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ABSTRACT

Background: To cope with global change, plants shift their distributions. Rare species tend to shift
their distribution more. Over 30% of the land is covered with woody species, which because of their
longevity offer unique opportunities to monitor distribution shifts. The study addresses the following
questions (1) how the distribution range of eight rare woody species is changing and how effectively
the plants cope with the shift; (2) whether plant traits could predict those parameters. Maxent
Distribution Modelling, was carried out for this purpose, on species observation records prior to 1980
under present climatic conditions and four future (CMIP5) scenarios. To assess how effectively plants
cope with migration species observations after 1980 were assessed. Relationships with plant trait data
on three traits were finally assessed.

Results: The distribution ranges for four out of the eight species expanded northwards. Temperature
driven (mostly through mean annual temperature which was ranked first for six out of the eight
species) rather than precipitation (mean annual precipitation was ranked first only in two cases and
in one case precipitation of the driest month was ranked third) driven variables described distribution
shifts best. Wood density summarized well the susceptibility of those plants to climate change. There
are many woody species in tropical and subtropical areas for which we have very little information
available.

Conclusion: Subject to the small pool of species, a plant trait was identified, wood density, that
could summarize responses to global change that could potentially be used as a tool in conservation
ecology to prioritize conservation efforts.

Keywords: Biodiversity Hotspots; Extinction ecology; Species Distribution Shifts; Wood density;
Wood's Economic Spectrum.

HIGHLIGHTS

Distributions of 8 species to global change were modelled.
Temperature described best distribution shifts of the eight species.
Wood density captured best the kernel distance prior to and after 1980.
Wood density captures susceptibility to global change.
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INTRODUCTION

Over 17,000 tree species are at a risk of an extinction,
(Boonman et al.,, 2024), the vast majority of which are rare
species (Vincent et al., 2020). A large proportion of plant
biodiversity is found exclusively in biodiversity hotspots,
which together cover less than 1.5% of the land surface
(Myers et al.,, 2000). Plant species with narrow distributions
are particularly vulnerable to extinction due to climate
change (Malcolm et al, 2006; Thomas et al., 2004). As
environmental conditions change, plants must shift their
distribution (i.e. “migrate”) either poleward or to higher
elevations (Chen et al., 2011; Lenoir et al., 2008). Shifting
distributions is, thus, a mechanism by which many woody
plants alleviate the risk of extinction. It should be trickier
for species that maintain narrow distribution ranges to
take advantage of that mechanism (Tomiolo and Ward,
2018). The reason why species with narrower ranges are
disadvantaged is that geographic barriers such as coastlines,
lakes and altitudinal topographic gradients get more likely
to block the migration of species with narrow ranges
(Record et al., 2013). It is often difficult to tell which species
will cope well with climate change and which ones are only
found in areas where they cannot sustain long term growth
and will eventually go extinct. In the latter cases, we say
that the plant species are committing to an extinction dept
(Halley et al., 2016; Tilman et al., 1994), which in some cases
requires human intervention to get prevented (Kuussaari et
al., 2009). There is therefore a consensus that distribution
modelling should ideally address the distributions of those
species (Lomba et al., 2010; Matern et al., 2007). Modelling
the distributions of rare species, however, can be extremely
difficult because in most cases there is a scarcity of available
data on them. This consideration is captured through the
“rare species modelling paradox”, postulating that we know
little on the distribution modelling of the species that we
are interested in most (Lomba et al., 2010).

Climate change is not occurring uniformly across
the globe (e.g. Lobell et al, 2011), meaning that each
biodiversity hotspot faces unique challenges in terms of
plant extinction risk (Malcolm et al., 2006). South-central
China represents a plant diversity hotspot with 5.5 endemic
vascular plant species per 100 km? (compared to a global
average of about 0.2 endemic vascular plants per 100 km? of
terrestrial habitat). Rapid scientific advances in recent years
(He et al,, 2010) have facilitated monitoring in the region and
have opened up opportunities to map local distributions
of endemic species. At the same time rapid urbanization
in southern China has significantly increased the pressure
on natural habitats, resulting in the fragmentation of many
pristine areas (Seto et al., 2000). This may be a parameter
that makes any assessment of the conservation status of the
endemic flora urgent. Historical records of the occurrence
of eight plant species are combined here to more recent
observations from two sources of information, the Global
Biodiversity Information Facility (GBIF) and the National
Herbarium Collection (Chinese Virtual Herbarium) through
a distributional modelling exercise to address a series of
three questions.

First, the relative importance of projected global
warming versus changes in precipitation frequency and
intensity in structuring the distributions of our set of eight
plant species (i.e. temperature versus precipitation related
predictors of distribution shifts) are considered. As a
subtropical climatic zone, habitats in South China, receive
substantial amounts of precipitation (Trenberth, 2011),
which should rarely limit plant growth. At the same time,
temperature is changing rapidly in the region (Stuecker et
al., 2020), which may reduce the ability of some species to
persist in their former ranges. Unlike herbaceous plants
which are mainly dependent on precipitation, woody
species respond strongly to changes in temperature (e.g. Shi
etal., 2021, Thurm et al.,, 2018). This could be the reason why
we so often observe woody species migrating polewards
and into higher altitudes (e.g. Lenoir et al, 2008). This
consideration gave rise to the hypothesis that it is mainly
temperature-related variables that drive the distribution of
our eight species in our exercise (Hypothesis One).

Further questions aligned with how climate change
has altered the distribution range of these eight species
and whether the plant species are coping adequately with
this change. All eight of the plant species in the analysis
describe woody species and as a result share relatively long
generation times and possess (was our selection criterion)
narrow distribution ranges. It has been argued that it is the
combination of these two characteristics that maximizes
the likelihood that plant species have already committed
to an extinction debt (e.g. Kuussaari et al., 2009), which
may have been the case for all of our eight plant species.
Climate change models in the Fifth Assessment Report of
IPCC (i.e. Intergovernmental Panel on Climate Change),
however, predict only a moderate increase by the year 2050
in temperature for the subtropical China of about 1.2°C as
well as increases in precipitation of about 3.4% (Fick and
Hijmans, 2017). Therefore, there is a good chance that
any changes in distribution will be relatively subtle and
that many of these plant species, even those with small
distributions, will cope better with climate change than their
counterparts close to the poles. This consideration gave rise
to the hypothesis that the location and the size (in square
kilometres) of the distribution of several of the eight species
has not changed much and that the plants have effectively
caught up with these changes (Hypothesis Two).

A set of three plant traits for the eight woody species
was further collated to identify if there were any plant traits
that could predict plant migration success in this region of
the world. Migration success has been previously associated
with several plant traits such as seed mass (Veresoglou and
Halley, 2018), longevity (Noh et al., 2019; Vellend et al. 2006),
pollination strategy and tolerance to external stresses (Saar
et al, 2012). At the same time there appears to be a strong
positive relationship between tree height and dispersal
distances (Thomson et al, 2018), meaning that in natural
forests, tree height could potentially predict the success with
which trees establish to new habitats. Plant height also peaks
at warmer regions (Mao et al,, 2019), which could indicate a
temperature dependence in woody plants. This consideration
gave rise to the hypothesis (Hypothesis Three) that an easily
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collected trait, tree height, would effectively capture migration
efficiency across our set of eight plant species.

MATERIALS AND METHODS
Plant Species Selection Criteria

Data was collected on eight terrestrial plant species
that met the four following criteria:

1. species had been reported in Huang et al. (2017) as
occurring exclusively (i.e., being endemic) to two (Geo3 and
Geo4) out of the seven geographical regions of China (Liu,
1998), covering the center and south of China (15194 out of
18157 species).

2. they described woody species, either trees or shrubs
(6489 out of 15194 species).

3. there was a minimum of 20 records on them in the Global
Biodiversity Information Facility (GBIF; https://www.gbif.
org/).

4. the species had been reported at the Heishiding reserve
(23.27° N, 111.53°E) and were thus all describing native
late successional forest species (8 out of 6489 species).We
integrated this latter criterion to control for the likely inclusion
of invasive species or other fast growing species which could
have presented idiosyncratic distributions in the area.

The final list comprised eight species. The eight
species were the following: Artocarpus hypargyreus,
Diospyros  strigosa, Huodendron  biaristatum, Machilus
breviflora, Machilus suaveolens, Rhaphiolepis ferruginea,
Symplocos congesta, and Xanthophyllum hainanense. Out of
these species only Artocarpus hypargyreus is reported in the
International Union for Conservation of Nature (IUCN) list as
endangered. On the 15" of July 2022, all available records
on the eight plant species from GBIF were extracted. Four of
them had less than 80 complete (i.e. including coordinates
and year of the observations) records in GBIF. To increase
the number of observations for the subset of the four plants
for which we retrieved from GBIF less than 80 records, there
was an additional search at the Chinese Virtual Herbarium
(CVH; https://www.cvh.ac.cn/) for records that had not been
included in GBIF. We retrieved this way between 42 and 192
records per species (i.e. 663 observations in total). Again, only
records for which coordinates were available were retained.

Environmental variables

The 19 bioclimatic variables that are described in
WorldClim  (https://worldclim.org/) version 1.4 (Hijmans
et al, 2005) were used as predictors, presenting averages
on climatic variables over the period 1960 — 1990. A
complementary non-climatic predictor that can shape the
distribution of plant species is altitude (Korner, 2007; Lenoir
et al, 2008). The set of 19 bioclimatic variables was thus
expanded with elevation data (Fick and Hijmans, 2017). All
variables were extracted from raster files at a resolution of
30 seconds. To account for collinearities in our observation
area which covered south-middle China (18°10" - 36°22" N,
97°21' - 122°43" E) correlations between environmental data

with the R package "ENMTools" (version 1.0.6; Warren et al.
2021) were quantified. An exclusion threshold of Pearson
correlations with coefficients |r] > 0.75 was set (Dormann
et al, 2013; Merow et al,, 2013). For correlations of any
two climatic variables that were above the threshold, the
bioclimatic variable with a higher incremental number
(i.e. each bioclimatic variable has been assigned a unique
ID ranging from 1 to 19) was removed from the dataset.
Through this approach 12 bioclimatic variables were filtered
out. The bioclimatic variables that remained after this
filtering step were the following eight variables: BIO1, BIO2,
BIO3, BIO7, BIO12, BIO14, BIO18 and elevation.

Plant traits

Because of the narrow distributions of the eight
species, it proved hard to extract trait information on them.
There were sufficient data for all eight plant species only for
the following three traits:

1. Tree height: The plant trait summarized the ability of a
plant species to intercept light in a close canopy but could
also be suggestive of the rooting depth of a plant (Brando,
2018). Height values were extracted from the Encyclopedia
of Life (https://eol.org/).

2. Ledf size: leaf size was calculated as the product between
width and length of the leaf which was then multiplied
with the correcting factor 2/3 (Schrader et al,, 2021). Aside
presenting an important trait for plant thermoregulation
and photosynthetic potential (Leigh, 2022), it presents a
good predictor of net primary productivity (e.g. Li et al,
2020). Leaf width and length data were extracted from the
Encyclopedia of Life (https://eol.org/).

3. Wood density information at a genus level: The trait
shows a high degree of phylogenetic conservatism (Kraft
et al., 2010) and thus using data at higher taxonomic levels
should pose no major issues. Less than 20% of total variance
in wood density occurs within the genus level (Flores and
Coomes, 2010). The median trait values reported at a genus
level at ICRAF database from the World Agroforestry Center
(http://db.worldagroforestry.org/) were used. Wood density
represents a good proxy of mortality rates across tree
species (Kraft et al., 2010) but also one of the two attributes
to which we can decompose the biomass of woody plants
(Phillips et al., 2019). Wood density additionally represents
the core trait describing the wood economics spectrum
(Chave et al., 2009), being a complementary economics
spectrum to that of the leaves (Wright et al., 2006b).

The Encyclopedia of Life presents a heterogeneous
dataset, with often conflicting entries. To minimize the
effect of outliers, median values were preferably used for
the traits with unrealistic entries being filtered out.

Species distribution models

To optimize feature classes (i.e., linear, quadratic,
hinge etc.) and regularization parameters (Merow et al.,
2013) for our models parsimony (AlCc values) was assessed
of all 60 possible combinations of 15 regularization
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multipliers (i.e. values 0.25, 0.5, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5,
2.75, 3, 3.25, 3.5, 3.75, and 4) and 4 feature combinations
(i.e. linear, quadratic, hinge, and quadratic with hinge) per
species in quintuplicates and mean AlCc values of those four
runs were extracted (Burnham and Anderson, 2004; Warren
and Seifert, 2011). The models were evaluated with ENMeval
version 2.0.3 (Muscarella et al., 2014). For maximum entropy
modelling the model with the lowest AlCc value in each set
of species per scenario was used.

Distribution models were fitted with MaxEnt 3.4.0
(Phillips et al., 2017) with 100 bootstrap replicate runs for
each species and scenario (Lin et al, 2020; Wang et al,
2022). A random subset of 75% of the occurrence data for
model training and the other 25% for validation was used
(Garcia et al., 2013; Huberty, 1994). To parametrize the near-
current prediction algorithms, the model was run exclusively
on observations that were taken before the year 1980. To
estimate future distribution ranges, projections for the
bioclimatic variables in the year 2050 based on four global
change models in the Climate Model Intercomparison
Project 5 (CMIP5) were used: CCSM4, HadGEM2-AO, IPSL-
CM5A-LR and MRI-CGCM3 (Yigini and Panagos, 2016) under
the continue as usual climatic scenario, Representative
Concentration Pathways 8.5 (RCP8.5). The data were
extracted from WorldClim version 1.4 (https://www.worldclim.
org/; Hijmans et al,, 2005). The model estimates were kept
from the original models depicting current distributions and
projected them over each of the future scenarios for the year
2050. Occurrence probabilities were averaged across the
four scenarios (Ding et al., 2022).

To assess the quality of our models the AUC (Area
Under Curve) criterion with the threshold value of 0.7 was
used, describing models with acceptable performance
(Swets, 1988). Predictions on current and future projected
distributions were summarized in the form of suitability
values per cell ranging between 0 and 1. These values were
classified into four ranks: ‘high” (> 0.6), ‘'moderate’ (0.4 -
0.6), low’ (0.2 - 0.4) and 'unsuitable’ (< 0.2) (e.g. Li et al,
2020; Yang et al., 2013; Zhang et al., 2018). Based on these
thresholds, a suitable distribution described areas with
suitability values above 0.2, whereas acceptable distribution
with suitability values above 0.4. To infer migration the
kernel (i.e. centroids; C_, C,,) of the distribution ranges
was estimated (Shi et al., 2027; Skov and Svenning, 2004;
Thurm et al,, 2018) as the arithmetic mean (i.e. centroid)
of coordinates for our observations after the year 1981
(C..)- The degree to which a species effectively (effective
migration ratio) migrated to ward its new distribution
range was computed as follows:

C.,.C

ef.m =In —obs “fut ()

C.,.C

obs ™~ cur

with { describing the plant species of interest and C the
locations of the respective centroids.

The shift in the distribution range was assessed
as follows:

o

d[ = Cfuthur )

Finally the area of the current distributions of species
[, S, was extracted.

Statistical analyses

To address whether temperature (rather than
precipitation) drives the distribution of our eight species
in the specific region of the world (Hypothesis One) the
aggregate contribution scores of temperature-related and
precipitation-related environmental variables across our
eight individual species were quantified and got compared
with a Mann-Whitney U Test.

To address the degree to which plant species have
caught up with any changes of the distribution (Hypothesis
Two) the effective migration ratios for all species was
calculated and was used to assess whether it related
(Spearman correlation) to the respective shifts in their
distribution range. If species had already caught up with the
changes in their distribution (Hypothesis Two) there should
have been no relationship between these two variables.

To address whether tree height related with migration
efficiency  (Hypothesis Three), spearman correlations
between plant height and the respective effective migration
ratios were fitted as well as with the shifts in the distribution
range. There were also comparable correlation tests with
the other plant traits.

In all cases the analysis consisted preferably of
non-parametric tests. There were complemented with
respective parametric tests, even though the small pool of
plant species in the analyses made testing the assumptions
of parametric analyses unreliable. All statistical tests were
carried on R version 4.2.2 (R core team, 2022).

RESULTS

Model performance and relationships with
environmental variables

Parsimonious model settings (Table S1) across
species contained a range of linear, linear quadratic or linear
quadratic with hinge features settings and regularization
settings varying between 0.25 and 1.75 (there were 15
regularization settings with values ranging between 0.25
and 4). In all the models the areas under receiver operating
characteristic curve (AUCs) exceeded 0.88 (Figure 1). The
lowest AUC value was observed for Hyodendron biaristatum
(0.881) and the highest for Diospyros strigosa (0.981).

In Table S2 there is an overview on how the
environmental variables contributed to the MaxEnt
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predictions . In all eight models the top three most
important ~ environmental  variables  cumulatively
accounted for over 73% of the predictive power of the
model. In a comparable way the permutation importance
proportions of the top three most contributing variables
accounted for over 70% across of the total score. The
most important environmental variable was annual mean
temperature (BIOT; mean contribution 34.66%) and the
second most important was annual precipitation (BIO12;
mean contribution: 21.54%). Results on the importance of
environmental variables were relatively consistent across
the different species (Table S2).

A

o

~ mean AUC:0.917

’ Current area: 2.43 105 km?

Future area: 3.43 105 km?2
Artocarpus hypargyreus

C %, mean AUC:0.881

" Currentarea: 5.00 105 km? .
Future area: 5.69 10° km?

Machilus suaveolens

G mean AUC: 0.907

Current area: 2.46 105 km?2
Future area: 1.12 105 km?2 &

Symplocos congesta

Hypothesis One: Temperature-related drive the
distribution shifts

The total contribution of the temperature-related
bioclimatic variables (BIO1, BIO2, BIO3 and BIO7) for the
eight species varied between 35.30% and 93.97% (mean:
69.03% quartiles: 56.16%, 68.70% and 85.92%) The respective
contribution estimates for the three precipitation related
variables (BIO12, BIO14 and BIO18) were 2.98% - 55.85%
and (mean: 27.08%, quartiles: 9.78%, 28.79% and 40.32%).
The test between the overall contribution of temperature
vs precipitation variables which were carried out to address
Hypothesis One yielded the following statistics:

B mean AUC: 0.981

Current area: 2.35 104 km?
Future area: 4.71 104 km? /

° P |

Curre;\?f al

: Futg,areé:
1 4 §

“»

F

mean AUC: 0.931
Currentarea: 2.16 105 km?
Future area: 2.51 105 km?2

Rhaphiolepis ferruginea

mean AUC: 0.953 .
Current area: 8.23 10* km?
Future area: 2.81 105 km?2

Xanthophyllum hainanense

Figure 1: Acceptable (suitability values > 0.4) distributions for the eight species in our study, in relation to present
(orange) and future (blue) climatic conditions. The centroids of the two distributions are marked with large (orange and
blue, respectively) triangles and a large red circle is used to describe the average latitude and longitude of the species
observations that were made after 1980. Pre-1980 observations are marked with smaller yellow circles, and post 1980
with red circles. Statistics on model fit and area of the two distributions are overlaid. The two statistics in red (in panels
C and G) remain questionable.
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Figure 2: Relationship between the historic distribution area of the eight species and a summary static on the degree
to which the most recent observations on a species manifest a high migration efficiency towards the future distribution
range (i.e. effective migration ratio — higher values manifest higher efficiency). The relationships for historic (a) suitable
(suitability values > 0.2) and acceptable (suitability values > 0.4) distributions are summarized. In both cases there are
positive relationships (but not with parametric statistics in the case of suitable distributions). The take home message is
that species that maintained smaller distributions have a harder time catching up with global change.

Hypothesis Two: There are only subtle shifts in the
ranges of the eight species

The areas of suitable habitat were calculated at
different suitability levels for the eight species (Table S3).
Diospyros strigosa had the smallest distribution range,
while Huodendron biaristatum had the largest range
(Table S3). 73.8% of the suitable area for Xanthophyllum
hainanense described occurrence probabilities between
0.2 and 0.4 (i.e. described low suitability area). This
proportion was significantly higher than for the other
seven species averaging 53.8% of their suitability areas.
The projections to the year 2050 indicate that the suitable
area of Xanthophyllum hainanense will increase by 59.6%.
With the exception of Symplocos congesta, for which
a decrease of 2.9% was found (and a correspondent
decrease in the acceptable areas of 54.4%), an increase
in the distribution areas of species for all species was
predicted. These ranged for the acceptable distributions
between 13.9% for Huodendron biaristatum and 643.3%
for M. breviflora (Figure 1).

The largest northward shift in the distribution range
of a species was predicted for Machilus breviflora at 3.35

degrees of latitude, while the corresponding value for the
congeneric Machilus suaveolis was 2.23 degrees of latitude.
At the other extreme, the smallest northwards swift was
predicted for Symplocos congesta by 0.39 degrees of latitude.
Artocarpus hypargyreus and Huodendron biaristatum could
also move eastwards, while the other six species would
move westwards. Xanthophyllum hainanense showed the
highest westward tendency of centroid movement with 4.19
degrees of longitude (Table S4).

Hypothesis Three: Wood density and not tree height
predicts migration lag best

Post 1980 observations for trees of species
for which there were above-average changes in their
distributions (historical vs future; here change is captured
through the distance to which their distributions changed:
variable shift in the distribution range) were closer to
the historical distribution than to the future distribution
(variable effective migration ratio: rho=-0.76, P=0.037; the
observation was robust to the considering acceptable
distributions in which case rho=-0.76, P=0.037).
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Figure 3: Relationships between wood density (x-axis) and (a) historic distribution area; (b) effective migration ratio;
(c) the distance between the centroids of future vs historic distributions for the eight plant species. In panel (c) median
wood density data for some characteristic families of woody plants are overlaid, implying that the plant species in the
study had above average wood density. In all cases there were strong relationships suggesting that wood density is a
plant trait that can effectively predict migration efficiency across woody plant species.

There was no relationship between leaf size or
tree height and any of the distribution related variables.
Species with a high wood density maintained, however, a
smaller distribution area than species with a lighter wood
(rho=-0.91, P=0.002, Figure 3a) and were relatively closer to
their historical distributions than their future distributions
(relationship with the variable effective migration ratio:
rho=-0.73, P=0.040, Figure 3b). The mean wood density
across our eight species was 0.657 (interquartile range:
0.59, 0.70), above the community weighted value of 0.619
that was reported for tropical systems (Phillips et al., 2019)
and above means reported for many common tree families
(Figure 3¢). it was the species with higher wood density that
also showed the greatest distance change in distribution
ranges (relationship with the variable shift in distribution
range: rho=0.90, P=0.002).

DISCUSSION

This distribution modelling exercise concerned the
distribution ranges of eight plant species in southern China
under past and future climate scenarios to assess how
they may respond to anticipated global change. Based on
Hypothesis One, the distribution ranges would be mainly
shaped by temperature-related parameters rather than
precipitation-related parameters which was the case (Table
S2). Hypothesis Two further postulated that the distribution
range of most of the species would be resilient to climate
change. There were universal northward shifts in agreement
with many other empirical studies (Kumar and Rawat, 2022;
Lu et al, 2021; Mueller et al.,, 2022; Yang et al., 2022) and
the distribution ranges of most species expanded (Figure
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1). Hypothesis Three, finally, predicted that plant traits could
capture migration efficiency and in agreement to it species
with a higher wood density maintained a smaller range,
a higher range shift and greater difficulty in coping with
climate change among the eight species (Figure 3).

Many of the animals that went extinct had distinctive
features — traits. For example, the dodo had evolved in an
environment without natural predators, making it an easy
target for human hunters (Roberts and Solow, 2003), while
the thunderbird (Genyornis newtoni), another flightless bird
in Australia, evolved an island gigantism (Miller et al., 2016). In
addition to small body size, animals that effectively disperse
over greater distances may also be more resilient to climate
change (Nadeau and Fuller, 2016). It is unclear whether
comparable traits exist for plants that can summarise their
vulnerability to global change. Some studies have observed
correlations between life history traits such as flux phenology,
seed size, stress tolerance, dispersal mode and plant height
with extinction risk in plants (Fréville et al., 2007), but these
have not been consistent across ecosystems (e.g. Matteodo
et al, 2013). O'Rourke et al. (2022) assessed the extent to
which the extinction risk status of the Irish flora could be
predicted by a set of fourteen leaf traits and concluded that
any such correlation should be weak in magnitude. It might
be easier, to predict extinction risk, instead, which relates in
the case of woody plants to their migration efficiency. Several
studies have already linked extinction risk to plant traits, such
as migration efficiency (Liao et al., 2020), longevity (Noh et al,,
2019; Vellend et al., 2006), pollination strategy and tolerance
to external stress caused by changes (Saar et al., 2012).

This study focused on three plant traits for which data
collection was possible for all eight plant species, leaf size, tree
height and wood density. There were only correlations of the
migration variables with wood density. The wood economics
spectrum has recently been proposed as an extension of the
leaf economics spectrum (Chave et al,, 2009). Trees with a
low wood density should maintain, based on the spectrum,
higher relative growth rates but experience a higher mortality
(Chave et al., 2009). The likely relationships with growth
and mortality rates may be precisely why wood density
could in our study predict migration parameters. The wood
economics spectrum may not be completely independent
from the respective leaf’s spectrum (Reich et al., 2003; Zhao
etal,, 2017), meaning that high wood and leaf densities could
compromize growth rates but secure tissue longevity (Wright
et al., 2006a). The focus on woody species may explain why a
variable from the wood economics spectrum, wood density
outperformed in predicting migration respective variables
from the leaf economics spectrum such as leaf size.

Although each of the biodiversity hotspots faces
unique challenges in terms of plant extinction risk, such
as the degree of endemism and the biome specificity of
the plant species (Malcolm et al., 2006), the results may
be generalisable across natural systems and biodiversity
hotspots. First, because rare plant species that are likely
endemic to this biodiversity hotspot were specifically
targeted, and thus experience a high degree of genetic
isolation. This should make the analysis descriptive for most
rare plant species across all biodiversity hotspots. Second,

migration parameters were assessed in relation to three
crude plant traits, that capture three common life history
syndromes (i.e. wood -wood density- and leaves -leaf
size-economic spectrum but also body mass — tree height,
for the three traits, respectively) across plant species and
should be generalizable across habitats. Plant rarity tends to
increase vulnerability to environmental variability (Malcolm
et al., 2006; Thomas et al, 2004). This means that the
analysis specifically targeted species that may experience
large changes in distributions in the face of global change.

A limitation of this study is that it consists of the
distribution of just eight plant species. Nevertheless, these
were the only eight woody species that met the filtering
criteria. Could, thereby, the relationships that were observed
been due to idiosyncrasies of the species considered? There
were clear relationships between the variables and the
analyses were paired with conservative and robust to likely
outliers non-parametric Spearman rho tests. Furthermore,
many of the relationships were consistent with the original
expectations. For example, species with larger distributions
migrated more effectively (Figure 2), which is consisent with
Malcolm et al. (2006) postulating that such species are less
susceptible to climate change. It may, nevertheless, be difficult
to generalize the findings for other regions. For example, most
European woody plant species have much larger ranges. There
is, nevertheless, a good chance that an important driver of
vulnerability of woody plants to climate change in the specific
region, was captured through this study.

Notwithstanding the likely generality of the findings
there were additional reasons why it was important to focus
on this particular region. THis is a region where global
change models predict strong changes in precipitation
frequency and intensity (e.g. Trenberth, 2011), and through
the analysis it was possible to question whether these would
overwhelmthe expected importance of temperature-related
parameters in relation to vulnerability risk. Furthermore,
many plants in the region remain undocumented and up
to 794 new plant species are discovered each year (http://
sp2000.org.cn/). This means that assessing extinction risk
in the region for these less well-documented plant species
may only be possible through general predictive models
that integrate plant traits (McGill et al., 2006).

A major challenge in conservation biology is
identifying species facing a risk of extinction. This facilitates
an early intervention and can render conservation more
cost-effective (Dominoni et al., 2020). Trait ecology presents
a recently developped tool in conservation biology to
assess vulnerability of species for which there are insufficient
distribution data available (Ribeiro et al., 2016; Gallagher et al,,
2021). The challenge in those cases is to choose relevant traits to
be used for conservation purposes (Gallagher et al,, 2021). The
analysis here presents evidence that wood density may qualify
as a particularly good and easy to assay proxy of vulnerability
of woody plants to extinction. Conservation science is an
interdisciplinary science, which requires the coordination of
numerous stakeholders, comprising indigenous people, policy
makers and researchers from diverse disciplines (Wheeler and
Root-Bernstein, 2020), necessitating raising awareness, which
is hopefully done through this studly.
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CONCLUSION

This is a distribution modeling exercise that supports
that high wood density in rare plant species contributes to
relatively smaller geographic distribution ranges and more
pronounced range shifts. Wood density may thus represent
an inconspicuous component of plant physiology that links
plant growth components to range shifts and susceptibility to
environmental change, thus opening opportunities for larger
syntheses in plant biogeography. A remaining open question
is the extent to which our observations can be generalised
across habitats and biomes. At the same time, it remains
unclear whether collating information on additional traits
could lead to better predictors of migration potential across
plant species. Regardless of these two perspectives, replicating
the analysis across biodiversity hotspots could contribute
immensely to the synthesis of trait and extinction ecology.
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Appendix 1: Detailed Materials and Methods

We gathered from GBIF and the Chinese Virtual
Herbarium (CVH) a total of 420 observations (Table S5).
We classified them into the classes of historic observations
(prior to 1980) which we modelled with historic climatic
settings and recent observations (post 1980) which we used
to assess the efficiency with which the plant species catch
up with climate change.

To fit our models we used the Java version (MaxEnt.
jar) of Maxent v3.4.2. Our models were as follows:

1. Predictors

To address over-fitting, in our models, we excluded
collinear environmental variables (Dormann et al. 2013;
Merow et al. 2013). Dormann et al. 2013 suggested an
absolute threshold of Pearson correlation coefficient
0.70 to exterminate collinearity in most situations.
Variance inflation factor (VIF) test is alterative (Naimi
et al. 2014). However, if a study has aims, for example,
on which variables drive species distribution, Merow et
al. 2013 suggested not to prescreen the predictors too
excessively. In this study, we set an exclusion threshold
of Pearson correlation coefficient |r] > 0.75 to necessarily
and not excessively prescreen predictors. Attached to this
step, we used the variance inflation factor (VIF) to check
collinearity (VIF < 5 for no collinearity, and VIF >10 for
significant collinearity), and using this threshold the VIF
was still 52. We faced a trade-off on prescreening and
remaining variables. Since thresholds from 0.7 to 0.8
were largely used in this field, we considered this level of
collinearity acceptable, because we would select relatively
best settings to avoid overfitting afterwards.

2. Size of the modelling area

To increase the accuracy of the predictions we
restricted the size of the modelling area to tropical,
subtropical and a few temperate regions in China. The exact
window was as follows: 18°10" - 36°22" N, 97°21" - 122°43" E.

3. Test set

We consistently, across our models, used a
regular set of 75% of observations for training and 25%
of observations for validation by randomly sampling in
agreement with recommendations in the literature (Garcia
et al. 2013; Phillips 2008).
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4. Settings of the two parameters

We experimented with the following feature
settings: appropriate feature classes (i.e. linear, quadrat
and hinge), regularization parameters and (we used 15
different parameters ranging from 0.25 to 4) and nonspatial
partitioning techniques (optimal nonspatial partitioning
techniques were decided based on the number of
observations) (Merow et al. 2013). We decided on optimal
models (Table S1) based on parsimony — AlCc values.

5. Representative of plant species pool (maxent
modelling).

Our pool of wight species presented all eight woody
species that met the four species inclusion criteria (main
manuscript). We understand that our finding on wood
density may be difficult to get generalized across other
ecoregions, globally. As an example, most European wood
plant species maintain considerably larger distribution
areas. We are, nevertheless, confident that we captured a
major driver of susceptibility of woody plants to climate
change in the specific region.
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Table S1: Parsimonious model settings across species contained a range of linear, quadratic, hinge or quadratic with
hinge features settings and regularization settings varying between 0.25 and 1.75 (which was decided after testing 15
regularization settings ranging between 0.25 and 4) were selected based on non-duplicate coordinate data.

Species partitioning' independent runs? final decision®

fc.LQ_rm.0.5
fc.LQH_rm.1

Artocarpus hypargyreus random K-fold fc.LQH_rm.1.25 fc.LQH_rm.1
fc.LQH_rm.1
fc.LQH_rm.1

fc.LQ_rm.0.5 fc.L_rm.0.5
fc.L_rm.0.5
Diospyros strigosa Jack knife fc.L_rm.0.5
fc.L_rm.0.5
fc.L_rm.0.5

fc.LQH_rm.1
fc.H_rm.0.25
Huodendron biaristatum Jack knife fc.LQH_rm.1 fc.H_rm.1.75
fc.LQH_rm.1.25
fc.LQH_rm.1.5

fc.LQ_rm.0.5
fc.LQ_rm.0.5
Machilus breviflora random K-fold fc.LQ_rm.0.5 fc.LQ_rm.0.5
fc.LQ_rm.0.5
fc.LQ_rm.0.25

fc.LQH_rm.1.75
fc.H_rm.2
Machilus suaveolens Jack knife fc.LQH_rm.2
fc.LQ_rm.0.5
fc.H_rm.1.75
fc.LQH_rm.1
fc.LQH_rm.1 fc.LQH_rm.1
Rhaphiolepis ferruginea Jack knife fc.LQH_rm.1.25
fc.LQH_rm.1
fc.LQH_rm.1.5

fc.H_rm.1
fc.LQH_rm.1.5
Symplocos congesta random K-fold fc.LQH_rm.1.5 fc.LQH_rm.1
fc.LQH_rm.1
fc.LQ_rm.0.25

fc.LQH_rm.1.75
fc.H_rm.1.5
Xanthophyllum hainanense Jack knife fc.LQH_rm.1 fc.LQH_rm.1.5
fc.LQH_rm.1
fc.LQH_rm.1.25

fc.L_rm.0.25

' The nonspatial partitioning techniques were chosen for each species based on the amounts of coordinates (random K-fold for those less than 50
and Jack knife for those more than 50). 2 We ran five independent times for each species. fc indicates feature characters, rm indicates regularization
multipliers, L indicates linear, Q indicates quadradic, and H indicates hinge. ® We averaged the AICs of independent runs and selected parameter settings
with the lowest AICs for each species.
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Table S2: Contribution of environmental variables’ to optimal models for the eight species.

Species BIO1 BlO2 BIO3 BIO7 BIO12 BIO14 BIO18 elev
Artocarpus hypargyreus c 2r.87 2816 28.99
tree PI3 39.68 15.20 28.42
JR? | 1] 1]
Diospyros strigosa c 28.37 64.92 312
shrub Pl 36.41 23.72 15.87
JR | 1 I}
L C 17.54 31.82 30.73
Huoden d; ‘;’:utga”gat”m PI 4072 17.08  16.32
JR | 1] 1]
. X C 56.73 7.37 17.30
MaCh’l”terrev’ﬂora PI 43.62 1.77 20.98
JR | 1 1}
Machilus suaveolens c 7533 1823 162
tree Pl 72.08 6.24 14.38
JR | I 1]
Rhaphiolepis ferruginea C 10.91 20.71 41.99
shrub Pl 23.09 29.67 10.62
JR 1] 1l |
Symplocos congesta C 15.84 22.39 38.94
tree Pl 12.99 25.03 32.34
JR 1] 1] |
Xanthophyllum hainanense C 49.73 15.32 12.41
tree Pl 37.28 14.68 17.47
JR | 1l 1l

" The top three contributing variables for each species were displayed. 2 C: contribution (%). ® PIl: permutation importance (%). ¢ JR: Jackknife of
regularized training gain, and roman numerals indicate the contribution ranks.

Table S3: Areas of the suitable habitats in different suitability levels.

Areas (10000 km*2) Year low moderate high acceptable suitable
Artocarpus hypargyreus 1980 29.88597 18.21396 6.068194 24.28215 54.16812
Diospyros strigosa 1980 3.330417 1.432431 0.923125 2.355556 5.685972
Huodendron biaristatum 1980 48.35299 31.97 17.99056 49.96056 98.31354
Machilus breviflora 1980 19.29625 8.495278 4.6575 13.15278 32.44903
Machilus suaveolens 1980 13.38785 10.20396 5.632708 15.83667 29.22451
Rhaphiolepis ferruginea 1980 24.89111 16.87493 4.702292 21.57722 46.46833
Symplocos congesta 1980 29.59187 21.14285 3.434097 24.57694 54.16882
Xanthophyllum hainanense 1980 23.23222 6.135903 2.093542 8.229444 31.46167
Artocarpus hypargyreus 2050 42.31951 27.56458 6.705625 34.27021 76.58972

Diospyros strigosa 2050 10.65146 3.212222 1.496319 4.708542 15.36
Huodendron biaristatum 2050 67.83431 51.97979 4.946528 56.92632 124.7606
Machilus breviflora 2050 42.275 33.88174 63.88701 97.76875 140.0437
Machilus suaveolens 2050 46.87972 35.27931 66.02396 101.3033 148.183
Rhaphiolepis ferruginea 2050 24.97562 19.15986 5.983958 25.14382 50.11944
Symplocos congesta 2050 41.42312 8.859792 2.338125 11.19792 52.62104
Xanthophyllum hainanense 2050 22.08646 17.76285 10.36667 28.12951 50.21597

Continue...
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Table S2: Continuation...

. 1980 predictions after 1980 2050 projections
Species longitudes latitudes longitudes latitudes longitudes latitudes
Artocarpus hypargyreus 110.57 22.859 113.2948 23.23373 111.3198 23.66754
Diospyros strigosa 119.2115 21.38312 109.5565 18.88741 116.3994 21.43851
Huodendron biaristatum 109.5419 2410164 100.2931 25.01755 110.3949 2478714
Machilus breviflora 110.768 22.00353 112.7116 23.67576 110.5679 25.3497
Machilus suaveolens 113.4465 23.26277 109.8554 23.73984 110.8393 25.49018
Rhaphiolepis ferruginea 112.607 23.30669 115.9551 26.33625 109.8727 23.36253
Symplocos congesta 112.6681 23.45628 119.6794 22.99352 111.8691 23.49478
Xanthophyllum hainanense 113.0054 21.66383 109.491 22.51431 108.8197 22.09638
Species GBIF CVH all_obs before1980 after1981
collected used collected used
Artocarpus hypargyreus Hance 85 85 67 56 18 17
Diospyros strigosa Hemsl. 25 17 42 35 27 7 7
Huodendron biaristatum Rehder 82 82 61 42 21 21
Machilus breviflora (Benth.) Hemsl. 52 38 90 74 67 16 12
Machilus suaveolens S.K.Lee 22 24 46 38 36 8 7
Rhaphiolepis ferruginea Metcalf 32 18 50 34 30 16 16
Symplocos congesta Benth. 192 192 34 72 98 95
Xanthophyllum hainanense Hu 36 40 76 59 43 17 14

Table S4: Geographic coordinates of the distribution centroids in near-current predictions and future projections.

Species 1980 predictions after 1980 2050 projections
longitudes latitudes longitudes latitudes longitudes latitudes
Artocarpus hypargyreus 110.57 22.859 113.2948 23.23373 111.3198 23.66754
Diospyros strigosa 119.2115 21.38312 109.5565 18.88741 116.3994 21.43851
Huodendron biaristatum 109.5419 24.10164 100.2931 25.01755 110.3949 24.78714
Machilus breviflora 110.768 22.00353 112.7116 23.67576 110.5679 25.3497
Machilus suaveolens 113.4465 23.26277 109.8554 23.73984 110.8393 25.49018
Rhaphiolepis ferruginea 112.607 23.30669 115.9551 26.33625 109.8727 23.36253
Symplocos congesta 112.6681 23.45628 119.6794 22.99352 111.8691 23.49478
Xanthophyllum hainanense 113.0054 21.66383 109.491 22.51431 108.8197 22.09638

Table S5: Analytical statistics on the observations we gathered per species.

Species GBIF CVH all_obs before1980 after1981

collected used collected used
Artocarpus hypargyreus Hance 85 85 67 56 18 17
Diospyros strigosa Hemsl. 25 17 42 35 27 7 7
Huodendron biaristatum Rehder 82 82 61 42 21 21
Machilus breviflora (Benth.) Hemsl. 52 38 90 74 67 16 12
Machilus suaveolens S.K.Lee 22 24 46 38 36 8 7
Rhaphiolepis ferruginea Metcalf 32 18 50 34 30 16 16
Symplocos congesta Benth. 192 192 34 72 98 95
Xanthophyllum hainanense Hu 36 40 76 59 43 17 14
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Appendix 2: Sources of data on the distribution of
the eight species

1. Artocarpus hypargyreus

Jestrow B, Bornhorst K (2022). Fairchild Tropical Botanic Garden (FTG).
Fairchild Tropical Botanic Garden. Occurrence dataset https://doi.
org/10.15468/hdpruf accessed via GBIF.org on 2022-07-25.

Cameron E, Auckland Museum A M (2022). Auckland Museum Botany
Collection. Version 1.75. Auckland War Memorial Museum. Occurrence dataset
https://doi.org/10.15468/mnjkvv accessed via GBIF.org on 2022-07-25.

Chen C (2021). Herbarium of Taiwan Forestry Research Institute. Version
1.8. Taiwan Forestry Research Institute. Occurrence dataset https://doi.
org/10.15468/vo3d2x accessed via GBIF.org on 2022-07-25.

Crop Wild Relatives Occurrence data consortia (2018). A global
database for the distributions of crop wild relatives. Version 1.12. Centro
Internacional de Agricultura Tropical - CIAT. Occurrence dataset https://
doi.org/10.15468/jyrthk accessed via GBIF.org on 2022-07-25.

Gao X, xu Z (2019). Plant Specimen from Herbarium (CDBI) in China,
Chengdu Institute of Botany, Chinese Academy of Sciences. Chinese
Academy of Sciences (CAS). Occurrence dataset https://doi.org/10.15468/
pui83d accessed via GBIF.org on 2022-07-25.

Soudzilovskaia N A, Vaessen S, Barcelo M, He J, Rahimlou S, Abarenkov
K, Brundrett M C, Gomes S, Merckx V, Martinez-Suz L, Tedersoo L. Taxon
occurrence data for the FungalRoot database. PlutoF. Occurrence dataset
https://doi.org/10.15468/a7ujmj accessed via GBIF.org on 2022-07-25.

Solomon J, Stimmel H (2021). Tropicos Specimen Data. Missouri Botanical
Garden. Occurrence dataset https://doi.org/10.15468/hja69f accessed via
GBIF.org on 2022-07-25.

Natural History Museum (2022). Natural History Museum (London) Collection
Specimens. Occurrence dataset https://doi.org/10.5519/0002965 accessed via
GBIF.org on 2022-07-25.

Zhang X, xu Z (2019). Plant Specimen in Yunnan, China from Herbarium
(PE),Institute of Botany, Chinese Academy of Sciences. Chinese Academy
of Sciences (CAS). Occurrence dataset https://doi.org/10.15468/kvfygp
accessed via GBIF.org on 2022-07-25.

iNaturalist  contributors, iNaturalist (2022). iNaturalist Research-
grade Observations. iNaturalist.org. Occurrence dataset https://doi.
org/10.15468/ab3s5x accessed via GBIF.org on 2022-07-25.

Zhang X (2019). Some Plant Specimens from PE Herbarium in China from
1900 to 1950. Chinese Academy of Sciences (CAS). Occurrence dataset
https://doi.org/10.15468/liiipc accessed via GBIF.org on 2022-07-25.

Yang Z, Xu Z (2019). Some Plant Specimens from KUN, IBSC, NAS
Herbarium in China from 1900 to 1950. Chinese Academy of Sciences
(CAS). Occurrence dataset https://doi.org/10.15468/irnwew accessed via
GBIF.org on 2022-07-25.

Liu Y, xu Z (2019). Plant Specimen from Herbarium (IBK) in China, Guangxi
Institute of Botany, Chinese Academy of Sciences. Chinese Academy of
Sciences (CAS). Occurrence dataset https://doi.org/10.15468/dk5gko
accessed via GBIF.org on 2022-07-25.

Kong H, Yang L (2019). 500,000 plant Specimens from PE Herbarium in China
from 1950 to 1999. Chinese Academy of Sciences (CAS). Occurrence dataset
https://doi.org/10.15468/44r5e4 accessed via GBIF.org on 2022-07-25.

Peng Y, Xu Z (2019). Plant Specimen from Herbarium (LBG) in China, Lushan
Botanical Garden, Jiangxi and Chinese Academy of Sciences. Chinese
Academy of Sciences (CAS). Occurrence dataset https://doi.org/10.15468/
k5j0ep accessed via GBIF.org on 2022-07-25.

2. Diospyros strigosa

Peng Y, Xu Z (2019). Plant Specimen from Herbarium (LBG) in China, Lushan
Botanical Garden, Jiangxi and Chinese Academy of Sciences. Chinese
Academy of Sciences (CAS). Occurrence dataset https://doi.org/10.15468/
k5j0ep accessed via GBIF.org on 2022-07-25.

Crop Wild Relatives Occurrence data consortia (2018). A global
database for the distributions of crop wild relatives. Version 1.12. Centro
Internacional de Agricultura Tropical - CIAT. Occurrence dataset https://
doi.org/10.15468/jyrthk accessed via GBIF.org on 2022-07-25.

Jennings L (2021). University of British Columbia Herbarium (UBC) -
Vascular Plant Collection. Version 16.7. University of British Columbia.
Occurrence dataset https://doi.org/10.5886/rtt57cc9 accessed via GBIF.
org on 2022-07-25.

Museum
https://doi.

Natural ~ History Museum  (2022). Natural History
(London) Collection Specimens. Occurrence dataset
org/10.5519/0002965 accessed via GBIF.org on 2022-07-25.

Yang Z, Xu Z (2019). Some Plant Specimens from KUN, IBSC, NAS
Herbarium in China from 1900 to 1950. Chinese Academy of Sciences
(CAS). Occurrence dataset https://doi.org/10.15468/irnwew accessed via
GBIF.org on 2022-07-25.

Kong H, Yang L (2019). 500,000 plant Specimens from PE Herbarium in
China from 1950 to 1999. Chinese Academy of Sciences (CAS). Occurrence
dataset https://doi.org/10.15468/44r5e4 accessed via GBIF.org on 2022-
07-25.

Liu'Y, xu Z (2019). Plant Specimen from Herbarium (IBK) in China, Guangxi
Institute of Botany, Chinese Academy of Sciences. Chinese Academy of
Sciences (CAS). Occurrence dataset https://doi.org/10.15468/dk5gko
accessed via GBIF.org on 2022-07-25.

Zhang X (2019). Some Plant Specimens from PE Herbarium in China from
1900 to 1950. Chinese Academy of Sciences (CAS). Occurrence dataset
https://doi.org/10.15468/liiipc accessed via GBIF.org on 2022-07-25.

3. Machilus breviflora

Royal Botanic Gardens, Kew (2021). Royal Botanic Gardens, Kew -
Herbarium Specimens. Occurrence dataset https://doi.org/10.15468/
ly60bx accessed via GBIF.org on 2022-07-25.

Zhang X (2019). Some Plant Specimens from PE Herbarium in China from
1900 to 1950. Chinese Academy of Sciences (CAS). Occurrence dataset
https://doi.org/10.15468/liiipc accessed via GBIF.org on 2022-07-25.

Gao X, xu Z (2019). Plant Specimen from Herbarium (CDBI) in China,
Chengdu Institute of Botany, Chinese Academy of Sciences. Chinese
Academy of Sciences (CAS). Occurrence dataset https://doi.org/10.15468/
pui83d accessed via GBIF.org on 2022-07-25.

Soudzilovskaia N A, Vaessen S, Barcelo M, He J, Rahimlou S, Abarenkov
K, Brundrett M C, Gomes S, Merckx V, Martinez-Suz L, Tedersoo L. Taxon
occurrence data for the FungalRoot database. PlutoF. Occurrence dataset
https://doi.org/10.15468/a7ujmj accessed via GBIF.org on 2022-07-25.

MNHN, Chagnoux S (2022). The vascular plants collection (P) at the Herbarium
of the Muséum national d'Histoire Naturelle (MNHN - Paris). Version 69.268.
MNHN - Museum national d'Histoire naturelle. Occurrence dataset https://
doi.org/10.15468/nc6rxy accessed via GBIF.org on 2022-07-25.

Liu Q, xu Z (2019). Plant Specimen from Herbarium (NAS) in China, Institute
of Botany, Jiangsu Province and Chinese Academy of Sciences. Chinese
Academy of Sciences (CAS). Occurrence dataset https://doi.org/10.15468/
r2la8h accessed via GBIF.org on 2022-07-25.

Kong H, Yang L (2019). 500,000 plant Specimens from PE Herbarium in
China from 1950 to 1999. Chinese Academy of Sciences (CAS). Occurrence
dataset https://doi.org/10.15468/44r5e4 accessed via GBIF.org on 2022-
07-25.

Yang Z, Xu Z (2019). Some Plant Specimens from KUN, IBSC, NAS
Herbarium in China from 1900 to 1950. Chinese Academy of Sciences
(CAS). Occurrence dataset https://doi.org/10.15468/irnwew accessed via
GBIF.org on 2022-07-25.

Liu Y, xu Z (2019). Plant Specimen from Herbarium (IBK) in China, Guangxi
Institute of Botany, Chinese Academy of Sciences. Chinese Academy of
Sciences (CAS). Occurrence dataset https://doi.org/10.15468/dk5gko
accessed via GBIF.org on 2022-07-25.
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4. Rhaphiolepis ferruginea

Orrell T, Informatics Office (2022). NMNH Extant Specimen Records (USNM,
US). Version 1.57. National Museum of Natural History, Smithsonian
Institution. Occurrence dataset https://doi.org/10.15468/hnhrg3 accessed
via GBIF.org on 2022-07-25.

European Bioinformatics Institute (EMBL-EBI), GBIF Helpdesk (2022).
INSDC Sequences. Version 1.8. European Nucleotide Archive (EMBL-EBI).
Occurrence dataset https://doi.org/10.15468/sbmztx accessed via GBIF.
org on 2022-07-25.

Solomon J, Stimmel H (2021). Tropicos Specimen Data. Missouri Botanical
Garden. Occurrence dataset https://doi.org/10.15468/hja69f accessed via
GBIF.org on 2022-07-25.

MNHN, Chagnoux S (2022). The vascular plants collection (P) at the Herbarium
of the Muséum national d'Histoire Naturelle (MNHN - Paris). Version 69.268.
MNHN - Museum national d'Histoire naturelle. Occurrence dataset https://
doi.org/10.15468/nc6rxy accessed via GBIF.org on 2022-07-25.

Royal Botanic Gardens, Kew (2021). Royal Botanic Gardens, Kew -
Herbarium Specimens. Occurrence dataset https://doi.org/10.15468/
ly60bx accessed via GBIF.org on 2022-07-25.

Chen C (2021). Herbarium of Taiwan Forestry Research Institute. Version
1.8. Taiwan Forestry Research Institute. Occurrence dataset https://doi.
org/10.15468/vo3d2x accessed via GBIF.org on 2022-07-25.

Bijmoer R, Scherrenberg M, Creuwels J (2022). Naturalis Biodiversity Center
(NL) - Botany. Naturalis Biodiversity Center. Occurrence dataset https://
doi.org/10.15468/ib5ypt accessed via GBIF.org on 2022-07-25.

Kennedy J (2022). Harvard University Herbaria: All Records. Harvard
University Herbaria. Occurrence dataset https://doi.org/10.15468/03pvnh
accessed via GBIF.org on 2022-07-25.

Zhang X (2019). Some Plant Specimens from PE Herbarium in China from
1900 to 1950. Chinese Academy of Sciences (CAS). Occurrence dataset
https://doi.org/10.15468/liiipc accessed via GBIF.org on 2022-07-25.

Kong H, Yang L (2019). 500,000 plant Specimens from PE Herbarium in China
from 1950 to 1999. Chinese Academy of Sciences (CAS). Occurrence dataset
https://doi.org/10.15468/44r5e4 accessed via GBIF.org on 2022-07-25.

5. Huodendron biaristatum

Harvard University Herbaria. Vascular plants of south-central China.
Occurrence dataset https://doi.org/10.15468/01q1w3 accessed via GBIF.
org on 2022-09-06.

Nkundabagenzi F, Noe N (2017). Royal Museum of Central Africa -
Metafro-Infosys - Xylarium. Version 1.2. Belgian Biodiversity Platform.
Occurrence dataset https://doi.org/10.15468/f71d5m accessed via GBIF.
org on 2022-09-06.

Ramirez J, Watson K, McMillin L, Gjieli E (2022). The New York Botanical
Garden Herbarium (NY). Version 1.49. The New York Botanical Garden.
Occurrence dataset https://doi.org/10.15468/6e8nje accessed via GBIF.
org on 2022-09-06.

SysTax. SysTax - Botanical Gardens. Occurrence dataset https://doi.
org/10.15468/wemOv1 accessed via GBIF.org on 2022-09-06.

Conservatoire et Jardin botaniques de la Ville de Geneve - G. Geneva
Herbarium — General Collection (G). Occurrence dataset https://doi.
org/10.15468/rvjdul accessed via GBIF.org on 2022-09-06.

Ramalho Romao D (2022). HEPH - Herbario Ezechias Paulo Heringer.
Version 1.92. Jardim Botanico de Brasilia. Occurrence dataset https://doi.
org/10.15468/ouq1mm accessed via GBIF.org on 2022-09-06.

Ceccantini G (2022). SPFw - Xiloteca do Instituto de Biociéncias da
Universidade de Sdo Paulo. Version 1.90. Universidade de S&o Paulo.
Occurrence dataset https://doi.org/10.15468/sihvr7 accessed via GBIF.org
on 2022-09-06.

Jennings L (2022). University of British Columbia Herbarium (UBC) -
Vascular Plant Collection. Version 16.9. University of British Columbia.
Occurrence dataset https://doi.org/10.5886/rtt57cc9 accessed via GBIF.
org on 2022-09-06.

Chen C (2021). Herbarium of Taiwan Forestry Research Institute. Version
1.8. Taiwan Forestry Research Institute. Occurrence dataset https://doi.
org/10.15468/vo3d2x accessed via GBIF.org on 2022-09-06.

Lundberg J (2022). Phanerogamic Botanical Collections (S). GBIF-Sweden.
Occurrence dataset https://doi.org/10.15468/yo3mmu accessed via GBIF.
org on 2022-09-06.

Rob Cubey (2022). Royal Botanic Garden Edinburgh Living Plant Collections
(E). Royal Botanic Garden Edinburgh. Occurrence dataset https://doi.
org/10.15468/bkzv 1l accessed via GBIF.org on 2022-09-06.

Museum
https://doi.

Natural ~ History ~Museum  (2022). Natural  History
(London) Collection Specimens. Occurrence dataset
org/10.5519/0002965 accessed via GBIF.org on 2022-09-06.
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