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ABSTRACT

Background: To cope with global change, plants shift their distributions. Rare species tend to shift 
their distribution more. Over 30% of the land is covered with woody species, which because of their 
longevity offer unique opportunities to monitor distribution shifts. The study addresses the following 
questions (1) how the distribution range of eight rare woody species is changing and how effectively 
the plants cope with the shift; (2) whether plant traits could predict those parameters. Maxent 
Distribution Modelling, was carried out for this purpose, on species observation records prior to 1980 
under present climatic conditions and four future (CMIP5) scenarios. To assess how effectively plants 
cope with migration species observations after 1980 were assessed. Relationships with plant trait data 
on three traits were finally assessed. 

Results: The distribution ranges for four out of the eight species expanded northwards. Temperature 
driven (mostly through mean annual temperature which was ranked first for six out of the eight 
species) rather than precipitation (mean annual precipitation was ranked first only in two cases and 
in one case precipitation of the driest month was ranked third) driven variables described distribution 
shifts best. Wood density summarized well the susceptibility of those plants to climate change. There 
are many woody species in tropical and subtropical areas for which we have very little information 
available. 

Conclusion: Subject to the small pool of species, a plant trait was identified, wood density, that 
could summarize responses to global change that could potentially be used as a tool in conservation 
ecology to prioritize conservation efforts.

Keywords: Biodiversity Hotspots; Extinction ecology; Species Distribution Shifts; Wood density; 
Wood’s Economic Spectrum.

HIGHLIGHTS

Distributions of 8 species to global change were modelled.
Temperature described best distribution shifts of the eight species.
Wood density captured best the kernel distance prior to and after 1980.
Wood density captures susceptibility to global change.
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INTRODUCTION

Over 17,000 tree species are at a risk of an extinction, 
(Boonman et al., 2024), the vast majority of which are rare 
species (Vincent et al., 2020). A large proportion of plant 
biodiversity is found exclusively in biodiversity hotspots, 
which together cover less than 1.5% of the land surface 
(Myers et al., 2000). Plant species with narrow distributions 
are particularly vulnerable to extinction due to climate 
change (Malcolm et al., 2006; Thomas et al., 2004). As 
environmental conditions change, plants must shift their 
distribution (i.e. “migrate”) either poleward or to higher 
elevations (Chen et al., 2011; Lenoir et al., 2008). Shifting 
distributions is, thus, a mechanism by which many woody 
plants alleviate the risk of extinction. It should be trickier 
for species that maintain narrow distribution ranges to 
take advantage of that mechanism (Tomiolo and Ward, 
2018). The reason why species with narrower ranges are 
disadvantaged is that geographic barriers such as coastlines, 
lakes and altitudinal topographic gradients get more likely 
to block the migration of species with narrow ranges 
(Record et al., 2013). It is often difficult to tell which species 
will cope well with climate change and which ones are only 
found in areas where they cannot sustain long term growth 
and will eventually go extinct. In the latter cases, we say 
that the plant species are committing to an extinction dept 
(Halley et al., 2016; Tilman et al., 1994), which in some cases 
requires human intervention to get prevented (Kuussaari et 
al., 2009). There is therefore a consensus that distribution 
modelling should ideally address the distributions of those 
species (Lomba et al., 2010; Matern et al., 2007). Modelling 
the distributions of rare species, however, can be extremely 
difficult because in most cases there is a scarcity of available 
data on them. This consideration is captured through the 
“rare species modelling paradox”, postulating that we know 
little on the distribution modelling of the species that we 
are interested in most (Lomba et al., 2010). 

Climate change is not occurring uniformly across 
the globe (e.g. Lobell et al., 2011), meaning that each 
biodiversity hotspot faces unique challenges in terms of 
plant extinction risk (Malcolm et al., 2006). South-central 
China represents a plant diversity hotspot with 5.5 endemic 
vascular plant species per 100 km2 (compared to a global 
average of about 0.2 endemic vascular plants per 100 km2 of 
terrestrial habitat). Rapid scientific advances in recent years 
(He et al., 2010) have facilitated monitoring in the region and 
have opened up opportunities to map local distributions 
of endemic species. At the same time rapid urbanization 
in southern China has significantly increased the pressure 
on natural habitats, resulting in the fragmentation of many 
pristine areas (Seto et al., 2000). This may be a parameter 
that makes any assessment of the conservation status of the 
endemic flora urgent. Historical records of the occurrence 
of eight plant species are combined here to more recent 
observations from two sources of information, the Global 
Biodiversity Information Facility (GBIF) and the National 
Herbarium Collection (Chinese Virtual Herbarium) through 
a distributional modelling exercise to address a series of 
three questions.

First, the relative importance of projected global 
warming versus changes in precipitation frequency and 
intensity in structuring the distributions of our set of eight 
plant species (i.e. temperature versus precipitation related 
predictors of distribution shifts) are considered. As a 
subtropical climatic zone, habitats in South China, receive 
substantial amounts of precipitation (Trenberth, 2011), 
which should rarely limit plant growth. At the same time, 
temperature is changing rapidly in the region (Stuecker et 
al., 2020), which may reduce the ability of some species to 
persist in their former ranges. Unlike herbaceous plants 
which are mainly dependent on precipitation, woody 
species respond strongly to changes in temperature (e.g. Shi 
et al., 2021; Thurm et al., 2018). This could be the reason why 
we so often observe woody species migrating polewards 
and into higher altitudes (e.g. Lenoir et al., 2008). This 
consideration gave rise to the hypothesis that it is mainly 
temperature-related variables that drive the distribution of 
our eight species in our exercise (Hypothesis One).

	 Further questions aligned with how climate change 
has altered the distribution range of these eight species 
and whether the plant species are coping adequately with 
this change. All eight of the plant species in the analysis 
describe woody species and as a result share relatively long 
generation times and possess (was our selection criterion) 
narrow distribution ranges. It has been argued that it is the 
combination of these two characteristics that maximizes 
the likelihood that plant species have already committed 
to an extinction debt (e.g. Kuussaari et al., 2009), which 
may have been the case for all of our eight plant species. 
Climate change models in the Fifth Assessment Report of 
IPCC (i.e. Intergovernmental Panel on Climate Change), 
however, predict only a moderate increase by the year 2050 
in temperature for the subtropical China of about 1.2oC as 
well as increases in precipitation of about 3.4% (Fick and 
Hijmans, 2017). Therefore, there is a good chance that 
any changes in distribution will be relatively subtle and 
that many of these plant species, even those with small 
distributions, will cope better with climate change than their 
counterparts close to the poles. This consideration gave rise 
to the hypothesis that the location and the size (in square 
kilometres) of the distribution of several of the eight species 
has not changed much and that the plants have effectively 
caught up with these changes (Hypothesis Two).

A set of three plant traits for the eight woody species 
was further collated to identify if there were any plant traits 
that could predict plant migration success in this region of 
the world. Migration success has been previously associated 
with several plant traits such as seed mass (Veresoglou and 
Halley, 2018), longevity (Noh et al., 2019; Vellend et al. 2006), 
pollination strategy and tolerance to external stresses (Saar 
et al., 2012). At the same time there appears to be a strong 
positive relationship between tree height and dispersal 
distances (Thomson et al., 2018), meaning that in natural 
forests, tree height could potentially predict the success with 
which trees establish to new habitats. Plant height also peaks 
at warmer regions (Mao et al., 2019), which could indicate a 
temperature dependence in woody plants. This consideration 
gave rise to the hypothesis (Hypothesis Three) that an easily 
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collected trait, tree height, would effectively capture migration 
efficiency across our set of eight plant species.

MATERIALS AND METHODS

Plant Species Selection Criteria 

Data was collected on eight terrestrial plant species 
that met the four following criteria:
1. species had been reported in Huang et al. (2017) as 
occurring exclusively (i.e., being endemic) to two (Geo3 and 
Geo4) out of the seven geographical regions of China (Liu, 
1998), covering the center and south of China (15194 out of 
18157 species). 
2. they described woody species, either trees or shrubs 
(6489 out of 15194 species).
3. there was a minimum of 20 records on them in the Global 
Biodiversity Information Facility (GBIF; https://www.gbif.
org/).
4. the species had been reported at the Heishiding reserve 
(23.27o N, 111.53oE) and were thus all describing native 
late successional forest species (8 out of 6489 species).We 
integrated this latter criterion to control for the likely inclusion 
of invasive species or other fast growing species which could 
have presented idiosyncratic distributions in the area. 

The final list comprised eight species. The eight 
species were the following: Artocarpus hypargyreus, 
Diospyros strigosa, Huodendron biaristatum, Machilus 
breviflora, Machilus suaveolens, Rhaphiolepis ferruginea, 
Symplocos congesta, and Xanthophyllum hainanense. Out of 
these species only Artocarpus hypargyreus is reported in the 
International Union for Conservation of Nature (IUCN) list as 
endangered. On the 15th of July 2022, all available records 
on the eight plant species from GBIF were extracted. Four of 
them had less than 80 complete (i.e. including coordinates 
and year of the observations) records in GBIF. To increase 
the number of observations for the subset of the four plants 
for which we retrieved from GBIF less than 80 records, there 
was an additional search at the Chinese Virtual Herbarium 
(CVH; https://www.cvh.ac.cn/) for records that had not been 
included in GBIF. We retrieved this way between 42 and 192 
records per species (i.e. 663 observations in total). Again, only 
records for which coordinates were available were retained. 

Environmental variables

The 19 bioclimatic variables that are described in 
WorldClim (https://worldclim.org/) version 1.4 (Hijmans 
et al., 2005) were used as predictors, presenting averages 
on climatic variables over the period 1960 – 1990. A 
complementary non-climatic predictor that can shape the 
distribution of plant species is altitude (Korner, 2007; Lenoir 
et al., 2008). The set of 19 bioclimatic variables was thus 
expanded with elevation data (Fick and Hijmans, 2017). All 
variables were extracted from  raster files at a resolution of 
30 seconds. To account for collinearities in our observation 
area which covered south-middle China (18°10’ - 36°22’ N, 
97°21’ - 122°43’ E) correlations between environmental data 

with the R package “ENMTools” (version 1.0.6; Warren et al. 
2021) were quantified. An exclusion threshold of Pearson 
correlations with coefficients |r| > 0.75 was set (Dormann 
et al., 2013; Merow et al., 2013). For correlations of any 
two climatic variables that were above the threshold, the 
bioclimatic variable with a higher incremental number 
(i.e. each bioclimatic variable has been assigned a unique 
ID ranging from 1 to 19) was removed from the dataset. 
Through this approach 12 bioclimatic variables were filtered 
out. The bioclimatic variables that remained after this 
filtering step were the following eight variables: BIO1, BIO2, 
BIO3, BIO7, BIO12, BIO14, BIO18 and elevation.

Plant traits

Because of the narrow distributions of the eight 
species, it proved hard to extract trait information on them. 
There were sufficient data for all eight plant species only for 
the following three traits:
1. Tree height: The plant trait summarized the ability of a 
plant species to intercept light in a close canopy but could 
also be suggestive of the rooting depth of a plant (Brando, 
2018). Height values were extracted from the Encyclopedia 
of Life (https://eol.org/).
2. Leaf size: leaf size was calculated as the product between 
width and length of the leaf which was then multiplied 
with the correcting factor 2/3 (Schrader et al., 2021). Aside 
presenting an important trait for plant thermoregulation 
and photosynthetic potential (Leigh, 2022), it presents a 
good predictor of net primary productivity (e.g. Li et al., 
2020). Leaf width and length data were extracted from the 
Encyclopedia of Life (https://eol.org/).
3. Wood density information at a genus level: The trait 
shows a high degree of phylogenetic conservatism (Kraft 
et al., 2010) and thus using data at higher taxonomic levels 
should pose no major issues. Less than 20% of total variance 
in wood density occurs within the genus level (Flores and 
Coomes, 2010). The median trait values reported at a genus 
level at ICRAF database from the World Agroforestry Center 
(http://db.worldagroforestry.org/) were used. Wood density 
represents a good proxy of mortality rates across tree 
species (Kraft et al., 2010) but also one of the two attributes 
to which we can decompose the biomass of woody plants 
(Phillips et al., 2019). Wood density additionally represents 
the core trait describing the wood economics spectrum 
(Chave et al., 2009), being a complementary economics 
spectrum to that of the leaves (Wright et al., 2006b).

The Encyclopedia of Life presents a heterogeneous 
dataset, with often conflicting entries. To minimize the 
effect of outliers, median values were preferably used for 
the traits with unrealistic entries being filtered out.

Species distribution models 

To optimize feature classes (i.e., linear, quadratic, 
hinge etc.) and regularization parameters (Merow et al., 
2013) for our models parsimony (AICc values) was assessed 
of all 60 possible combinations of 15 regularization 
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multipliers (i.e. values 0.25, 0.5, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 
2.75, 3, 3.25, 3.5, 3.75, and 4) and 4 feature combinations 
(i.e. linear, quadratic, hinge, and quadratic with hinge) per 
species in quintuplicates and mean AICc values of those four 
runs were extracted (Burnham and Anderson, 2004; Warren 
and Seifert, 2011). The models were evaluated with ENMeval 
version 2.0.3 (Muscarella et al., 2014). For maximum entropy 
modelling the model with the lowest AICc value in each set 
of species per scenario was used. 

Distribution models were fitted with MaxEnt 3.4.0 
(Phillips et al., 2017) with 100 bootstrap replicate runs for 
each species and scenario (Lin et al., 2020; Wang et al., 
2022). A random subset of 75% of the occurrence data for 
model training and the other 25% for validation was used 
(Garcia et al., 2013; Huberty, 1994). To parametrize the near-
current prediction algorithms, the model was run exclusively 
on observations that were taken before the year 1980. To 
estimate future distribution ranges, projections for the 
bioclimatic variables in the year 2050 based on four global 
change models in the Climate Model Intercomparison 
Project 5 (CMIP5) were used: CCSM4, HadGEM2-AO, IPSL-
CM5A-LR and MRI-CGCM3 (Yigini and Panagos, 2016) under 
the continue as usual climatic scenario, Representative 
Concentration Pathways 8.5 (RCP8.5). The data were 
extracted from WorldClim version 1.4 (https://www.worldclim.
org/; Hijmans et al., 2005). The model estimates were kept 
from the original models depicting current distributions and 
projected them over each of the future scenarios for the year 
2050. Occurrence probabilities were averaged across the 
four scenarios (Ding et al., 2022). 

To assess the quality of our models the AUC (Area 
Under Curve) criterion with the threshold value of 0.7 was 
used, describing models with acceptable performance 
(Swets, 1988). Predictions on current and future projected 
distributions were summarized in the form of suitability 
values per cell ranging between 0 and 1. These values were 
classified into four ranks: ‘high’ (> 0.6), ‘moderate’ (0.4 - 
0.6), ‘low’ (0.2 - 0.4) and ‘unsuitable’ (< 0.2) (e.g. Li et al., 
2020; Yang et al., 2013; Zhang et al., 2018). Based on these 
thresholds, a suitable distribution described areas with 
suitability values above 0.2, whereas acceptable distribution 
with suitability values above 0.4. To infer migration the 
kernel (i.e. centroids; Ccur, Cfut) of the distribution ranges 
was estimated (Shi et al., 2021; Skov and Svenning, 2004; 
Thurm et al., 2018) as the arithmetic mean (i.e. centroid) 
of coordinates for our observations after the year 1981 
(Cobs). The degree to which a species effectively (effective 
migration ratio) migrated to ward its new distribution 
range was computed as follows:

The shift in the distribution range was assessed 
as follows:




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with i describing the plant species of interest and C the 
locations of the respective centroids.

(1)

(2)

Finally the area of the current distributions of species 
i, Si was extracted.

Statistical analyses

To address whether temperature (rather than 
precipitation) drives the distribution of our eight species 
in the specific region of the world (Hypothesis One) the 
aggregate contribution scores of temperature-related and 
precipitation-related environmental variables across our 
eight individual species were quantified and got compared 
with a Mann-Whitney U Test.

To address the degree to which plant species have 
caught up with any changes of the distribution (Hypothesis 
Two) the effective migration ratios for all species was 
calculated and was used to assess whether it related 
(Spearman correlation) to the respective shifts in their 
distribution range. If species had already caught up with the 
changes in their distribution (Hypothesis Two) there should 
have been no relationship between these two variables.

To address whether tree height related with migration 
efficiency (Hypothesis Three), spearman correlations 
between plant height and the respective effective migration 
ratios were fitted as well as with the shifts in the distribution 
range. There were also comparable correlation tests with 
the other plant traits.

	 In all cases the analysis consisted preferably of 
non-parametric tests. There were complemented with 
respective parametric tests, even though the small pool of 
plant species in the analyses made testing the assumptions 
of parametric analyses unreliable. All statistical tests were 
carried on R version 4.2.2 (R core team, 2022).  

RESULTS

Model performance and relationships with 
environmental variables

Parsimonious model settings (Table S1) across 
species contained a range of linear, linear quadratic or linear 
quadratic with hinge features settings and regularization 
settings varying between 0.25 and 1.75 (there were 15 
regularization settings with values ranging between 0.25 
and 4).  In all the models the areas under receiver operating 
characteristic curve (AUCs) exceeded 0.88 (Figure 1). The 
lowest AUC value was observed for Hyodendron biaristatum 
(0.881) and the highest for Diospyros strigosa (0.981). 

In Table S2 there is an overview on how the 
environmental variables contributed to the MaxEnt 
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predictions . In all eight models the top three most 
important environmental variables cumulatively 
accounted for over 73% of the predictive power of the 
model. In a comparable way the permutation importance 
proportions of the top three most contributing variables 
accounted for over 70% across of the total score. The 
most important environmental variable was annual mean 
temperature (BIO1; mean contribution 34.66%) and the 
second most important was annual precipitation (BIO12; 
mean contribution: 21.54%). Results on the importance of 
environmental variables were relatively consistent across 
the different species (Table S2). 

Hypothesis One: Temperature-related drive the 
distribution shifts

The total contribution of the temperature-related 
bioclimatic variables (BIO1, BIO2, BIO3 and BIO7) for the 
eight species varied between 35.30% and 93.97% (mean: 
69.03% quartiles: 56.16%, 68.70% and 85.92%) The respective 
contribution estimates for the three precipitation related 
variables (BIO12, BIO14 and BIO18) were 2.98% - 55.85% 
and (mean: 27.08%, quartiles: 9.78%, 28.79% and 40.32%). 
The test between the overall contribution of temperature 
vs precipitation variables which were carried out to address 
Hypothesis One yielded the following statistics:

Figure 1: Acceptable (suitability values > 0.4) distributions for the eight species in our study, in relation to present 
(orange) and future (blue) climatic conditions. The centroids of the two distributions are marked with large (orange and 
blue, respectively) triangles and a large red circle is used to describe the average latitude and longitude of the species 
observations that were made after 1980. Pre-1980 observations are marked with smaller yellow circles, and post 1980 
with red circles. Statistics on model fit and area of the two distributions are overlaid. The two statistics in red (in panels 
C and G) remain questionable.
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Hypothesis Two: There are only subtle shifts in the 
ranges of the eight species

The areas of suitable habitat were calculated at 
different suitability levels for the eight species (Table S3). 
Diospyros strigosa had the smallest distribution range, 
while Huodendron biaristatum had the largest range 
(Table S3). 73.8% of the suitable area for Xanthophyllum 
hainanense described occurrence probabilities between 
0.2 and 0.4 (i.e. described low suitability area). This 
proportion was significantly higher than for the other 
seven species averaging 53.8% of their suitability areas. 
The projections to the year 2050 indicate that the suitable 
area of Xanthophyllum hainanense will increase by 59.6%. 
With the exception of Symplocos congesta, for which 
a decrease of 2.9% was found (and a correspondent 
decrease in the acceptable areas of 54.4%), an increase 
in the distribution areas of species for all species was 
predicted. These ranged for the acceptable distributions 
between 13.9% for Huodendron biaristatum and 643.3% 
for M. breviflora (Figure 1).

The largest northward shift in the distribution range 
of a species was predicted for Machilus breviflora at 3.35 

degrees of latitude, while the corresponding value for the 
congeneric Machilus suaveolis was 2.23 degrees of latitude. 
At the other extreme, the smallest northwards swift was 
predicted for Symplocos congesta by 0.39 degrees of latitude. 
Artocarpus hypargyreus and Huodendron biaristatum could 
also move eastwards, while the other six species would 
move westwards. Xanthophyllum hainanense showed the 
highest westward tendency of centroid movement with 4.19 
degrees of longitude (Table S4). 

Hypothesis Three: Wood density and not tree height 
predicts migration lag best

	 Post 1980 observations for trees of species 
for which there were above-average changes in their 
distributions (historical vs future; here change is captured 
through the distance to which their distributions changed: 
variable shift in the distribution range) were closer to 
the historical distribution than to the future distribution 
(variable effective migration ratio: rho=-0.76, P=0.037; the 
observation was robust to the considering acceptable 
distributions in which case rho=-0.76, P=0.037). 

Figure 2: Relationship between the historic distribution area of the eight species and a summary static on the degree 
to which the most recent observations on a species manifest a high migration efficiency towards the future distribution 
range (i.e. effective migration ratio – higher values manifest higher efficiency). The relationships for historic (a) suitable 
(suitability values > 0.2) and acceptable (suitability values > 0.4) distributions are summarized. In both cases there are 
positive relationships (but not with parametric statistics in the case of suitable distributions). The take home message is 
that species that maintained smaller distributions have a harder time catching up with global change.
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	 There was no relationship between leaf size or 
tree height and any of the distribution related variables. 
Species with a high wood density maintained, however, a 
smaller distribution area than species with a lighter wood 
(rho=-0.91, P=0.002, Figure 3a) and were relatively closer to 
their historical distributions than their future distributions 
(relationship with the variable effective migration ratio: 
rho=-0.73, P=0.040, Figure 3b). The mean wood density 
across our eight species was 0.657 (interquartile range: 
0.59, 0.70), above the community weighted value of 0.619 
that was reported for tropical systems (Phillips et al., 2019) 
and above means reported for many common tree families 
(Figure 3c). it was the species with higher wood density that 
also showed the greatest distance change in distribution 
ranges (relationship with the variable shift in distribution 
range: rho=0.90, P=0.002).

DISCUSSION

This distribution modelling exercise concerned the 
distribution ranges of eight plant species in southern China 
under past and future climate scenarios to assess how 
they may respond to anticipated global change. Based on 
Hypothesis One, the distribution ranges would be mainly 
shaped by temperature-related parameters rather than 
precipitation-related parameters which was the case (Table 
S2). Hypothesis Two further postulated that the distribution 
range of most of the species would be resilient to climate 
change. There were universal northward shifts in agreement 
with many other empirical studies (Kumar and Rawat, 2022; 
Lu et al., 2021; Mueller et al., 2022; Yang et al., 2022) and 
the distribution ranges of most species expanded (Figure 

Figure 3: Relationships between wood density (x-axis) and (a) historic distribution area; (b) effective migration ratio; 
(c) the distance between the centroids of future vs historic distributions for the eight plant species. In panel (c) median 
wood density data for some characteristic families of woody plants are overlaid, implying that the plant species in the 
study had above average wood density. In all cases there were strong relationships suggesting that wood density is a 
plant trait that can effectively predict migration efficiency across woody plant species.
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1). Hypothesis Three, finally, predicted that plant traits could 
capture migration efficiency and in agreement to it species 
with a higher wood density maintained a smaller range, 
a higher range shift and greater difficulty in coping with 
climate change among the eight species (Figure 3). 

Many of the animals that went extinct had distinctive 
features – traits. For example, the dodo had evolved in an 
environment without natural predators, making it an easy 
target for human hunters (Roberts and Solow, 2003), while 
the thunderbird (Genyornis newtoni), another flightless bird 
in Australia, evolved an island gigantism (Miller et al., 2016). In 
addition to small body size, animals that effectively disperse 
over greater distances may also be more resilient to climate 
change (Nadeau and Fuller, 2016). It is unclear whether 
comparable traits exist for plants that can summarise their 
vulnerability to global change. Some studies have observed 
correlations between life history traits such as flux phenology, 
seed size, stress tolerance, dispersal mode and plant height 
with extinction risk in plants (Fréville et al., 2007), but these 
have not been consistent across ecosystems (e.g. Matteodo 
et al., 2013). O’Rourke et al. (2022) assessed the extent to 
which the extinction risk status of the Irish flora could be 
predicted by a set of fourteen leaf traits and concluded that 
any such correlation should be weak in magnitude. It might 
be easier, to predict extinction risk, instead, which relates in 
the case of woody plants to their migration efficiency. Several 
studies have already linked extinction risk to plant traits, such 
as migration efficiency (Liao et al., 2020), longevity (Noh et al., 
2019; Vellend et al., 2006), pollination strategy and tolerance 
to external stress caused by changes (Saar et al., 2012). 

This study focused on three plant traits for which data 
collection was possible for all eight plant species, leaf size, tree 
height and wood density. There were only correlations of the 
migration variables with wood density. The wood economics 
spectrum has recently been proposed as an extension of the 
leaf economics spectrum (Chave et al., 2009). Trees with a 
low wood density should maintain, based on the spectrum, 
higher relative growth rates but experience a higher mortality 
(Chave et al., 2009). The likely relationships with growth 
and mortality rates may be precisely why wood density 
could in our study predict migration parameters. The wood 
economics spectrum may not be completely independent 
from the respective leaf’s spectrum (Reich et al., 2003; Zhao 
et al., 2017), meaning that high wood and leaf densities could 
compromize growth rates but secure tissue longevity (Wright 
et al., 2006a). The focus on woody species may explain why a 
variable from the wood economics spectrum, wood density 
outperformed in predicting migration respective variables 
from the leaf economics spectrum such as leaf size. 

Although each of the biodiversity hotspots faces 
unique challenges in terms of plant extinction risk, such 
as the degree of endemism and the biome specificity of 
the plant species (Malcolm et al., 2006), the results may 
be generalisable across natural systems and biodiversity 
hotspots. First, because rare plant species that are likely 
endemic to this biodiversity hotspot were specifically 
targeted, and thus experience a high degree of genetic 
isolation. This should make the analysis descriptive for most 
rare plant species across all biodiversity hotspots. Second, 

migration parameters were assessed in relation to three 
crude plant traits, that capture three common life history 
syndromes (i.e. wood -wood density- and leaves -leaf 
size-economic spectrum but also body mass – tree height, 
for the three traits, respectively) across plant species and 
should be generalizable across habitats. Plant rarity tends to 
increase vulnerability to environmental variability (Malcolm 
et al., 2006; Thomas et al., 2004). This means that the 
analysis specifically targeted species that may experience 
large changes in distributions in the face of global change.

A limitation of this study is that it consists of the 
distribution of just eight plant species. Nevertheless, these 
were the only eight woody species that met the filtering 
criteria. Could, thereby, the relationships that were observed 
been due to idiosyncrasies of the species considered? There 
were clear relationships between the variables and the 
analyses were paired with conservative and robust to likely 
outliers non-parametric Spearman rho tests. Furthermore, 
many of the relationships were consistent with the original 
expectations. For example, species with larger distributions 
migrated more effectively (Figure 2), which is consisent with 
Malcolm et al. (2006) postulating that such species are less 
susceptible to climate change. It may, nevertheless, be difficult 
to generalize the findings for other regions. For example, most 
European woody plant species have much larger ranges. There 
is, nevertheless, a good chance that an important driver of 
vulnerability of woody plants to climate change in the specific 
region, was captured through this study.

Notwithstanding the likely generality of the findings 
there were additional reasons why it was important to focus 
on this particular region. THis is a region where global 
change models predict strong changes in precipitation 
frequency and intensity (e.g. Trenberth, 2011), and through 
the analysis it was possible to question whether these would 
overwhelm the expected importance of temperature-related 
parameters in relation to vulnerability risk. Furthermore, 
many plants in the region remain undocumented and up 
to 794 new plant species are discovered each year (http://
sp2000.org.cn/). This means that assessing extinction risk 
in the region for these less well-documented plant species 
may only be possible through general predictive models 
that integrate plant traits (McGill et al., 2006).

A major challenge in conservation biology is 
identifying species facing a risk of extinction. This facilitates 
an early intervention and can render conservation more 
cost-effective (Dominoni et al., 2020). Trait ecology presents 
a recently developped tool in conservation biology to 
assess vulnerability of species for which there are insufficient 
distribution data available (Ribeiro et al., 2016; Gallagher et al., 
2021). The challenge in those cases is to choose relevant traits to 
be used for conservation purposes (Gallagher et al., 2021). The 
analysis here presents evidence that wood density may qualify 
as a particularly good and easy to assay proxy of vulnerability 
of woody plants to extinction. Conservation science is an 
interdisciplinary science, which requires the coordination of 
numerous stakeholders, comprising indigenous people, policy 
makers and researchers from diverse disciplines (Wheeler and 
Root-Bernstein, 2020), necessitating raising awareness, which 
is hopefully done through this study.
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CONCLUSION

This is a distribution modeling exercise that supports 
that high wood density in rare plant species contributes to 
relatively smaller geographic distribution ranges and more 
pronounced range shifts. Wood density may thus represent 
an inconspicuous component of plant physiology that links 
plant growth components to range shifts and susceptibility to 
environmental change, thus opening opportunities for larger 
syntheses in plant biogeography. A remaining open question 
is the extent to which our observations can be generalised 
across habitats and biomes. At the same time, it remains 
unclear whether collating information on additional traits 
could lead to better predictors of migration potential across 
plant species. Regardless of these two perspectives, replicating 
the analysis across biodiversity hotspots could contribute 
immensely to the synthesis of trait and extinction ecology.

DATA AVAILABILITY

The datasets supporting the conclusions are 
included in the article.
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Appendix 1: Detailed Materials and Methods

We gathered from GBIF and the Chinese Virtual 
Herbarium (CVH) a total of 420 observations (Table S5). 
We classified them into the classes of historic observations 
(prior to 1980) which we modelled with historic climatic 
settings and recent observations (post 1980) which we used 
to assess the efficiency with which the plant species catch 
up with climate change.

 To fit our models we used the Java version (MaxEnt.
jar) of Maxent v3.4.2. Our models were as follows:

1. Predictors

To address over-fitting, in our models, we excluded 
collinear environmental variables (Dormann et al. 2013; 
Merow et al. 2013). Dormann et al. 2013 suggested an 
absolute threshold of Pearson correlation coefficient 
0.70 to exterminate collinearity in most situations. 
Variance inflation factor (VIF) test is alterative (Naimi 
et al. 2014). However, if a study has aims, for example, 
on which variables drive species distribution, Merow et 
al. 2013 suggested not to prescreen the predictors too 
excessively. In this study, we set an exclusion threshold 
of Pearson correlation coefficient |r| > 0.75 to necessarily 
and not excessively prescreen predictors. Attached to this 
step, we used the variance inflation factor (VIF) to check 
collinearity (VIF < 5 for no collinearity, and VIF >10 for 
significant collinearity), and using this threshold the VIF 
was still 52. We faced a trade-off on prescreening and 
remaining variables. Since thresholds from 0.7 to 0.8 
were largely used in this field, we considered this level of 
collinearity acceptable, because we would select relatively 
best settings to avoid overfitting afterwards.

2. Size of the modelling area

To increase the accuracy of the predictions we 
restricted the size of the modelling area to tropical, 
subtropical and a few temperate regions in China. The exact 
window was as follows: 18°10’ - 36°22’ N, 97°21’ - 122°43’ E.

3. Test set

We consistently, across our models, used a 
regular set of 75% of observations for training and 25% 
of observations for validation by randomly sampling in 
agreement with recommendations in the literature (Garcia 
et al. 2013; Phillips 2008).  

4. Settings of the two parameters

We experimented with the following feature 
settings: appropriate feature classes (i.e. linear, quadrat 
and hinge), regularization parameters and (we used 15 
different parameters ranging from 0.25 to 4) and nonspatial 
partitioning techniques (optimal nonspatial partitioning 
techniques were decided based on the number of 
observations) (Merow et al. 2013). We decided on optimal 
models (Table S1) based on parsimony – AICc values.

5. Representative of plant species pool (maxent 
modelling).

Our pool of wight species presented all eight woody 
species that met the four species inclusion criteria (main 
manuscript). We understand that our finding on wood 
density may be difficult to get generalized across other 
ecoregions, globally. As an example, most European wood 
plant species maintain considerably larger distribution 
areas. We are, nevertheless, confident that we captured a 
major driver of susceptibility of woody plants to climate 
change in the specific region.
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Species partitioning1 independent runs2 final decision3

Artocarpus hypargyreus random K-fold

fc.LQ_rm.0.5
fc.LQH_rm.1

fc.LQH_rm.1.25
fc.LQH_rm.1
fc.LQH_rm.1

fc.LQH_rm.1

Diospyros strigosa Jack knife

fc.LQ_rm.0.5
fc.L_rm.0.5
fc.L_rm.0.5
fc.L_rm.0.5
fc.L_rm.0.5

fc.L_rm.0.5

Huodendron biaristatum Jack knife

fc.LQH_rm.1
fc.H_rm.0.25
fc.LQH_rm.1

fc.LQH_rm.1.25
fc.LQH_rm.1.5

fc.H_rm.1.75

Machilus breviflora random K-fold

fc.LQ_rm.0.5
fc.LQ_rm.0.5
fc.LQ_rm.0.5
fc.LQ_rm.0.5
fc.LQ_rm.0.25

fc.LQ_rm.0.5

Machilus suaveolens Jack knife

fc.LQH_rm.1.75
fc.H_rm.2

fc.LQH_rm.2
fc.LQ_rm.0.5
fc.H_rm.1.75

fc.L_rm.0.25

Rhaphiolepis ferruginea Jack knife

fc.LQH_rm.1
fc.LQH_rm.1

fc.LQH_rm.1.25
fc.LQH_rm.1

fc.LQH_rm.1.5

fc.LQH_rm.1

Symplocos congesta random K-fold

fc.H_rm.1
fc.LQH_rm.1.5
fc.LQH_rm.1.5
fc.LQH_rm.1

fc.LQ_rm.0.25

fc.LQH_rm.1

Xanthophyllum hainanense Jack knife

fc.LQH_rm.1.75
fc.H_rm.1.5
fc.LQH_rm.1
fc.LQH_rm.1

fc.LQH_rm.1.25

fc.LQH_rm.1.5

1 The nonspatial partitioning techniques were chosen for each species based on the amounts of coordinates (random K-fold for those less than 50 
and Jack knife for those more than 50). 2 We ran five independent times for each species. fc indicates feature characters, rm indicates regularization 
multipliers, L indicates linear, Q indicates quadradic, and H indicates hinge. 3 We averaged the AICs of independent runs and selected parameter settings 
with the lowest AICs for each species.

Table S1: Parsimonious model settings across species contained a range of linear, quadratic, hinge or quadratic with 
hinge features settings and regularization settings varying between 0.25 and 1.75 (which was decided after testing 15 
regularization settings ranging between 0.25 and 4) were selected based on non-duplicate coordinate data.
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Species BIO1 BIO2 BIO3 BIO7 BIO12 BIO14 BIO18 elev

Artocarpus hypargyreus
tree

C2

PI3

JR4

27.87
39.68

I

28.16
15.20

II

28.99
28.42

III

Diospyros strigosa
shrub

C
PI
JR

28.37
36.41

I III

64.92
23.72

II
15.87

3.12

Huodendron biaristatum
shrub

C
PI
JR

17.54

I
40.72

31.82
17.08

II
16.32

30.73

III

Machilus breviflora
tree

C
PI
JR

56.73
43.62

I

7.37
11.77

17.30
20.98

II III

Machilus suaveolens
tree

C
PI
JR

75.33
72.08

I
6.24

18.23

II

1.62
14.38

III
Rhaphiolepis ferruginea

shrub
C
PI
JR

10.91

III
23.09

20.71

II

41.99
29.67

I
10.62

Symplocos congesta
tree

C
PI
JR II

15.84
12.99

22.39
25.03

III

38.94
32.34

I
Xanthophyllum hainanense

tree
C
PI
JR

49.73
37.28

I III

15.32

II

12.41
14.68 17.47

1 The top three contributing variables for each species were displayed. 2 C: contribution (%). 3 PI: permutation importance (%). 4 JR: Jackknife of 
regularized training gain, and roman numerals indicate the contribution ranks.

Table S2: Contribution of environmental variables1 to optimal models for the eight species.

Table S3: Areas of the suitable habitats in different suitability levels.

Areas (10000 km^2) Year low moderate high acceptable suitable
Artocarpus hypargyreus 1980 29.88597 18.21396 6.068194 24.28215 54.16812

Diospyros strigosa 1980 3.330417 1.432431 0.923125 2.355556 5.685972

Huodendron biaristatum 1980 48.35299 31.97 17.99056 49.96056 98.31354

Machilus breviflora 1980 19.29625 8.495278 4.6575 13.15278 32.44903

Machilus suaveolens 1980 13.38785 10.20396 5.632708 15.83667 29.22451

Rhaphiolepis ferruginea 1980 24.89111 16.87493 4.702292 21.57722 46.46833

Symplocos congesta 1980 29.59187 21.14285 3.434097 24.57694 54.16882

Xanthophyllum hainanense 1980 23.23222 6.135903 2.093542 8.229444 31.46167

Artocarpus hypargyreus 2050 42.31951 27.56458 6.705625 34.27021 76.58972

Diospyros strigosa 2050 10.65146 3.212222 1.496319 4.708542 15.36

Huodendron biaristatum 2050 67.83431 51.97979 4.946528 56.92632 124.7606

Machilus breviflora 2050 42.275 33.88174 63.88701 97.76875 140.0437

Machilus suaveolens 2050 46.87972 35.27931 66.02396 101.3033 148.183

Rhaphiolepis ferruginea 2050 24.97562 19.15986 5.983958 25.14382 50.11944

Symplocos congesta 2050 41.42312 8.859792 2.338125 11.19792 52.62104

Xanthophyllum hainanense 2050 22.08646 17.76285 10.36667 28.12951 50.21597

Continue...
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Species
1980 predictions after 1980 2050 projections

longitudes latitudes longitudes latitudes longitudes latitudes
Artocarpus hypargyreus 110.57 22.859 113.2948 23.23373 111.3198 23.66754

Diospyros strigosa 119.2115 21.38312 109.5565 18.88741 116.3994 21.43851

Huodendron biaristatum 109.5419 24.10164 100.2931 25.01755 110.3949 24.78714

Machilus breviflora 110.768 22.00353 112.7116 23.67576 110.5679 25.3497

Machilus suaveolens 113.4465 23.26277 109.8554 23.73984 110.8393 25.49018

Rhaphiolepis ferruginea 112.607 23.30669 115.9551 26.33625 109.8727 23.36253

Symplocos congesta 112.6681 23.45628 119.6794 22.99352 111.8691 23.49478

Xanthophyllum hainanense 113.0054 21.66383 109.491 22.51431 108.8197 22.09638

Species
GBIF CVH all_obs before1980 after1981

collected used collected used
Artocarpus hypargyreus Hance 85 85 67 56 18 17

Diospyros strigosa Hemsl. 25 17 42 35 27 7 7
Huodendron biaristatum Rehder 82 82 61 42 21 21

Machilus breviflora (Benth.) Hemsl. 52 38 90 74 67 16 12
Machilus suaveolens S.K.Lee 22 24 46 38 36 8 7

Rhaphiolepis ferruginea Metcalf 32 18 50 34 30 16 16
Symplocos congesta Benth. 192 192 34 72 98 95

Xanthophyllum hainanense Hu 36 40 76 59 43 17 14

Species
1980 predictions after 1980 2050 projections

longitudes latitudes longitudes latitudes longitudes latitudes
Artocarpus hypargyreus 110.57 22.859 113.2948 23.23373 111.3198 23.66754

Diospyros strigosa 119.2115 21.38312 109.5565 18.88741 116.3994 21.43851

Huodendron biaristatum 109.5419 24.10164 100.2931 25.01755 110.3949 24.78714

Machilus breviflora 110.768 22.00353 112.7116 23.67576 110.5679 25.3497

Machilus suaveolens 113.4465 23.26277 109.8554 23.73984 110.8393 25.49018

Rhaphiolepis ferruginea 112.607 23.30669 115.9551 26.33625 109.8727 23.36253

Symplocos congesta 112.6681 23.45628 119.6794 22.99352 111.8691 23.49478

Xanthophyllum hainanense 113.0054 21.66383 109.491 22.51431 108.8197 22.09638

Table S4: Geographic coordinates of the distribution centroids in near-current predictions and future projections.

Table S5: Analytical statistics on the observations we gathered per species.

Species
GBIF CVH all_obs before1980 after1981

collected used collected used
Artocarpus hypargyreus Hance 85 85 67 56 18 17

Diospyros strigosa Hemsl. 25 17 42 35 27 7 7
Huodendron biaristatum Rehder 82 82 61 42 21 21

Machilus breviflora (Benth.) Hemsl. 52 38 90 74 67 16 12
Machilus suaveolens S.K.Lee 22 24 46 38 36 8 7

Rhaphiolepis ferruginea Metcalf 32 18 50 34 30 16 16
Symplocos congesta Benth. 192 192 34 72 98 95

Xanthophyllum hainanense Hu 36 40 76 59 43 17 14

Table S2: Continuation...



Li and Veresoglou

16 CERNE (2025) 31: e-103583

Appendix 2: Sources of data on the distribution of 
the eight species

1. Artocarpus hypargyreus

Jestrow B, Bornhorst K (2022). Fairchild Tropical Botanic Garden (FTG). 
Fairchild Tropical Botanic Garden. Occurrence dataset https://doi.
org/10.15468/hdpruf accessed via GBIF.org on 2022-07-25.

Cameron E, Auckland Museum A M (2022). Auckland Museum Botany 
Collection. Version 1.75. Auckland War Memorial Museum. Occurrence dataset 
https://doi.org/10.15468/mnjkvv accessed via GBIF.org on 2022-07-25.

Chen C (2021). Herbarium of Taiwan Forestry Research Institute. Version 
1.8. Taiwan Forestry Research Institute. Occurrence dataset https://doi.
org/10.15468/vo3d2x accessed via GBIF.org on 2022-07-25.

Crop Wild Relatives Occurrence data consortia (2018). A global 
database for the distributions of crop wild relatives. Version 1.12. Centro 
Internacional de Agricultura Tropical - CIAT. Occurrence dataset https://
doi.org/10.15468/jyrthk accessed via GBIF.org on 2022-07-25.

Gao X, xu Z (2019). Plant Specimen from Herbarium (CDBI) in China, 
Chengdu Institute of Botany, Chinese Academy of Sciences. Chinese 
Academy of Sciences (CAS). Occurrence dataset https://doi.org/10.15468/
pui83d accessed via GBIF.org on 2022-07-25.

Soudzilovskaia N A, Vaessen S, Barcelo M, He J, Rahimlou S, Abarenkov 
K, Brundrett M C, Gomes S, Merckx V, Martinez-Suz L, Tedersoo L. Taxon 
occurrence data for the FungalRoot database. PlutoF. Occurrence dataset 
https://doi.org/10.15468/a7ujmj accessed via GBIF.org on 2022-07-25.

Solomon J, Stimmel H (2021). Tropicos Specimen Data. Missouri Botanical 
Garden. Occurrence dataset https://doi.org/10.15468/hja69f accessed via 
GBIF.org on 2022-07-25.

Natural History Museum (2022). Natural History Museum (London) Collection 
Specimens. Occurrence dataset https://doi.org/10.5519/0002965 accessed via 
GBIF.org on 2022-07-25.

Zhang X, xu Z (2019). Plant Specimen in Yunnan, China from Herbarium 
(PE),Institute of Botany, Chinese Academy of Sciences. Chinese Academy 
of Sciences (CAS). Occurrence dataset https://doi.org/10.15468/kvfygp 
accessed via GBIF.org on 2022-07-25.

iNaturalist contributors, iNaturalist (2022). iNaturalist Research-
grade Observations. iNaturalist.org. Occurrence dataset https://doi.
org/10.15468/ab3s5x accessed via GBIF.org on 2022-07-25.

Zhang X (2019). Some Plant Specimens from PE Herbarium in China from 
1900 to 1950. Chinese Academy of Sciences (CAS). Occurrence dataset 
https://doi.org/10.15468/liiipc accessed via GBIF.org on 2022-07-25.

Yang Z, Xu Z (2019). Some Plant Specimens from KUN, IBSC, NAS  
Herbarium in China from 1900 to 1950. Chinese Academy of Sciences 
(CAS). Occurrence dataset https://doi.org/10.15468/irnwew accessed via 
GBIF.org on 2022-07-25.

Liu Y, xu Z (2019). Plant Specimen from Herbarium (IBK) in China, Guangxi 
Institute of Botany, Chinese Academy of Sciences. Chinese Academy of 
Sciences (CAS). Occurrence dataset https://doi.org/10.15468/dk5gko 
accessed via GBIF.org on 2022-07-25.

Kong H, Yang L (2019). 500,000 plant Specimens from PE Herbarium in China 
from 1950 to 1999. Chinese Academy of Sciences (CAS). Occurrence dataset 
https://doi.org/10.15468/44r5e4 accessed via GBIF.org on 2022-07-25.

Peng Y, Xu Z (2019). Plant Specimen from Herbarium (LBG) in China, Lushan 
Botanical Garden, Jiangxi and Chinese Academy of Sciences. Chinese 
Academy of Sciences (CAS). Occurrence dataset https://doi.org/10.15468/
k5j0ep accessed via GBIF.org on 2022-07-25.

2. Diospyros strigosa

Peng Y, Xu Z (2019). Plant Specimen from Herbarium (LBG) in China, Lushan 
Botanical Garden, Jiangxi and Chinese Academy of Sciences. Chinese 
Academy of Sciences (CAS). Occurrence dataset https://doi.org/10.15468/
k5j0ep accessed via GBIF.org on 2022-07-25.

Crop Wild Relatives Occurrence data consortia (2018). A global 
database for the distributions of crop wild relatives. Version 1.12. Centro 
Internacional de Agricultura Tropical - CIAT. Occurrence dataset https://
doi.org/10.15468/jyrthk accessed via GBIF.org on 2022-07-25.

Jennings L (2021). University of British Columbia Herbarium (UBC) - 
Vascular Plant Collection. Version 16.7. University of British Columbia. 
Occurrence dataset https://doi.org/10.5886/rtt57cc9 accessed via GBIF.
org on 2022-07-25.

Natural History Museum (2022). Natural History Museum 
(London) Collection Specimens. Occurrence dataset https://doi.
org/10.5519/0002965 accessed via GBIF.org on 2022-07-25.

Yang Z, Xu Z (2019). Some Plant Specimens from KUN, IBSC, NAS  
Herbarium in China from 1900 to 1950. Chinese Academy of Sciences 
(CAS). Occurrence dataset https://doi.org/10.15468/irnwew accessed via 
GBIF.org on 2022-07-25.

Kong H, Yang L (2019). 500,000 plant Specimens from PE Herbarium in 
China from 1950 to 1999. Chinese Academy of Sciences (CAS). Occurrence 
dataset https://doi.org/10.15468/44r5e4 accessed via GBIF.org on 2022-
07-25.

Liu Y, xu Z (2019). Plant Specimen from Herbarium (IBK) in China, Guangxi 
Institute of Botany, Chinese Academy of Sciences. Chinese Academy of 
Sciences (CAS). Occurrence dataset https://doi.org/10.15468/dk5gko 
accessed via GBIF.org on 2022-07-25.

Zhang X (2019). Some Plant Specimens from PE Herbarium in China from 
1900 to 1950. Chinese Academy of Sciences (CAS). Occurrence dataset 
https://doi.org/10.15468/liiipc accessed via GBIF.org on 2022-07-25.

3. Machilus breviflora

Royal Botanic Gardens, Kew (2021). Royal Botanic Gardens, Kew - 
Herbarium Specimens. Occurrence dataset https://doi.org/10.15468/
ly60bx accessed via GBIF.org on 2022-07-25.

Zhang X (2019). Some Plant Specimens from PE Herbarium in China from 
1900 to 1950. Chinese Academy of Sciences (CAS). Occurrence dataset 
https://doi.org/10.15468/liiipc accessed via GBIF.org on 2022-07-25.

Gao X, xu Z (2019). Plant Specimen from Herbarium (CDBI) in China, 
Chengdu Institute of Botany, Chinese Academy of Sciences. Chinese 
Academy of Sciences (CAS). Occurrence dataset https://doi.org/10.15468/
pui83d accessed via GBIF.org on 2022-07-25.

Soudzilovskaia N A, Vaessen S, Barcelo M, He J, Rahimlou S, Abarenkov 
K, Brundrett M C, Gomes S, Merckx V, Martinez-Suz L, Tedersoo L. Taxon 
occurrence data for the FungalRoot database. PlutoF. Occurrence dataset 
https://doi.org/10.15468/a7ujmj accessed via GBIF.org on 2022-07-25.

MNHN, Chagnoux S (2022). The vascular plants collection (P) at the Herbarium 
of the Muséum national d’Histoire Naturelle (MNHN - Paris). Version 69.268. 
MNHN - Museum national d’Histoire naturelle. Occurrence dataset https://
doi.org/10.15468/nc6rxy accessed via GBIF.org on 2022-07-25.

Liu Q, xu Z (2019). Plant Specimen from Herbarium (NAS) in China, Institute 
of Botany, Jiangsu Province and Chinese Academy of Sciences. Chinese 
Academy of Sciences (CAS). Occurrence dataset https://doi.org/10.15468/
r2la8h accessed via GBIF.org on 2022-07-25.

Kong H, Yang L (2019). 500,000 plant Specimens from PE Herbarium in 
China from 1950 to 1999. Chinese Academy of Sciences (CAS). Occurrence 
dataset https://doi.org/10.15468/44r5e4 accessed via GBIF.org on 2022-
07-25.

Yang Z, Xu Z (2019). Some Plant Specimens from KUN, IBSC, NAS  
Herbarium in China from 1900 to 1950. Chinese Academy of Sciences 
(CAS). Occurrence dataset https://doi.org/10.15468/irnwew accessed via 
GBIF.org on 2022-07-25.

Liu Y, xu Z (2019). Plant Specimen from Herbarium (IBK) in China, Guangxi 
Institute of Botany, Chinese Academy of Sciences. Chinese Academy of 
Sciences (CAS). Occurrence dataset https://doi.org/10.15468/dk5gko 
accessed via GBIF.org on 2022-07-25.
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4. Rhaphiolepis ferruginea

Orrell T, Informatics Office (2022). NMNH Extant Specimen Records (USNM, 
US). Version 1.57. National Museum of Natural History, Smithsonian 
Institution. Occurrence dataset https://doi.org/10.15468/hnhrg3 accessed 
via GBIF.org on 2022-07-25.

European Bioinformatics Institute (EMBL-EBI), GBIF Helpdesk (2022). 
INSDC Sequences. Version 1.8. European Nucleotide Archive (EMBL-EBI). 
Occurrence dataset https://doi.org/10.15468/sbmztx accessed via GBIF.
org on 2022-07-25.

Solomon J, Stimmel H (2021). Tropicos Specimen Data. Missouri Botanical 
Garden. Occurrence dataset https://doi.org/10.15468/hja69f accessed via 
GBIF.org on 2022-07-25.

MNHN, Chagnoux S (2022). The vascular plants collection (P) at the Herbarium 
of the Muséum national d’Histoire Naturelle (MNHN - Paris). Version 69.268. 
MNHN - Museum national d’Histoire naturelle. Occurrence dataset https://
doi.org/10.15468/nc6rxy accessed via GBIF.org on 2022-07-25.

Royal Botanic Gardens, Kew (2021). Royal Botanic Gardens, Kew - 
Herbarium Specimens. Occurrence dataset https://doi.org/10.15468/
ly60bx accessed via GBIF.org on 2022-07-25.

Chen C (2021). Herbarium of Taiwan Forestry Research Institute. Version 
1.8. Taiwan Forestry Research Institute. Occurrence dataset https://doi.
org/10.15468/vo3d2x accessed via GBIF.org on 2022-07-25.

Bijmoer R, Scherrenberg M, Creuwels J (2022). Naturalis Biodiversity Center 
(NL) - Botany. Naturalis Biodiversity Center. Occurrence dataset https://
doi.org/10.15468/ib5ypt accessed via GBIF.org on 2022-07-25.

Kennedy J (2022). Harvard University Herbaria: All Records. Harvard 
University Herbaria. Occurrence dataset https://doi.org/10.15468/o3pvnh 
accessed via GBIF.org on 2022-07-25.

Zhang X (2019). Some Plant Specimens from PE Herbarium in China from 
1900 to 1950. Chinese Academy of Sciences (CAS). Occurrence dataset 
https://doi.org/10.15468/liiipc accessed via GBIF.org on 2022-07-25.

Kong H, Yang L (2019). 500,000 plant Specimens from PE Herbarium in China 
from 1950 to 1999. Chinese Academy of Sciences (CAS). Occurrence dataset 
https://doi.org/10.15468/44r5e4 accessed via GBIF.org on 2022-07-25.

5. Huodendron biaristatum

Harvard University Herbaria. Vascular plants of south-central China. 
Occurrence dataset https://doi.org/10.15468/o1q1w3 accessed via GBIF.
org on 2022-09-06.

Nkundabagenzi F, Noe N (2017). Royal Museum of Central Africa - 
Metafro-Infosys - Xylarium. Version 1.2. Belgian Biodiversity Platform. 
Occurrence dataset https://doi.org/10.15468/f71d5m accessed via GBIF.
org on 2022-09-06.

Ramirez J, Watson K, McMillin L, Gjieli E (2022). The New York Botanical 
Garden Herbarium (NY). Version 1.49. The New York Botanical Garden. 
Occurrence dataset https://doi.org/10.15468/6e8nje accessed via GBIF.
org on 2022-09-06.

SysTax. SysTax - Botanical Gardens. Occurrence dataset https://doi.
org/10.15468/wem0v1 accessed via GBIF.org on 2022-09-06.

Conservatoire et Jardin botaniques de la Ville de Genève - G. Geneva 
Herbarium – General Collection (G). Occurrence dataset https://doi.
org/10.15468/rvjdu1 accessed via GBIF.org on 2022-09-06.

Ramalho Romão D (2022). HEPH - Herbário Ezechias Paulo Heringer. 
Version 1.92. Jardim Botânico de Brasília. Occurrence dataset https://doi.
org/10.15468/ouq1mm accessed via GBIF.org on 2022-09-06.

Ceccantini G (2022). SPFw - Xiloteca do Instituto de Biociências da 
Universidade de São Paulo. Version 1.90. Universidade de São Paulo. 
Occurrence dataset https://doi.org/10.15468/sihvr7 accessed via GBIF.org 
on 2022-09-06.

Jennings L (2022). University of British Columbia Herbarium (UBC) - 
Vascular Plant Collection. Version 16.9. University of British Columbia. 
Occurrence dataset https://doi.org/10.5886/rtt57cc9 accessed via GBIF.
org on 2022-09-06.

Chen C (2021). Herbarium of Taiwan Forestry Research Institute. Version 
1.8. Taiwan Forestry Research Institute. Occurrence dataset https://doi.
org/10.15468/vo3d2x accessed via GBIF.org on 2022-09-06.

Lundberg J (2022). Phanerogamic Botanical Collections (S). GBIF-Sweden. 
Occurrence dataset https://doi.org/10.15468/yo3mmu accessed via GBIF.
org on 2022-09-06.

Rob Cubey (2022). Royal Botanic Garden Edinburgh Living Plant Collections 
(E). Royal Botanic Garden Edinburgh. Occurrence dataset https://doi.
org/10.15468/bkzv1l accessed via GBIF.org on 2022-09-06.

Natural History Museum (2022). Natural History Museum 
(London) Collection Specimens. Occurrence dataset https://doi.
org/10.5519/0002965 accessed via GBIF.org on 2022-09-06.

Solomon J, Stimmel H (2021). Tropicos Specimen Data. Missouri Botanical 
Garden. Occurrence dataset https://doi.org/10.15468/hja69f accessed via 
GBIF.org on 2022-09-06.

Royal Botanic Gardens, Kew (2021). Royal Botanic Gardens, Kew - 
Herbarium Specimens. Occurrence dataset https://doi.org/10.15468/
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