered stable and if it is greater than 0
the genotype is considered unstable. Wricke (1964) called
this parameter ecovalency, and referred to it as genotype
ability to answer to environmental changes. A high
ecovalency implies a low i .

The variance component of each genotype
throughout the environments is another related measure
of phenotypic stability, as proposed by Shukla (1972). This
genotype variance estimator is given by:

2 1 1 2i ip / ( q )( p ) W QMGE /( p ) (3.3)

where QMGE is the genotype x environment interaction
mean square. In this case, a drawback is the possibility of
obtaining a negative estimate of the genotype variance
component.

The procedure to obtain geometrically the
genotype ecovalency estimator W

i
 is shown Figure 2. The

dotted line represents the genotype response obtained by
adding the overall constant to the environmental effect.
The solid line represents the same genotype responses,
added to the ith genotype effect. The difference between
the two lines represents the genotype effect and the
deviations of the solid line from the true genotype values
(points) represent the GE interaction effects. The sum of
the squares of the interaction effects represents the
ecovalency. Stable genotypes would be those whose
responses are all close to the full straight line.
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Figure 2  Parametric representation of the responses (points)
from a selected genotype and of two ways for modelling them
by showing the genotypes and GE interaction effects.

Figura 2  Representação paramétrica da resposta (pontos) de
um genótipo específico e de duas formas para modelá-los,
destacando os efeitos genotípicos e da interação.

3.2 Regression methods

Although there is no unanimous concept for
the phenotypic stability, several methods and models
have been used to explain the GE interaction. These
include the use of uni-segmented and bi-segmented
linear regression (CRUZ et al., 1989; EBERHART &
RUSSELL, 1966; FINLAY & WILKINSON, 1963;
FREEMAN & PERKINS, 1971; PERKINS & JINKS,
1968a, b; SHUKLA, 1972; SILVA, 1995a, b, 1998; SILVA
& BARRETO, 1985; TOLER, 1990; TOLER &
BURROWS, 1998; VERMA et al., 1978), where the basic
idea consists of regressing the genotypes
performances on the environmental mean yields,
expressed by an environmental index, through a linear
or a non-linear model in the parameters.

These regression models have been used most
often by plant breeders since the first simple linear
regression model proposed by Finlay & Wilkson (1963),
and much research focused on searching for improvements
in these methods.

The simple linear regression model (EBERHART &
RUSSELL, 1966; FINLAY & WILKINSON, 1963) is defined
by:

0 1ij i i j ij ijY Y
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where 0i , 1i , ij and jY are the regression coefficients
(intercept and slope), the deviation from the regression
and the jth environmental mean, respectively. Usually jY
is replaced by , j jI Y Y to give

0 1ij i i j ij ijY I (3.4)

This regression considers that the effects in the
complete biometrical model (2.1) are independent. If the
genotypes were considered simultaneously, there would
be no covariance among the GE interaction and
environmental effects. If, on the other hand, the genotypes
were considered separately, there would be a covariance
and the regression coefficient will be the standardized
version of that covariance (COMSTOCK & MOLL, 1963).

The interaction effect can be modeled by adopting
an equivalent model to that presented in equation (3.4) by

where i

 

represents the regression coefficient of the
environmental effects on the GE effects for the ith
genotype; ij  is the regression deviate for the ith genotype
and for the jth environment (Figure 3). The genotype
response fits better when we choose model (3.4), or equally
with model (3.5), than when the following model is chosen:

ij j iY e g

The residual mean square of each genotype is also
used to classify a genotype according to it stability. The

residual mean square 2
di for the regression with the ith

genotype is estimated by 2
diS and a lack of fit test (DRAPER

& SMITH, 1998), 2
0H : 0di , can be applied. Many

authors use this test to define whether the ith genotype is
stable or not. If that hypothesis is not rejected, then the ith
genotype is considered stable (EBERHART & RUSSELL,
1966).

The linear regression models have received
criticism from the scientific community (BECKER & LEON,
1998; TOLER & BURROWS, 1998), but they are
nevertheless often used. The main criticism is based on
the fact that the environmental index (I

j
) is not independent

of the response variable (Y
ij
), because the index is estimated

as the environmental mean response, although the effect
of this dependence decreases as the number of genotypes
increases. A second criticism is related to the use of
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Figure 3  Modelling the genotype yield by a simple additive
linear model and by a regression model on environmental
parametric effects.

Figura 3  Modelagem da produtividade genotípica por meio
de um modelo linear aditivo simples e de um modelo de regressão
sobre os efeitos ambientais paramétricos.

biased estimators of the regression coefficients, because
the independent variable is measured with error (STORCK
& VENCOVSKY, 1994). This bias depends on p and on

the ratio 2 2
e , where 2

e

 

is the environmental variance

and 2 is the residual variance. Thus, the bias reduces

as the environmental effects increase. Another problem
that can affect the inference is the violation of the
assumption of the residual environmental variances
homogeneity.

The genotypes are classified according to their
performance based on the regression coefficients. The
genotypes response patterns depend on the test of the
hypothesis 0H : =11i , and the genotypes are classified as: 

responsive genotype to improvements of the
environmental conditions, 1( 1)i recommended for
favorable environments; 

less responsive genotype to improvements of the
environmental conditions 1( 1)i , recommended to
unfavorable environments; 

broad stable genotype 1( 1)i , recommended
for most environmental conditions.

With those tests, should come a lack of fit test
2

0H : 0di , and a multiple comparison test for the

(3.5)ij i j ijge e
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genotype means 0i . This provides a general
protocol to evaluate the response pattern over
environments and the phenotypic stability and
adaptability of each genotype. An adapted genotype
shows a high mean performance over all environments.
The favorable environments are those where farmers
adopt agricultural practices with high technology, or
have high soil fertility and appropriate climate
conditions. Many plant breeders cannot understand
the reason why stable and responsive genotypes are
only recommended for favorable environments. To
answer this question, it is necessary to observe that a

larger 1i value will potentially provide lower yields as

the environmental conditions worsen. Therefore, the
risk of a poor performance is high when a genotype
that is classif ied as responsive is chosen for
unfavorable environments. This can exclude such
genotype from the market. In the same way a genotype

with 1 1i , classified as not responsive, should not

be recommended for favorable environments because
this genotype does not respond very positively to
improved environmental conditions.

The basic differences between the methods
proposed by Eberhart & Russel (1966) and Finlay &
Wilkinson (1963) are that the former suggested a
logarithmic transformation of the data, while the second
used the regression parameters and deviations to evaluate
the stability, adaptability and the pattern of genotype
response to the environment.

A criticism of the use of simple linear regression
models is based on the potential non linear pattern of
genotype responses to environmental variation. The first
proposal to solve this deficiency was presented by Verma
et al. (1978). They separated the environments into two
groups (favorable and unfavorable) and fit a simple linear
regression model separately to each part. The division is

made based on the environmental index j jI X X  that

represents the deviation of each environmental mean from
the overall mean. They considered as unfavorable
environments those with negative or zero indices and as
favorable environments those with positive indices. It
should be noted that this classification of the environments
is rather simple and may not be satisfactory when there are
few genotypes.

There is also a problem with this approach because
of sampling errors in the classification of environments,

when the number of environments is small. For this reason,
Silva & Barreto (1985) proposed a bi-segmented linear
regression model, where each segment is a straight line.
Cruz et al. (1989) modified this approach. Their model is
discontinuous in the junction of the two straight line
segments from the unfavorable to favorable environments.
They adopted this modification because of the existence
of negative residual correlation among the estimators of
the regression coefficients of the favorable and unfavorable
environments.

This model is based on the fact that an ideal
genotype (Figure 4) possesses: 

high yield performance;  

high stability with a good fitting model, i.e., 2 0di ; 

low sensitivity to adverse conditions; and

 

is capable of responding positively when
environmental conditions are improved.

The ideal genotype has a regression coefficient
smaller than 1 for unfavorable environments and greater
than 1 for favorable environments. On the other hand, an
undesirable genotype shows regression coefficient greater
than 1 for unfavorable environments and smaller than 1 for
a favorable environments.
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I(j)
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Y
ij

Figure 4  Patterns for the bi-segmented linear model of Silva
& Barreto (1985) showing the favorable and unfavorable
environments and desirable (concave) and undesirable (convex)
genotypes.

Figura 4 

 

Padrões para o modelo bi-segmentados de Silva
and Barreto (1985), mostrando os ambientes favoráveis e
desfavoráveis e os genótipos desejáveis (côncavo) e indesejáveis
(convexo).
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(3.6)

The models of Cruz et al. (1989) and of Silva &
Barreto (1985) are represented simultaneously in the
expression:

0 1 2 jij i i j i ij ij
IY I T

where the definitions of ijY , jI , ij and 0i are the same as

presented in the simple linear model; 1i

 

represents the

linear regression coefficient related to the unfavorable

environments; and 1 2i i represents the slope of the

linear response to the favorable environments. Finally, we

define T(I
j
) as: 0jT  if I

j 
 0, or j jT I I  if

I
j
 > 0 for the model of Cruz et al. (1989); and 0jT  if

I
j 

 

0 or j jT I

 

if I
j 
> 0 for the model of Silva &

Barreto (1985).

where
1 1

0 0
q q

j j j
j j

I I ( I ) ( I )  is the mean of

positive environmental indexes I
j 

and 0j( I )

 

an

indicator function.
The o rd inary leas t square parameter

estimators, the tests of the hypotheses of interest

0 1 0 1 0 1 2H 0 H 1 and 1i i i i: , : H :

 

and the
lack of fit test were described by Cruz & Regazzi (1994).

Based on the results of the hypotheses tests, the ideal
genotype can be defined as being one that possesses: 

high yield performance - high 0 ;

1 1 , i.e., low response in unfavorable
environments;

1 2 1 , i.e., high response in favorable
environments; and 

highly stable behavior, i.e., 2 0d .
As with the simple linear regression model, the

criticism that the environmental index is not independent
of the response variable (Y

ij
) still remains. With regards of

the bias on the regression coefficients, Storck & Vencovsky
(1994) proposed corrections to the estimators and to the
hypothesis tests. Nevertheless, if the number of
environments is small, the model is inappropriate.
Inferences may also be affected by the environmental errors
variances heterogeneity.

A new method using bi-segmented models was
proposed by Silva (1998). In the original bi-segmented
model, the junction of the straight line segments
associated with the favorable and unfavorable
environments occurs for all of genotypes at the zero
value for the environmental index. However, according
to Silva (1998) the genotypes can have different
junction points and this can be used to distinguish
among them. The model proposed by Silva (1998) was

0 00 1 2 1 j i j iij i i j i i ij ij
I X I XY I

where: 0 0j iI X if   I
j 

 X
oi
  or 0 1j iI X if   I

j
 > 0iX .

(3.7)

The innovation is the introduction of the parameter
X

0i
 (the point of junction of the two straight line segments)

in the model. This is non-linear in the parameters but can
be fitted by non linear estimation methods, such as the
modified Gauss-Newton method (GALLANT, 1987).
However, Silva (1998) proposed a simpler trial and error
estimation method based on ordinary least squares. By
using a fixed value of the parameter X

0i
, a model using

ordinary regression methods is used. The value of the
parameter X

0i 
was then varied and this process repeated.

The final model is chosen for each genotype as the one
that maximizes the coefficient of determination R2 in the
regression (Figure 5).

For this model, larger values of X
0i
 indicate lower

risks under adverse environmental conditions, but the
genotypes are less responsive to improvements in the
environmental conditions. On the other hand, the smaller

values of X
0i 

indicate higher risks but more responsive
genotypes to improvements in environmental
conditions.

With Silva s (1998) regression model, the criticism
of a lack of independence between the dependent and
independent variables still remains. To solve this problem,
Toler (1990) and Toler & Burrows (1998) proposed simple
uni- and bi-segmented models, where the environmental
index is a parameter to be estimated. These models use
indicator variables for the favorable and unfavorable
environments and are unusual because the independent
variable is not observed. These models are:

0 1ij i i j ij ijY (3.8)

0 1 21 jij i j ij ijj i iZY Z (3.9)
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(3.10)

where Z
j 
is an indicator variable that is 1 if j

 

 1, and
zero otherwise; and j  is the effect of the jth environment.

Restrictions on the parameters are necessary to
allow the model to be fitted to data. These restrictions
are:

1
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for model (3.9) .
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Figure 5 

 

Representation of Silva s (1998) bi-segmented model,
showing the junction parameter for the two straight line segments
(X

0i
) corresponding to the unfavorable and favorable

environments.

Figura 5 

 

Representação do modelo bi-segmentado de Silva
(1998), mostrando o parâmetro de junção dos dois segmentos
de linha (X

0i
) correspondente aos ambientes desfavoráveis e

favoráveis.

hypothesis 0 1 2H i i: . If this hypothesis is not
rejected, the simple non-linear regression model (3.8)
should be applied. Then, the hypothesis that the common
regression coefficient of the ith genotype is equal to 1,

0H 1i: should be tested. The genotype is then
classified according to its response pattern. If the
regression coefficient were larger than 1, the genotype is
responsive, if it is equal to 1, the genotype has a wide
range of adaptation, and if it is smaller than 1, the genotype
is non-responsive.

On the other hand, if the hypothesis of equality of
regression coefficients of the two straight lines segments
on the bi-segmented regression model is rejected then the
hypotheses 0 1H 1i:  and 0 2H 1i: should be tested.
In this case, the genotypes can be classified in a similar
way as discussed for the uni- and bi-segmented linear
models. Hence, the ideal is a genotype that shows a high
yield 0i , 1 1i and 2 1i , while an undesirable
genotype shows 1 1i and 2 1i .

3.3  The additive main effect and multiplicative interactions
       (AMMI) method

There are multivariate methods for the study of
phenotypic stability, including AMMI  as discussed by
Crossa (1990), Gauch Junior (1985), Gauch Junior & Zobel
(1988), Yau (1995) and Zobel et al. (1988). Many studies
have applied both multivariate and univariate techniques
and these methods have been useful for identifying stable
and adapted genotypes (ACCIARESI & CHIDICHIMO,
1999; DIAS & KRZANOWSKI, 2003; FLORES et al., 1996,
1998; HOHLS, 1995; MEDINA et al., 1999; TAI, 1999;
VARGAS et al., 1999; YAU, 1995).

The aim of the AMMI analysis is to model the
interaction effects through a principal component model
(JOHNSON & WICHERN, 1998). The AMMI model was
developed by Gabriel (1971) and Gollob (1968), and has
been applied and extended by many other authors. This
model is defined by:

1

m

ij i j k ik jk ij ij
k

Y g e r s

The interaction effect is
1

m

ij k ik jk ij
k

ge r s ,

where k

 

is the eigenvalue associated with the kth

principal component; r
ik 

is the ith element of the
eigenvector for k

 

associated with genotypes, s
jk 

is jth

Essentially, these models differ from the previous
one because the environmental index j

 

is now a
parameter of the model. Hence, least square methods for
non-linear models must be used to estimate the parameters.

Toler & Burrows (1998) suggested a protocol for
determining the genotype response patterns over
environments. Initially, the plant breeder should fit the bi-
segmented model (3.9) and apply Student t test for the
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11 1

1

q

p pq

ge ge

ge ge

X

.

The X matrix (p q) with rank r = min (p-1, q-1), is
submitted to the singular value decomposition in the
following way:

tX R S (3.11)

where R (p x  r) and S (q x r), R and S are column
orthonormal, t t

rR R S S

 

and 
1

2
kdiag ,

k = 1, 2, ..., r; k  is the kth non-null eigenvalue of XXt or
of XtX, R and S are matrix of eigenvector of the related r
eigenvalues.

In general, m  r non-null eigenvalues are kept, since
they explain most of the total variation, given by:

2

1 1

p q

t t
ij

i j

SSGE
tr tr

n
X X XX

If the proportion of explanation is large for small m,
the technique is considered efficient. Therefore, the
interaction effects can be predicted by:

1

m

íj k ik jk
k

r s

For a formal evaluation to the lack of fit for the
AMMI model, an analysis of variance can be
accomplished as presented in Table 2 for m kept principal
components.

An important characteristic of this method is the
possibility of obtaining plots of the principal components
kept in the analysis of the AMMI model, and plots of the
scores of PC s axes against the mean yield. Genotype and
environment scores can be plotted on the same graph
and used to visually identify stability and the similarity
between genotypes and environments. Therefore, it is
useful to perform genotypes ecological zoning, through
cluster analysis methods to identify genotype and
environment relationships when two or more principal

Table 2 

 

Summarized analysis of variance of the AMMI model, considering the retention of m principal components, and
decomposition of the degrees of freedom of the GE interaction using Gollob s (1968) method.

Tabela 2 

 

Resumo da análise de variância do modelo AMMI, considerando a retenção de m componentes principais e a
decomposição dos graus de liberdade da interação GA usando o método de Gollob (1968).

Source of Variation Degrees of Freedom  Sum of Square 

Genotypes (G) p 

 

1   

Environments (E) q 

 

1   

GxE (p 

 

1)(q 

 

1)  SSGE         

PC1 1 = p + q 

 

1 -2 1 n 1         

PC2 2 = p + q 

 

1 

 

2 2 n 2 

                        

PCm s = p + q 

 

1 

 

2 m n s         

Deviation 
m

i
i 1

( p 1 )( q 1 )

 

Gollob 

(1968) 

m

i
i 1

SSGA n

 

Mean error 

  

SSE 

 
element of the eigenvector for k

 
associated with

environments, and m is the number of retained components
axes.

Let X be a matrix of the GE interactions parametric
effects, defined by:
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components are retained. Figure 6 shows a biplot of PC1
vs mean genotypes yields. A stable genotype is located
as close as possible of the zero level of the PC1 axis. An
ideal genotype has a high mean yield performance and is
stable. An undesirable genotype has low stability as well
low mean yield. If in the same PCi vs PCk graph the
environmental and genotypic scores are plotted we can
perform ecological zoning, by choosing the genotype
and environment groups that are located close and in the
same region of the biplot.

The AMMI model has some disadvantages. If the
number of components retained in the model is large (m  3),
it is difficult to describe the behavior of the GE interaction
effects due to the impossibility of obtaining graphs in more
than three dimensions. It is possible to plot all pairs of
components but, in this case, each component accounts
only for a small portion of the total GE variation. Also, the
environmental response pattern can not be estimated directly
from the AMMI model. Hence, the AMMI model is mainly
useful to identify the most stable and responsive genotypes,
visually, in two or at most three dimensions. As the
environmental genotype response pattern is almost always
required by the plant breeders, this must be identified
through one of the methods discussed previously.
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Figure 6 

 

Illustration of a biplot graph with PC1 vs mean
yield, presenting the main types of genotypes and patterns of
stability and adaptation.

Figura 6 

 

Ilustração do gráfico biplot com CP1 vs a
produtividade média, apresentado os tipos principais de
genótipos e padrões de estabilidade e adaptabilidade.

3.4 Other methods

Other methods that have been used can be
considered complementary to the regression methods.
For instance, in the method of Lin & Binns (1988, 1991)
each genotype is compared with the genotype with
maximum performance in each environment, and an
index is obtained. This index is then partitioned into
estimates of the genetic and GE interaction effects.
Hence, it is possible to identify the genotype that
contributes the most to the GE interaction. Other
methods propose the estimation of a reliability index
for each genotype, which is used for evaluating the
phenotypic stability (ANNICCHIARICO, 1992;
ANNICCHIARICO et al., 1995). The genotype response
yield in the jth environment is expressed as the
percentage of the jth environmental mean values and,
for each genotype, the mean and the standard deviation
over environments are estimated by using the
transformed data. The reliability index is obtained by
calculating the 100 % quantile from the normal
distribution with this mean and standard deviation.
The authors suggested a value of 0.25 .

4 EXAMPLE

Common bean yield (g/plot) data set involving
nine genotypes and eight environments will be used to
illustrate some of the described analyses. In each
environment, a randomized complete block experiment
was carried out with four replicates. The analysis of
variance (Table 3) shows significant (P<0.01) genotype,
environment and the interaction effects. The significant
interaction effect justifies the phenotypic stability
analysis.

Figure 7 shows the studentized residuals plot
against environments indicating no heterogeneity of
variances. The Shapiro Wilks test was performed on
residuals and the normality hypothesis was not rejected at
the 5% level of significance.

Table 4 shows estimates of the genotype means
and ecovalencies. Genotype 3 showed the largest
ecovalency estimate, followed by genotypes 9 and 5.
Genotypes 3 and 6 showed the lowest mean yield.
Genotype 2, which has the smallest ecovalency estimate
and the second largest mean, is considered stable and
adapted. Genotypes 2, 4 and 6 also have low ecovalency
estimates.
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Table 3 

 
Summarized multi environment analysis of variance among nine common bean genotypes in eight locations.

Tabela 3 

 
Resumo da análise de variância conjunta entre oito genótipos de feijão em oito localidades.

SV DF MS       F     P>F   
Environments(E) 7 4343484.51 104.80 0.000 
Blocks/Env (B/E) 24 41485.19 1.00 0.460 
Genotypes (G) 8 185589.32 4.48 0,000 
G x E 56 69908.50 1.69 0.008 
Residual 128 41446.25   
Total 287 -   
CV 15.87%    
Overall mean 1283.12       
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Figure 7 

 

Studentized residuals against environments plot
showing no evidence of variance heterogeneity.

Figura 7  Gráfico dos resíduos estudentizados em função de
ambientes, mostrando que não evidências de heterogeneidade
de variâncias.

Table 5 shows the result of fitting the uni-segmented
linear regression model of Eberhart & Russell (1966).
Genotypes 1, 2, 3, 4, 6, 8, and 9 have slope estimates that
are not significantly different from 1 (P>0.05), and are,
therefore, all considered to be broad stable genotypes.
Genotype 5 has a slope greater than 1, and is considered
less responsive. The lack of fit test is significant (P<0.01)
only for genotypes 3.

The bi-segmented regression model of Cruz et al.
(1989) (Table 6) shows that all genotypes have slopes for
unfavorable environments that are not significantly
different from unity. In favorable environments, the slopes

Table 4  Genotypes mean and ecovalency estimates for the 9
common bean varieties.

Tabela 4 

 

Médias genotípicas e estimativas de ecovalência
para 9 variedades de feijão.

Genotypes 
iY

 

Wi                     

1 1317.50 344934.6  
2 1394.79 193741.2  

3 1192.50 1303388.3  

4 1306.67 225704.1  

5 1244.79 544904.2  

6 1158.33 239935.5  

7 1215.00 378683.7  

8 1414.79 299659.7  

9 1303.75 423669.8  

 

of genotype 5 was significantly less than 1 and of
genotypes 3 and 8 were significantly larger than one. Other
genotypes showed slopes that are not significantly
different from one. No genotype did show a desirable
environmental response pattern. Genotype 3 showed a
significant lack of fit.

Table 7 shows the test for equality among slopes in
the favorable and unfavorable environments for the models
of Toler & Burrows (1998). No genotype did show
significant result (P < 0.05) in this test, and the uni-segmented
model was used to model the genotype behavior.

Table 8 shows the estimates of the uni-segmented
linear regression model of Toler & Burrows (1998). Only
genotype 9 showed a slope significantly greater than one.
Genotypes 5 and 7 had slopes significantly smaller than
one. This indicates evidence that the Toler & Burrows (1998)
model is more powerful than that of Eberhart & Russell (1966).
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Table 5 

 
Parameters estimates and hypothesis test according to the Eberhart & Russell s (1966) uni-segmented linear regression

model.

Tabela 5  Estimativas dos parâmetros e testes de hipóteses para o modelo de regressão linear uni-segmentado de Eberhart and
Russell.

Table 6  Parameter estimates and hypothesis test to the Cruz et al. (1989) bi-segmented linear regression model.

Tabela 6 

 

Estimativas dos parâmetros e testes de hipóteses para o modelo de regressão linear bi-segmentado de Cruz et al. s (1989).

Table 7 

 

Toler and Burrows (1998) test for choosing uni- or bi-segmented regression models.

Tabela 7  Teste de Toler e Burrows (1998) para a escolha do modelo de regressão uni ou bi-segmentado.

Genotypes 
1i

 

t for 0 1H 1i:

 
Pr>|t| 

P-values for the lack 
of fit test 

1 1.12 1.10 0.274 0.327 
2 0.98 -0.14 0.885 0.604 
3 1.10 0.89 0.375 0.000 
4 0.96 -0.39 0.696 0.523 
5 0.75 -2.27 0.025 0.254 
6 0.97 -0.30 0.762 0.474 
7 0.78 -1.98 0.050 0.531 
8 1.13 1.14 0.254 0.449 
9 1.22 1.95 0.053 0.394 

 

Genotypes 
1i

 

t for 0 1H 1i:

 

Pr>|t|

 

1 2i i

 

t for 0 1 2H 1i i:

 

Pr>|t| 

1 1.158 1.156

                  

0.250 1.052 0.272 0.786

 

2 0.975 -0.183

                  

0.855 1.001 0.007 0.995

 

3 0.942 -0.424

                  

0.672 1.403 2.119 0.036

 

4 0.892 -0.789

  

0.432

 

1.081 0.428 0.669

 

5 0.906 -0.686

  

0.494

 

0.443 -2.930 0.004

 

6 1.115 0.847

  

0.399

 

0.677 -1.701 0.091

 

7 0.784 -1.581

  

0.116

 

0.774 -1.189 0.236

 

8 0.992 -0.059

  

0.953

 

1.389 2.046 0.043

 

9 1.234 1.719

  

0.088

 

1.180 0.948 0.345

  

Genotypes 
2 1i i

 

SE  t for 0 2 1H 0i i:

 

Pr>|t| 

1 -0.334 0.348 -0.960 0.339 

2 0.337 0.348 0.969 0.335 

3 0.563 0.349 1.616 0.109 

4 0.114 0.347 0.329 0.742 

5 -0.586 0.350 -1.674 0.097 

6 -0.526 0.348 -1.509 0.134 

7 0.112 0.348 0.321 0.749 

8 0.429 0.348 1.233 0.220 

9 -0.110 0.348 -0.316 0.752 
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Table 8 

 

Toler & Burrows (1998) uni-segmented regression model.

Tabela 8  Modelo de regressão uni-segmentado de Toler e Burrows (1998).

Genotypes 
1i

 

SE  t for 0 1H : 1i

 

Pr>|t|          

1 1.120 0.105 1.152 0.251 
2 0.982 0.104 -0.173 0.863 
3 1.109 0.105 1.040 0.301 
4 0.956 0.104 -0.425 0.671 
5 0.743 0.105 -2.447 0.016 
6 0.962 0.104 -0.359 0.720 
7 0.777 0.105 -2.130 0.035 
8 1.131 0.105 1.257 0.211 
9 1.219 0.105 2.093 0.038 

 
Table 9 shows the eigenvalues estimates and the

proportion of the total variation accounted for by each of
the axes of the AMMI model. The first two components
accounted for 77.8% of the total variation, and PC1 and
PC2 can be retained without information loss.

Only the first two PC axes (Table 10) were significant
(P<0.01), indicating that the model with PC1 and PC2 only

is appropriate for the data.
In the plot PC2 against PC1 (Figure 8), genotypes 3

and 5 are far from the origin and are considered unstable.
On the other hand, genotypes 2 and 4 are close to the
origin and are considered stable. It is easy to see
associations between environments and genotypes. For
instance, genotypes 2 and 6 are related to environment 3,

Table 9  Principal component (PC) model and variation account by each axis

Tabela 9  Modelo dos componentes principais (CP) e variação total explicada de cada eixo.

Axes Eigenvalues % Variation account % Cumulative variation 
1 674214.9 51.7 51.7  
2 340719.2 26.1 77.8  
3 160256.4 12.3 90.1  
4 60049.6 4.6 94.7  
5 54953.4 4.2 98.9  
6 10446.3 0.8 99.7  
7 4318.9 0.3 100.0  

 

Table 10 

 

Summarized the AMMI model analysis of variance for the common bean data.

Tabela 10  Resumo da análise de variância do modelo AMMI para os dados do feijoeiro.

SV DF                 MS                          F            P>F 
Genoytpes (G) 8 185589.32 4.48 0.0001 
Environments (E) 7 4343484.49 104.80 0.0000 
G x E 56 69908.50 1.69 0.0082  

PC1 14 144474.63 3.49 0.0001  
PC2 12 85179.79 2.06 0,0244  
PC3 10 48076.91 1.16 0.3239  
Lack of fit 20 19465.24 0.47 0.9734 

Residual 128 41446.25   
Total 287 -           
CV 20.7822%    
Overall mean 39.4515       
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and genotype 1 is related to environment 2. Genotype 3 is
not associated to any particular environment.
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Figure 8  Biplot of PC2 against PC1 displaying the genotypes
and environments in the same graph.

Figura 8  Biplot do CP2 contra CP1 mostrando os genótipos
e ambientes no mesmo gráfico.

Figure 9 shows the plot of PC1 against genotype
yields. Genotypes 8 and 2 were the most productive and
stable; genotypes 1, 4, and 9 were stable with intermediate
productivity and genotype 3 was the least stable with low
productivity.
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Figure 9  Biplot of PC1 against mean yield for the 9 common
bean genotypes.

Figura 9  Biplot do CP1 contra a produtividade média dos 9
genótipos de feijão.

5 GENERAL  CONSIDERATIONS

Many challenges still exist with the modelling of
phenotypic stability. The AMMI model is criticized because
the GE response patterns are not provided. This limitation,
however, can be overcome. Toler & Burrows (1998) pointed
out that there are a relationship between parameters of the
AMMI model and those of the simple and bi segmented
regression models. However, the authors did not clarify
how to derive the regression parameters from those of
AMMI model. The solution to that problem would allow
the AMMI model to describe the environmental response
patterns of the genotypes.

The use of mixed models for modelling and
estimating GE interaction effects and for testing stability
was considered by Yang (2002). This approach can be used
if the genotypes, environments and GE interactions effects
are considered as random effects.

The use of molecular markers to obtain information
on the GE interaction in terms of QTL s (Quantitative Trait
Loci) is an approach that has potential to be successful.
Many biometric techniques could be developed to
decompose the QTL effects of the genotypes and GE
interaction, offering the potential for the improvement of
the methods employed to evaluate phenotypic stability
and to understand the causes of the GE interaction. Another
field to be considered is the possibility of evaluating
phenotypic stability for variables with non-normal
distributions. No references about studies in this area have
been found. Finally, the use of bootstrap and permutation
tests is possible when the basic assumptions of the models
are violated. Preliminary results that will be published in
another article showed that bootstrap tests basically give
the same results as the usual hypothesis testing for
parameters of the linear uni and bi-segmented regression
models, indicating the robustness of the t test with respect
to the lack of independence between the response variable
and the environmental index.

It can be conclude that the simple linear regression
method of Eberhart & Russel (1966) and the bi-segmented
regression method of Silva & Barreto (1985) have only
historical importance nowadays. Instead, by considering
the factors discussed in this paper, it is recommended that
the regression models of Toler & Burrows (1998) and the
AMMI model should be used simultaneously to estimate
phenotypic stability effects.

A genotype with low phenotypic stability is
predestined to be eliminated from the market. The use of
appropriate biometrics techniques is necessary for
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identifying the most adapted, responsive and stable
genotypes in the final phases of the plant breeding
program, where the high costs and the time spent in assays
are powerful justifications to search for improved methods.
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