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ABSTRACT

Background: The cost of forest roads is practically estimated by determining the Surface Material
Types (SMT). Experts determine SMT by classifying soil, loose soil, and rocky surface material classes
(%) through in-situ measurements, which are both costly and time-intensive. This study aims to
reduce cost and time loss by evaluating the effectiveness of high-resolution remote sensing (RS) data
in determining SMT. Conducted on a forest road in Konuralp region of Dizce district in Tirkiye, the
study involved experts classifying the road’s Soil, Loose Soil and Rocky surface material classes (%)
and collecting high-resolution RS data using UAV. The RS data was processed through Random Forest
(RF) and Support Vector Machine (SVM) algorithms to classify the surface material types, and their
accuracy was assessed using the Kappa Coefficient, Overall Accuracy (%) and Conditional Kappa. The
images were clipped at 20-meter intervals for detailed analysis. The RS data classifications were then
compared with in-situ measurements using statistical analyses Index-of-Agreement (IA).

Results: The RF algorithm made the best identification, although the classification of the Loose Soil
class was more difficult for both algorithms compared to the other classes. Both algorithms highest
accuracy in identifying the Rocky class.

Conclusions: This study proposes methods to reduce time loss in cost calculations and enhance the
use of RS images for estimating forest road costs.
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HIGHLIGHTS

UAVs detected soil, loose soil, and rock areas on forest road cut slopes.

Random forest and SVM classified soil, loose soil, and rock areas on cut slopes.

UAVs were recommended since in-situ cost assessments are slow and expensive.

This study pioneers UAV-based detection of surface materials for road cost estimation.
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INTRODUCTION

Forest roads are still become most important but
also complex engineering infrastructures providing access
to the forest for forestry operations, varying from general
management to recreational activities, by playing important
role in obtaining certain gains from the forests (Lehto et al,,
2025; Doli et al,, 2021; Berenji Tehrani et al., 2015). That's
why, their construction with proper methods is crucial (Eker
and Aydin 2014), since it leads to increased economic,
ecological, and functional efficiency of the roads (Tampekis
et al,, 2018; Laschi et al., 2019). The reasons that increase
the cost of forest roads are based on selection of alternative
road routes, decision of road standards, and selection
of transportation methods in addition to topographic
conditions, soils and rock outcrops (Amah et al, 2022;
Fidelus-Orzechowska et al, 2025). In the construction
of forest roads, the most important component of road
construction cost is excavation earthworks work (Amede,
2022; Chonpatathip et al, 2023). Excavation earthworks
constitute the largest economic item of the forest road
construction cost. Therefore, accurate estimation of
excavation volumes is important (Contreras et al., 2012;
Hasegawa et al, 2023). In the construction of a forest
road, the determination of surface material types (SMT)
and the amount of excavation volume is essential for the
determination of the road construction cost (Faragallah and
Ragheb, 2022; Wang et al., 2022).

However, in-situ measurements using traditional
earth measurement tools are costly and labor-intense,
especially when large study areas considered (Bruzzone et
al., 2012; Wang et al., 2020). The mapping of SMT in forest
road construction is made also very roughly depending
on human-experts’ experiences. In Turkiye, after the road
construction is completed, the cut slope for the final cost is
determined by observations based on human experience in
the determination of SMT. This process is time consuming
and needs experience. In general, studies have been
carried out to calculate forest road earthwork volumes
using UAVs (Bugday, 2018; Turk et al, 2022a; Kinali and
Caliskan, 2022; Ciritcioglu and Bugday, 2022; Cheng et al,
2023; Hasegawa et al., 2023). However, there are almost no
studies on the determination of SMT, which determines the
road cost. Therefore, alternative methods for the mapping
SMT needs to be integrated into forest road planning and
road construction. These methods are to use both Remote
Sensing (RS) and Machine Learning (ML) integrating them
into field observation for creating more precise SMT map
(Shirmard et al.,, 2022; Holloway and Mengersen, 2018). RS is
most commonly used technique in present in many forestry
application (Govender et al., 2022; Tang and Shao, 2015).
In the use of RS data for forestry applications, both spatial
and temporal resolutions are important factors. Higher
resolution RS images provide better or more accurate
results for forests that have a dynamic structure. (Xie et al,,
2008; Li et al., 2017; Liao et al., 2017). The analysis of RS data
using ML methods has become important in forestry, just
as in other scientific fields (Eker et al., 2023). This is because
RS data do not always have high spatial resolution, images

may not be interpretable in the visible range (RGB), and
even if high spatial resolution RS data is available, the large
size of the study area has enabled the use of ML in RS data
and the analysis of the data (Zhang et al., 2016; Shirmard et
al., 2022). In present, there are various ML approaches (Lary
et al., 2016; Schulz et al., 2018), and they are studied to be
tested in terms of their performances regarding advantages
and disadvantages (Wuest et al., 2016).

ML algorithms can be implemented using
various software packages (ERDAS, ArcGIS, etc.) (Kumar
et al., 2023). However, the data processing time for ML
algorithms varies across these packages. This variation
is due to hardware limitations and the large size of RS
data (Allamanis et al.,, 2018; Xing et al., 2016). By using
programming languages (Python, R, and Java, etc.), many
ML algorithms can work together, and large datasets can be
analyzed more quickly (Tarazona et al., 2024; Lemenkova
and Debeir, 2022; Shamshiri et al., 2018). However, even
when RS big data is analyzed with ML using programming
languages, it still occupies space in the machine’s memory
(Oancea and Dragoescu, 2014; Khoirom et al., 2020). To
reduce memory usage, cloud databases have been used
for analyzing RS data in recent years, making the analysis
process easier and preventing the database from taking
up space on the machine (Xiong et al., 2022; Agapiou,
2017; Tamiminia et al., 2020).

Forest roads will continue to be constructed in
Turkiye and many other countries for years to fulfill forestry
and social responsibilities. Consequently, economic,
environmental, and time-saving studies remain crucial in
forest road construction. In forest road construction, the
recovery of degraded areas is as important as economic
and construction considerations. This is because forest
roads can lead to the loss of vegetation (Solgi et al., 2021)
and limit wildlife habitats (Jeong et al., 2021). Additionally,
due to the loss of vegetation, erosion or landslide events
can occur depending on the slope of the cut slope and
SMTs (Parsakhoo and Hosseini, 2023; Yu et al., 2024). For
these reasons, it is essential that ecological applications
and recovery are carried out promptly after forest road
construction (Park et al, 2027). The most important
application for recovery on cut slopes is revegetation, and
parameters such as SMT, slope and aspect on the cut slope
are quite important for this (Hosogi et al., 2006). Therefore,
the detection of SMTs on cut slopes is crucial both for the
recovery of the area and for cost estimation.

This study aimed to map the SMT of cut slopes
along an 800-meter forest road section located in
Duzce Forest Management Directorate (FMD) in the
Western Black Sea Region of Turkiye. High-resolution
RS data acquired via UAV was used, along with ML
approaches. In-situ measurements were conducted to
collect SMT data, including soil, loose soil, and rock,
for every cross-section at 20-meter intervals. In the
field study, an orthomosaic was obtained following UAV
flights and was classified using the ML methods Random
Forest (RF) and Support Vector Machine (SVM), then
compared with in-situ measurements. The reason for
using RF (Poona et al., 2016; Zhang et al., 2017) and SVM
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(Chandra and Bedi, 2021; Kremic and Subasi, 2016) for
classifying the orthomosaic is that they are among the
most successful ML methods for image classification. The
accuracy of the classification results from both methods
was evaluated using Kappa Coefficient and Overall
Accuracy (%) statistical analysis. For internal accuracy
of the classified images, Conditional Kappa Coefficient
analysis was applied. As a result of the classification, GTM
classes at intervals of every 20 meters were calculated
as percentages (%) based on the number of pixels. The
calculated classes were statistically evaluated with in-situ
measurement data. The statistical evaluation of RS data
classified with SMT data was conducted using the Index
of Agreement (IA). High geometric resolution images are
essential for the statistical comparison of SMT data with
both in-situ measurements and RS data. When images
have low geometric resolution, accuracy evaluation of
SMT and RS data cannot be performed. In this study, SMT
data were compared with in-situ measurements and RS
data using RF and SVM classification methods, and the
most accurate ML classification method was identified.
Additionally, information was provided about the
misclassified SMT classes in the RS image classification.

MATERIAL AND METHODS
Study Area

The forest road section with 800-m length was
selected as study area located in Duizce FMD (Western Black
Sea Region of Turkiye). The road with 526 code number
was constructed in 2022. The forest road is a B-type forest
road (with 4 m of width of the platform) according to forest
categorization in Turkish forestry. Forest road is unpaved,
and its longitudinal slope is 7.3%. The geographical
coordinates of study are 34° 61" 33"East and 45° 61" 33"
North. The mean elevation of study area is 150 m above
ground level (a.g.l), and covered by dense forests (Figure 1).

Workflow of the Study

In the study, the classes of Soil, Loose Soil, and Rocky
on the cut slope were identified using RS data. For this
purpose, in-situ measurements were initially conducted on
the forest road together with experts. During these in-situ
measurements, both the percentage distributions (%) of the
Soil, Loose Soil, and Rocky classes and training data with
GPS were generated. The UAV images obtained from the
flight conducted over the forest road were classified using
RF and SVM algorithms with the generated training data.
In this way, the success of the two algorithms in identifying
the classes was determined. Intervals of 20 meters (m) were
taken from the classified UAV image and evaluated through
statistical analyses in conjunction with the percentage
distributions of the Soil, Loose Soil, and Rocky classes
identified from the in-situ measurements. The workflow for
this study was provided in Figure 1.

In-situ Data Collection

Road section was divided into 20-m sections and
SMT of cut slopes were determined for each section. The
SMT was categorized into soil, loose soil, and rock. The
classification was made according to criteria defined in the
Communique no. 292 by Directorate General of Forests in
Tdrkiye (GDF 2008). In traditional method applied in Turkiye,
SMT are defined in percentage with visual interpretation by
the expert in the field. The human expert roughly defines
the SMT as like for example 20% rock, 25% loose soil,
and 55% soil along the road (=Total 100%), but does not
create a SMT map. In the present study, to map SMT of cut
slopes, more reliable data collection was carried out. Along
the selected road, SMT were defined and point data was
collected over the cut slopes for each section. Point data
used as training data has surveyed with a Cors-GNSS with
cm accuracy. In total, 307 points were collected (Table 1).
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Figure 1: Location of forest road and an example UAV
image (bottom left).

The numbers of training data are provided in Table
1. During the collection phase, training data were generated
from locations where the SMTs for each category were
distinctly different from each other. Because the Rocky SMT
is less prevalent on the road, the training data for this class
is less compared to the others. Training data, 10% was used
as test data for performance evaluation.
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Figure 2: Workflow of the study.

Table 1: Training data number for each SMT.

4=

Soil Loose Soil Rocky

Training Data
102 107 98

UAV flights and Data Process

Following in-situ data collection for surface material
classes, a UAV flight was carried out over the road section
on 27 June 2022. For this aim, DJI Phantom 4 RTK system
was used. The UAV system has 20-megapixel camera with a
1-inch CMOS sensor. The aircraft is equipped with a GNSS
module that enables reception of GPS (L1/L2), GLONASS
(L1/L2), and Galileo (E1/E5a) satellites. This UAV system is
capable of directing georeferencing of the images in real
time with centimeter-level positioning accuracy. The flight
plan was carried out in photogrammetry (3D) mode,
allowing topography-adaptive flights. The SRTM 30-m
digital elevation data was downloaded and then imported
in “geotiff” format. The UAV image acquisition was
planned from 120 m (a.g.l). Both forward and side image
overlapping rates were set at 90%. The UAV images were
then processed by applying SfM (Structure-from-Motion)
algorithm with Agisoft Metashape Professional. The outputs
of SfM algorithm are point cloud, digital elevation model,
and orthomosaic images. In this study, the orthomosaic
image was used for mapping surface material classes of cut
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slope for the selected road section. The orthomosaic image
has 2.94 cm spatial resolution.

Application of ML Approaches for SMT Classification

For mapping surface material classes of selected
forest road section, two ML approaches were applied: RF
and SVM classification. RF is a community classifier based
on the ML method (Breiman, 2001). RF is a non-parametric
ML algorithm that provides high classification accuracy. RF
uses a random sampling policy to create a new training
dataset. By using the random sampling, it reduces
the variance and increases the classification accuracy
(Liaw and Wiener, 2002). RF algorithm has two different
adjustment parameters. When examining the adjustment
parameters of RF, the number of trees and the "mtry” used
to split the nodes are important. The "mtry” represents
the number of randomly selected features at each split
point in building a decision tree within the ensemble. The
“mtry” determines a subset of features considered by the
RF. Among the adjustment parameters of RF, mtry used
in node splitting is an important variable that improves
the accuracy of classification (Ishwaran and Kogalur, 2007;
Sonobe et al., 2017). In this study, the best coefficient for
splitting the nodes in RF classification was determined as
‘5. The formula of the RF method used in this study is
given in equation (1).
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When examining the formula used to calculate RF, the
probability of the selected parameters belonging to class
K is calculated using the formula (f(K,M)/|M]), and the
probability of belonging to class K is determined using
(ftk,M)/|M]) (Pal 2005).

Another method used in the classification of drone
images is SVM. SVM algorithm is a non-parametric statistical
ML technique used for image classification (Waldner et al,,
2015; Sonobe et al., 2017). The SVM algorithm determines
the optimal hyperplane to distinguish classes based on
training data. The SVM algorithm divides the training data
using maximum separation margins (Vapnik, 1995). By using
vector data for the training data and averaging the margins,
the SVM algorithm creates the optimal hyperplane for
classification. SVM can achieve high classification accuracies
with a small number of training data (Foody, 2004; Zheng,
2015). The formula (2) for the SVM classification used in this
study was provided.

n

f(x)= ZI_:]a[-y[K(x,x[)+b @)

n the SVM formula, the term b represents the bias term,
a, represents the Lagrange multiplier, and y, represents the
class labels. In K(x, x), x is the input vector and x, is the
Radial Basis Function kernel function.

Both RF and SVM classification were applied in GEE
platform, which offers notable advantages such as being
free and user-friendly and provides storing and mapping
data, as well as high-speed parallel processing without
downloading data (Zhao et al, 2021). Both RF and SVM
models were set up by using same data collected from field.
While 0.7 of points were used for training, the remaining
was used for testing.

Orthomosaic Classification Performance Evaluation

The Kappa coefficient is among the most commonly
used statistical methods in image classification. In Kappa
Coefficient analysis, the observed agreement between
data sets is compared with the agreement expected by
chance, providing a statistical explanation of the classified
image. The result of the Kappa Coefficient analysis ranges
from +1 to -1. A Kappa result approaching +1 indicates
perfect agreement, while a result approaching -1 represents
disagreement (Gwet, 2002; Sim and Wright, 2005). Kappa
Coefficient analysis used in image classification results
accuracy assesment was given in equation (3).

Kappa=(Po—Pe) /(1-Pe) 3)

In the Kappa equation, Po is determined by
dividing the number of agreements by the total number of
observations. Pe, on the other hand, is the determination

of the probability of coincidences in the image (Gwet,
2002; Sim and Wright, 2005). Another criterion used to
evaluate image classification results is Overall Accuracy.
Overall Accuracy (%) is calculated by the ratio of the
number of correctly classified data to the total amount of
data in the dataset. The formula for Overall Accuracy (%)
is provided in equation (4).

Number of correctly
classified samples

Overall Accuracy = T otal b
otal number

x100 @)

of samples

The result of Overall Accuracy (%) ranges from 0 to
100. Results approaching 0 represent incorrect classification,
while values approaching 100 indicate that the image has
been correctly classified (Mellor et al., 2013).

Evaluation of ML Models and In-Situ Measurements
Results

Statistical calculations were performed to determine
the SMTs performance of RF and SVM algorithms applied
to drone images. The Agreement Index (IA) (Guo and Wu,
2023) was calculated to assess the agreement between
drone and in-situ measurements at 20-meter intervals
along the study area road. A SMT is considered successful
when |A results were close to 1.0 (Guo and Wu, 2023),
indicated high level of accuracy. Equations of these
measure were given in Equations (5) as follows:

n

> _(r-of
n 2
> (r-d+le-9)

where n total number of annual measurements, P, is
predicted values, O, is observed values, P is mean of
the predicted values, O is mean of the observed values,
o0, is standard deviation of the predicted values, g is
standard deviation of the observed values. |A results
vary between 0 and 1. The varying IA results are
classified as follows: 0-0.20 'Extremely inappropriate’,
0.20-0.40 'Inappropriate’,  0.40-0.60 'Moderately
appropriate’, 0.60-0.80 'Very appropriate’ and 0.80-1
‘Extremely appropriate’ (Guo and Wu, 2023; Al-Jawhar
and Rezouki, 2013).

1A =1—

RESULTS

In this study, training data created from in-situ
measurements were transferred to UAV-based orthomosaic
image for the purpose of image classification. The location
of sample training data was given in Figure 3. Both RF and
SVM classification methods were applied to map SMT of cut
slopes along the road.
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Figure 3: Drone images and sample training data obtained from in-situ measurements (GPS).

In the field study conducted, training data from the
cut slope were generated using GPS. During the production
of training data, the TUREF TM 30 EPSG: 5254 coordinate
system was used in the GPS. The created orthomosaic is
also in the TUREF TM 30 coordinate system. The generated
training data was exported from the GPS and saved in CSV
format. The recorded training data and orthomosaic were
downloaded to GEEp. In GEEp, the downloaded data were
subjected to RF and SVM ML classification algorithms using
the Java programming language. The classification results
of the orthomosaic were presented in Figure 4.

For the statistical assessment of the orthomosaic
classified with RF and SVM algorithms, Kappa Coefficient
and Overall Accuracy (%) assessments were conducted.
To evaluate the internal accuracy of each category of the
classified orthomosaic, Conditional Kappa analysis was
applied. According to the applied Conditional Kappa analysis,
the impact of data in each classified category on the total
accuracy was determined. The general Kappa Coefficient,
Overall Accuracy (%) and Conditional Kappa results of the
orthomosaic classified according to RF and SVM algorithms
were given in Table 2.

According to the analysis results, when examining
the Kappa Coefficient results, the RF algorithm provided a
better classification given compared to SVM. The RF Kappa
Coefficient result falls into the "Almost Perfect” category, as
per the classification by Shivakumar and Rajashekararadhya
(2018), while the SVM classification result is in the “Excellent”
category. According to the Conditional Kappa analysis
applied to RF and SVM classifications, the highest accuracy

was found in the "Rocky” class. The lowest accuracy was
in the “Loose Soil” class, and this class lowered the overall
Kappa Coefficient in both classifications. The RF and SVM
classifications was successful in identifying the “Soil” class,
similar to the “Rocky” class. The Overall Accuracy (%) results
indicated that classification with the RF algorithm was more
successful compared to SVM.

The road orthomosaic classified according to the RF
and SVM methods was clipped at 20-meter intervals. A total of
40 different clipped 20-meter interval images were produced
from each of the classified UAV images. Each of the produced
interval images was install into GEEp. The install classified
images were perceived as continuous data in GEEp, so a
“threshold"” was applied to the data. This allowed the classes in
the images to be identified in GEEp, and the “count numbers”
were automatically determined from the rows in the data tables
of the classified images. The classes were calculated in % using
the identified “count numbers. In this way, the data identified
by in-situ measurement was made ready for statistical analysis
with the classified images. The results related to the data in
% detected from in-situ measurement and classified images
were given in Table 3 and the descriptive statistics applied to
the data were provided in Table 4.

According to SMT area percentage in-situ
measurments, each road section has minimum 25% soil in
the cut slope area, but Loose Soil and Rocky classes were not
observed in some road sections. In other words, some road
sections a 100% soil type of SMT. But RF and SVM classification
resulted that maximum area of soil type of SMT as 92%, and
81%, respectively. Loose soil type SMT was mapped minimum
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8% and 19% with RF and SVM classification in some road
sections but its minimum area 0% in in-situ measuremnts.
In the In the "Rocky” class, the minimum % results from
both RF and SVM classifications are the same as the in-situ
measurements.The most accurate % result in the classification
was achieved in the “Rocky” class. The percentage distribution
results identified in Table 3 were subjected to IA analyses. The
results of the statistical analyses were presented in Table 5.

In the RF classification, the highest IA was observed in
the Rocky category (0.93), whereas the lowest was detected in
the Loose class (0.74). For the SVM classification, the highest I1A
was found in the Rocky category (0.89), while the lowest IA was
in the loose soil class (0.54). When comparing the results of the
IA and Conditional Kappa analysis, the results show similarities.

DISCUSSION

Forest road related studies using remote sensing
technique such UAV has been increased since they are used

as an alternative to traditional in-situ measurements. They
are faster, easier and cost-effective. This study aimed to use
UAV data for mapping SMT of a forest road selected. 20-m
road sections were determined and area percentage of each
SMT in each section was calculated. In traditional method
applied in Turkish forestry, the definition of SMTs is made by
human expert with visual evaluation in the field. The expert
roughly estimates the area percentage of SMTs in each
section. However, this estimation is not always accurate and
precise, and is entirely subjective. In addition, the experience
of the human expert plays very important role. Depending
on the excavation volume and surface material classes,
the forestry administration makes a final payment to the
company constructing the road. That's why, more accurate
mapping of SMTs is required. In expert field studies, each
20-meter road section is completed in approximately 7.5
minutes. Additionally, experts are paid $170 for fieldwork.
Therefore, for each new forest road construction in Turkiye,
cost and time savings cannot be achieved in field studies.

RF
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Figure 4: RF and SVM classification results.
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Table 2: Kappa Coefficient, Overall Accuracy (%) and Conditional Kappa results of the orthomosaic classified according

to the RF and SVM methods.

RF SVM
Statistics - - - -
Soil Loose Soil Rocky Soil Loose Soil Rocky
Conditional Kappa 0.88 0.75 0.92 0.84 0.65 0.89
Statistics RF SVM
Kappa Coefficient 0.85 0.79
Overall Accuracy (%) 89 83
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Table 3: Comparison of area percentage of each SMT in each section (obs. is observed).

Section Soil Loose Soil Rocky

(m) (obs) RF SVM (obs) RF SVM (0bs) RF SVM
20 100 92 79 0 8 21 0 0 0
40 100 87 79 0 13 21 0 0 0
60 100 89 81 0 11 19 0 0 0
80 75 71 68 20 21 25 5 8 7
100 75 72 66 20 21 28 5 7 6
120 75 69 65 25 31 35 0 0 0
140 75 70 66 25 30 34 0 0 0
160 80 76 74 20 24 26 0 0 0
180 75 73 70 20 27 30 0 0 0
200 75 71 69 25 29 31 0 0 0
220 75 70 68 25 30 32 0 0 0
240 25 22 20 25 36 40 50 42 40
260 25 21 21 25 38 40 50 41 39
280 25 22 19 25 38 43 50 40 38
300 25 23 21 25 36 40 50 41 39
320 25 24 20 25 34 40 50 42 40
340 25 23 21 25 38 42 50 39 37
360 70 66 62 20 22 24 10 12 14
380 70 67 61 30 33 39 0 0 0
400 70 65 62 30 35 38 0 0 0
420 80 77 74 20 23 26 0 0 0
440 70 63 61 20 24 28 10 13 11
460 75 71 69 20 22 24 5 7 7
480 75 71 70 20 25 24 5 4 6
500 80 71 68 20 29 32 0 0 0
520 80 72 71 20 28 29 0 0 0
540 25 22 20 25 34 39 50 44 41
560 25 20 18 25 38 42 50 42 40
580 80 73 70 20 27 30 0 0 0
600 25 22 19 25 36 41 50 42 40
620 80 72 70 20 28 30 0 0 0
640 80 73 66 10 19 22 10 8 12
660 80 72 71 10 19 22 10 9 7
680 80 73 71 10 18 22 10 9 7
700 70 64 62 20 30 33 10 6 5
720 25 23 22 25 34 36 50 43 42
740 25 19 16 25 39 41 50 42 43
760 60 51 49 30 40 44 10 9 7
780 60 53 52 30 41 44 10 6 4
800 60 51 49 30 44 47 10 5 4

8 CERNE (2025) 31: e-103563
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Table 4: Comparison of some descriptive statistics of area percentage of each SMT in each section.

Section (m)  Soil (obs.) RF SVM Loose Soil (obs.) RF SVM Rocky (obs.) RF SVM

Max. 100 92 81 30 44 47 50 44 43

Min. 25 19 16 0 8 19 0 0 0
Average 62.5 57.2 54 20.9 28.8 32.6 16.5 14.0 13.4
SD 24.6 23.1 22.10 7.7 8.5 7.87 20.9 17.4 16.7

Table 5: Comparison of classification accuracies of ML approaches.
RF SVM
Statistics
Soil Loose Soil Rocky Soil Loose Soil Rocky
1A 0.89 0.74 0.93 0.83 0.54 0.89

In this study, a UAV flight was conducted in approximately
5 minutes with no cost. Therefore, this research aimed
to identify SMTs with UAVs and test their applicability in
such applications, achieving both cost and time savings. In
literature, many different applications were made for forest-
road related studies. Many of them was about creating
higher spatial resolution data for forest roads (Bicici and
Zeybek, 2021; Kinali and Caliskan, 2022; Ciritcioglu and
Bugday, 2022; Turk et al., 2022; Hasegawa et al.,, 2023; Turk
and Canyurt 2024), monitoring forest roads degradations
(Dobson et al., 2013; Diaz-Vilarifio et al., 2016; Hrlza et
al., 2016; Akgdl et al., 2017; Akay et al., 2018; Akgul et al,,
2019; Turk et al.,, 2019a; Turk et al., 2019b; Eker, 2023; Turk
et al, 2024 ), and mapping of forest road-stream crossings
(Acil et al., 2023). However, there is no study in the current
literature aiming to map SMTs for forest road using RF
classification from high resolution UAV data.

In this study, machine learning algorithms, RF and
SVM classifiers, were used to map SMTs. The RF algorithm
was a reliable classifier used in remote sensing images.
The RF algorithm has been successfully applied in remote
sensing data in studies such as urban vegetation mapping
(Feng et al,, 2015), forest volume and biomass detection
(Esteban et al., 2019), land cover classification (Gislason et
al., 2006) and flood risk mapping (Farhadi and Najafzadeh
2021). In addition to these studies, it was also possible to see
studies on road extraction (Bicici and Zeybek, 2021) used
the RF algorithm. In recent years, there have been studies
conducted using RF, SVM, and other algorithms for the
classification of drone images (Fan, 2023; Zhou et al., 2021;
Hosseinalizadeh et al., 2019). Algorithms such as Extreme
Gradient Boosting (XGBoost), Logistic Regression (LR), RF,
SVM, Artificial Neural Network (ANN), Generalized Additive
Model (GAM), K-Nearest Neighbors (KNN), Convolutional
Neural Network (CNN), Bayes, and decision tree (DT) have
been used in these studies. Among the algorithms used, RF
has been one of the algorithms with the highest accuracy.
Additionally, Zhou et al. (2021) found that SVM was also
successful in classification. The studies focused on land
classification, and no study was found that used drone
images to detect soil, loose soil and rocky areas on cut
slopes. In the study conducted, SMT maps were classified
and obtained from drone images using RF, and a Kappa

coefficient of 0.85 was determined. It is possible to say
that as the Kappa Coefficence (Sim and Wright, 2005) and
IA (Al-Jawhar and Rezouki, 2013) value approaches 1, the
model’s success increases. When the success of detected
soil, loose soil and rocky areas used the SMT created
with the RF algorithm was examined, it was observed
that Rocky (IA: 0.93) had the best detection performance
while loose soil had the lowest detection performance (IA:
0.74). Another algorithm used in creating SMT was SVM.
The SVM algorithm has been used in habitat classification
(Sanchez-Hernandez et al., 2007), land cover mapping (Pal,
2008; Shi and Yang, 2015) and crop classification (Mathur
and Foody 2008). When the studies conducted were
examined, it was not possible to see the use of the SVM
algorithm in detected soil, loose soil, and rocky areas on
cut slopes. The SMT map obtained used the SVM algorithm
detected Kappa Coefficence of 0.79. According to the SVM
algorithm, the highest success rate in classification was for
rocky areas (IA: 0.89), while the lowest was for loose soil
(IA: 0.54). The reason for the low detection success of loose
soil in RF and SVM s that loose soil was in the transition
stage with evolution into soil (Gu et al.,, 2014). Therefore,
the algorithms were success in detected loose soil has
decreased. In both ML classification algorithms used to
create SMT, RF achieved the best performance. In the past
studies examined the success of RF and SVM in created
SMTs maps (Thanh Noi and Kappas, 2017; Sheykhmousa
et al, 2020; Sabat-Tomala et al., 2020) have found RF to
be more successful than the SVM algorithm. In this study
as well, RF best performed rather than SVM in accuracy
evaluation. The most important result of this case study is
that by choosing RF, the images obtained from UAV flights
resulted in better detection of SMTs, providing time and
cost saving.

In the present study, a UAV system which has 20 MP
CMOS sensor, was used. The integrated sensor takes images
in RGB spectral bands. Therefore, classification of SMTs has
some limitations. Turk et al. (2022b) discussed limitations
of UAV system for forest road surface deformations.
Similar limitations are subject for this study. One important
limitation is blockage of cut slope by trees in forested areas.
Since UAV system take images in nadir-view, tree crowns
can blockage the surface. Another important limitation is
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shadow effect. Trees or high mountains, especially forest
road is located in valleys, causes shadowing of the surface
resulting misclassification of SMTs. Or sun lights can make
some pixels brightener than actual situation which can be
reason of misclassification of SMTs. Also, spatial resolution
of output ortomosaic image depends on the flight altitude.
However, in mapping of SMTs, coarser spatial resolutions
by 10-15 centimeters could be acceptable, even though
new sensors allow to get higher resolutions (2-3 cm). To
overcome such limitations, manual UAV flights can be
carried out for mapping SMTs. Also, terrestrial or close-
range photogrammetric systems, that were proposed by
Eker (2023) and Turk et al. (2024) can be used. As Eker (2023)
stated, close-range photogrammetric system could be the
best option in eliminating shadow and/or brightness effects
since images are taken at lower altitudes. Terrestrial or
close-range photogrammetric systems can produce images
with higher spatial resolution. Therefore, Soil, Loose, and
Rocky classes can be more clearly distinguished from the
images. However, the spatial resolution of the orthomosaic
in this study is 2.94 cm, which allows for the identification
of SMTs on forest roads, and thus does not present a
disadvantage. If the spatial resolution of the orthomosaic
were in millimeters (mm), higher accuracy results could be
determined using the classification methods used.

In addition, another UAV system carrying a multi-
spectral sensor (including NIR, SWIR bands) should
be tested. Because Abidin and Ariff (2023) states that
using multispectral UAV system increase the accuracy
of classification in detecting detection of road defects.
Besides, spectral signs should be collected by using
spectroradiometer to increase confidence of classification.
Herold et al. (2008) and Kavzoglu et al. (2009) used a
spectrometer to determine of spectral characteristics of a
selected road surface. A similar approach could be applied
to map SMTs for forest roads. In this study, a quick and
simple application was carried out by using RGB images.
When compared to traditional in-situ measurements in
Turkish forestry, the current application provided more
accurate and reliable results for forestry authorities.

The detection of SMTs on cut slopes is determined
using drone images and is also crucial for recovery efforts
to be conducted after forest road construction. This is
emphasized by the research conducted by Hosogi et al.
(2006), which highlights the importance of parameters
such as SMTs, slope, and aspect in revegetation efforts on
cut slopes. In this study, SMTs were detected from drone
images, and environmental parameters such as slope and
aspect can also be generated from these images for the cut
slope. Therefore, the use of drone images is advantageous.
Additionally, research by Hernando and Romana (2015), Al-
Bared et al. (2019), Solgi et al. (2021), Navarro-Hevia et al.
(2016), Li et al. (2020), and Liu et al. (2019) indicates that
soil erosion can occur if recovery efforts are not conducted
on cut slopes. These studies emphasize the importance of
detecting SMTs on cut slopes and note that soil erosion
occurs as a result of rainfall. Therefore, detecting SMTs
on cut slopes is crucial for preventing soil erosion and
implementing necessary measures.
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CONCLUSIONS

Forest roads contribute significantly to the
country’'s economy by enabling the inventorying of
forests. In addition, they provide access to rehabilitation
areas for people, resulting in social benefits.
Forest roads play a facilitating role in supporting
individuals’ physical and mental health by providing
access to forests In addition, by facilitating access to
educational and cultural activities, they make significant
contributions to the cultural services part of ecosystem
services for society. Besides the benefits of forest
roads, there are also construction costs involved and
the distributions of soil, loose soil and rocky areas in
cut slopes are determined to identify these costs. In-
situ measurements are conducted to determine the
distributions of soil, loose soil and rocky areas. In-situ
measurements in field studies can be time-consuming
and increase costs. In this study, soil, loose soil, and
rocky areas in cut slopes were classified using drone
images with ML algorithms such as RF and SVM. The
soil, loose soil, and rocky areas detected by RF and SVM
were compared with in-situ measurements. RF provided
the highest accuracy in the classified drone images,
particularly in the detection of soil and rocky areas. It
is possible to detect soil and rocky areas in cut slopes
using SVM as well. However, it can be said that both ML
algorithms used in classification are not as successful in
detecting loose soil areas as they are in detecting soil
and rocky areas. Loose soil detection in drone images
can be improved with field studies. Therefore, it is
essential to collect more training data with GPS during
field studies for the loose soil class. This study indicates
that drone images can be used to detect soil and rocky
areas in cut slopes but RF one of the ML classification
methods, is more suitable for detecting loose soil
areas. This study suggests that using drone images for
classification can reduce the time spent in field studies
and make it possible to determine the construction
costs of forest roads. In addition, the importance of
detecting SMTs on cut slopes for recovery efforts after
forest road construction has also been emphasized.
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