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ABSTRACT

Background: The cost of forest roads is practically estimated by determining the Surface Material 
Types (SMT). Experts determine SMT by classifying soil, loose soil, and rocky surface material classes 
(%) through in-situ measurements, which are both costly and time-intensive. This study aims to 
reduce cost and time loss by evaluating the effectiveness of high-resolution remote sensing (RS) data 
in determining SMT. Conducted on a forest road in Konuralp region of Düzce district in Türkiye, the 
study involved experts classifying the road’s Soil, Loose Soil and Rocky surface material classes (%) 
and collecting high-resolution RS data using UAV. The RS data was processed through Random Forest 
(RF) and Support Vector Machine (SVM) algorithms to classify the surface material types, and their 
accuracy was assessed using the Kappa Coefficient, Overall Accuracy (%) and Conditional Kappa. The 
images were clipped at 20-meter intervals for detailed analysis. The RS data classifications were then 
compared with in-situ measurements using statistical analyses Index-of-Agreement (IA).

Results: The RF algorithm made the best identification, although the classification of the Loose Soil 
class was more difficult for both algorithms compared to the other classes. Both algorithms highest 
accuracy in identifying the Rocky class.

Conclusions: This study proposes methods to reduce time loss in cost calculations and enhance the 
use of RS images for estimating forest road costs. 
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HIGHLIGHTS

UAVs detected soil, loose soil, and rock areas on forest road cut slopes.
Random forest and SVM classified soil, loose soil, and rock areas on cut slopes.
UAVs were recommended since in-situ cost assessments are slow and expensive.
This study pioneers UAV-based detection of surface materials for road cost estimation.
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INTRODUCTION

Forest roads are still become most important but 
also complex engineering infrastructures providing access 
to the forest for forestry operations, varying from general 
management to recreational activities, by playing important 
role in obtaining certain gains from the forests (Lehto et al., 
2025; Doli et al., 2021; Berenji Tehrani et al., 2015). That’s 
why, their construction with proper methods is crucial (Eker 
and Aydın 2014), since it leads to increased economic, 
ecological, and functional efficiency of the roads (Tampekis 
et al., 2018; Laschi et al., 2019). The reasons that increase 
the cost of forest roads are based on selection of alternative 
road routes, decision of road standards, and selection 
of transportation methods in addition to topographic 
conditions, soils and rock outcrops (Amah et al., 2022; 
Fidelus‐Orzechowska et al., 2025). In the construction 
of forest roads, the most important component of road 
construction cost is excavation earthworks work (Amede, 
2022; Chonpatathip et al., 2023). Excavation earthworks 
constitute the largest economic item of the forest road 
construction cost. Therefore, accurate estimation of 
excavation volumes is important (Contreras et al., 2012; 
Hasegawa et al., 2023). In the construction of a forest 
road, the determination of surface material types (SMT) 
and the amount of excavation volume is essential for the 
determination of the road construction cost (Faragallah and 
Ragheb, 2022; Wang et al., 2022). 

However, in-situ measurements using traditional 
earth measurement tools are costly and labor-intense, 
especially when large study areas considered (Bruzzone et 
al., 2012; Wang et al., 2020). The mapping of SMT in forest 
road construction is made also very roughly depending 
on human-experts’ experiences. In Türkiye, after the road 
construction is completed, the cut slope for the final cost is 
determined by observations based on human experience in 
the determination of SMT. This process is time consuming 
and needs experience. In general, studies have been 
carried out to calculate forest road earthwork volumes 
using UAVs (Buğday, 2018; Türk et al., 2022a; Kınalı and 
Çalışkan, 2022; Ciritcioğlu and Buğday, 2022; Cheng et al., 
2023; Hasegawa et al., 2023). However, there are almost no 
studies on the determination of SMT, which determines the 
road cost. Therefore, alternative methods for the mapping 
SMT needs to be integrated into forest road planning and 
road construction. These methods are to use both Remote 
Sensing (RS) and Machine Learning (ML) integrating them 
into field observation for creating more precise SMT map 
(Shirmard et al., 2022; Holloway and Mengersen, 2018). RS is 
most commonly used technique in present in many forestry 
application (Govender et al., 2022; Tang and Shao, 2015). 
In the use of RS data for forestry applications, both spatial 
and temporal resolutions are important factors. Higher 
resolution RS images provide better or more accurate 
results for forests that have a dynamic structure. (Xie et al., 
2008; Li et al., 2017; Liao et al., 2017). The analysis of RS data 
using ML methods has become important in forestry, just 
as in other scientific fields (Eker et al., 2023). This is because 
RS data do not always have high spatial resolution, images 

may not be interpretable in the visible range (RGB), and 
even if high spatial resolution RS data is available, the large 
size of the study area has enabled the use of ML in RS data 
and the analysis of the data (Zhang et al., 2016; Shirmard et 
al., 2022). In present, there are various ML approaches (Lary 
et al., 2016; Schulz et al., 2018), and they are studied to be 
tested in terms of their performances regarding advantages 
and disadvantages (Wuest et al., 2016). 

ML algorithms can be implemented using 
various software packages (ERDAS, ArcGIS, etc.) (Kumar 
et al., 2023). However, the data processing time for ML 
algorithms varies across these packages. This variation 
is due to hardware limitations and the large size of RS 
data (Allamanis et al., 2018; Xing et al., 2016). By using 
programming languages (Python, R, and Java, etc.), many 
ML algorithms can work together, and large datasets can be 
analyzed more quickly (Tarazona et al., 2024; Lemenkova 
and Debeir, 2022; Shamshiri et al., 2018). However, even 
when RS big data is analyzed with ML using programming 
languages, it still occupies space in the machine’s memory 
(Oancea and Dragoescu, 2014; Khoirom et al., 2020). To 
reduce memory usage, cloud databases have been used 
for analyzing RS data in recent years, making the analysis 
process easier and preventing the database from taking 
up space on the machine (Xiong et al., 2022; Agapiou, 
2017; Tamiminia et al., 2020).

Forest roads will continue to be constructed in 
Türkiye and many other countries for years to fulfill forestry 
and social responsibilities. Consequently, economic, 
environmental, and time-saving studies remain crucial in 
forest road construction. In forest road construction, the 
recovery of degraded areas is as important as economic 
and construction considerations. This is because forest 
roads can lead to the loss of vegetation (Solgi et al., 2021) 
and limit wildlife habitats (Jeong et al., 2021). Additionally, 
due to the loss of vegetation, erosion or landslide events 
can occur depending on the slope of the cut slope and 
SMTs (Parsakhoo and Hosseini, 2023; Yu et al., 2024). For 
these reasons, it is essential that ecological applications 
and recovery are carried out promptly after forest road 
construction (Park et al., 2021). The most important 
application for recovery on cut slopes is revegetation, and 
parameters such as SMT, slope and aspect on the cut slope 
are quite important for this (Hosogi et al., 2006). Therefore, 
the detection of SMTs on cut slopes is crucial both for the 
recovery of the area and for cost estimation.

This study aimed to map the SMT of cut slopes 
along an 800-meter forest road section located in 
Düzce Forest Management Directorate (FMD) in the 
Western Black Sea Region of Türkiye. High-resolution 
RS data acquired via UAV was used, along with ML 
approaches. In-situ measurements were conducted to 
collect SMT data, including soil, loose soil, and rock, 
for every cross-section at 20-meter intervals. In the 
field study, an orthomosaic was obtained following UAV 
flights and was classified using the ML methods Random 
Forest (RF) and Support Vector Machine (SVM), then 
compared with in-situ measurements. The reason for 
using RF (Poona et al., 2016; Zhang et al., 2017) and SVM 
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(Chandra and Bedi, 2021; Kremic and Subasi, 2016) for 
classifying the orthomosaic is that they are among the 
most successful ML methods for image classification. The 
accuracy of the classification results from both methods 
was evaluated using Kappa Coefficient and Overall 
Accuracy (%) statistical analysis. For internal accuracy 
of the classified images, Conditional Kappa Coefficient 
analysis was applied. As a result of the classification, GTM 
classes at intervals of every 20 meters were calculated 
as percentages (%) based on the number of pixels. The 
calculated classes were statistically evaluated with in-situ 
measurement data. The statistical evaluation of RS data 
classified with SMT data was conducted using the Index 
of Agreement (IA). High geometric resolution images are 
essential for the statistical comparison of SMT data with 
both in-situ measurements and RS data. When images 
have low geometric resolution, accuracy evaluation of 
SMT and RS data cannot be performed. In this study, SMT 
data were compared with in-situ measurements and RS 
data using RF and SVM classification methods, and the 
most accurate ML classification method was identified. 
Additionally, information was provided about the 
misclassified SMT classes in the RS image classification.

MATERIAL AND METHODS

Study Area

The forest road section with 800-m length was 
selected as study area located in Düzce FMD (Western Black 
Sea Region of Türkiye). The road with 526 code number 
was constructed in 2022. The forest road is a B-type forest 
road (with 4 m of width of the platform) according to forest 
categorization in Turkish forestry. Forest road is unpaved, 
and its longitudinal slope is 7.3%. The geographical 
coordinates of study are 34° 61’ 33’’East and 45° 61’ 33’’ 
North. The mean elevation of study area is 150 m above 
ground level (a.g.l), and covered by dense forests (Figure 1).

Workflow of the Study

In the study, the classes of Soil, Loose Soil, and Rocky 
on the cut slope were identified using RS data. For this 
purpose, in-situ measurements were initially conducted on 
the forest road together with experts. During these in-situ 
measurements, both the percentage distributions (%) of the 
Soil, Loose Soil, and Rocky classes and training data with 
GPS were generated. The UAV images obtained from the 
flight conducted over the forest road were classified using 
RF and SVM algorithms with the generated training data. 
In this way, the success of the two algorithms in identifying 
the classes was determined. Intervals of 20 meters (m) were 
taken from the classified UAV image and evaluated through 
statistical analyses in conjunction with the percentage 
distributions of the Soil, Loose Soil, and Rocky classes 
identified from the in-situ measurements. The workflow for 
this study was provided in Figure 1.

In-situ Data Collection

Road section was divided into 20-m sections and 
SMT of cut slopes were determined for each section. The 
SMT was categorized into soil, loose soil, and rock. The 
classification was made according to criteria defined in the 
Communique no. 292 by Directorate General of Forests in 
Türkiye (GDF 2008). In traditional method applied in Türkiye, 
SMT are defined in percentage with visual interpretation by 
the expert in the field. The human expert roughly defines 
the SMT as like for example 20% rock, 25% loose soil, 
and 55% soil along the road (=Total 100%), but does not 
create a SMT map. In the present study, to map SMT of cut 
slopes, more reliable data collection was carried out. Along 
the selected road, SMT were defined and point data was 
collected over the cut slopes for each section. Point data 
used as training data has surveyed with a Cors-GNSS with 
cm accuracy. In total, 307 points were collected (Table 1). 

Figure 1: Location of forest road and an example UAV 
image (bottom left).

The numbers of training data are provided in Table 
1. During the collection phase, training data were generated 
from locations where the SMTs for each category were 
distinctly different from each other. Because the Rocky SMT 
is less prevalent on the road, the training data for this class 
is less compared to the others. Training data, 10% was used 
as test data for performance evaluation.
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UAV flights and Data Process

Following in-situ data collection for surface material 
classes, a UAV flight was carried out over the road section 
on 27 June 2022. For this aim, DJI Phantom 4 RTK system 
was used. The UAV system has 20-megapixel camera with a 
1-inch CMOS sensor. The aircraft is equipped with a GNSS 
module that enables reception of GPS (L1/L2), GLONASS 
(L1/L2), and Galileo (E1/E5a) satellites. This UAV system is 
capable of directing georeferencing of the images in real 
time with centimeter-level positioning accuracy. The flight 
plan was carried out in photogrammetry (3D) mode, 
allowing topography-adaptive flights. The SRTM 30-m 
digital elevation data was downloaded and then imported 
in “geotiff” format.  The UAV image acquisition was 
planned from 120 m (a.g.l). Both forward and side image 
overlapping rates were set at 90%. The UAV images were 
then processed by applying SfM (Structure-from-Motion) 
algorithm with Agisoft Metashape Professional. The outputs 
of SfM algorithm are point cloud, digital elevation model, 
and orthomosaic images. In this study, the orthomosaic 
image was used for mapping surface material classes of cut 

slope for the selected road section. The orthomosaic image 
has 2.94 cm spatial resolution.

Application of ML Approaches for SMT Classification

For mapping surface material classes of selected 
forest road section, two ML approaches were applied: RF 
and SVM classification. RF is a community classifier based 
on the ML method (Breiman, 2001). RF is a non-parametric 
ML algorithm that provides high classification accuracy. RF 
uses a random sampling policy to create a new training 
dataset. By using the random sampling, it reduces 
the variance and increases the classification accuracy 
(Liaw and Wiener, 2002). RF algorithm has two different 
adjustment parameters. When examining the adjustment 
parameters of RF, the number of trees and the “mtry” used 
to split the nodes are important. The “mtry” represents 
the number of randomly selected features at each split 
point in building a decision tree within the ensemble. The 
“mtry” determines a subset of features considered by the 
RF. Among the adjustment parameters of RF, mtry used 
in node splitting is an important variable that improves 
the accuracy of classification (Ishwaran and Kogalur, 2007; 
Sonobe et al., 2017). In this study, the best coefficient for 
splitting the nodes in RF classification was determined as 
‘5’. The formula of the RF method used in this study is 
given in equation (1).

Training Data
Soil Loose Soil Rocky
102 107 98

Figure 2: Workflow of the study.

Table 1: Training data number for each SMT.
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When examining the formula used to calculate RF, the 
probability of the selected parameters belonging to class 
Ki is calculated using the formula (f(Ki,M)/|M|), and the 
probability of belonging to class Kj is determined using 
(f(Kj,M)/|M|) (Pal 2005).

Another method used in the classification of drone 
images is SVM. SVM algorithm is a non-parametric statistical 
ML technique used for image classification (Waldner et al., 
2015; Sonobe et al., 2017). The SVM algorithm determines 
the optimal hyperplane to distinguish classes based on 
training data. The SVM algorithm divides the training data 
using maximum separation margins (Vapnik, 1995). By using 
vector data for the training data and averaging the margins, 
the SVM algorithm creates the optimal hyperplane for 
classification. SVM can achieve high classification accuracies 
with a small number of training data (Foody, 2004; Zheng, 
2015). The formula (2) for the SVM classification used in this 
study was provided.

of the probability of coincidences in the image (Gwet, 
2002; Sim and Wright, 2005). Another criterion used to 
evaluate image classification results is Overall Accuracy. 
Overall Accuracy (%) is calculated by the ratio of the 
number of correctly classified data to the total amount of 
data in the dataset. The formula for Overall Accuracy (%) 
is provided in equation (4).
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n the SVM formula, the term b represents the bias term, 
ai represents the Lagrange multiplier, and yi represents the 
class labels. In K(x, xi), x is the input vector and xi  is the 
Radial Basis Function kernel function.

Both RF and SVM classification were applied in GEE 
platform, which offers notable advantages such as being 
free and user-friendly and provides storing and mapping 
data, as well as high-speed parallel processing without 
downloading data (Zhao et al., 2021). Both RF and SVM 
models were set up by using same data collected from field. 
While 0.7 of points were used for training, the remaining 
was used for testing.

Orthomosaic Classification Performance Evaluation

The Kappa coefficient is among the most commonly 
used statistical methods in image classification. In Kappa 
Coefficient analysis, the observed agreement between 
data sets is compared with the agreement expected by 
chance, providing a statistical explanation of the classified 
image. The result of the Kappa Coefficient analysis ranges 
from +1 to -1. A Kappa result approaching +1 indicates 
perfect agreement, while a result approaching -1 represents 
disagreement (Gwet, 2002; Sim and Wright, 2005). Kappa 
Coefficient analysis used in image classification results 
accuracy assesment was given in equation (3).
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In the Kappa equation, Po is determined by 
dividing the number of agreements by the total number of 
observations. Pe, on the other hand, is the determination 

(4)

The result of Overall Accuracy (%) ranges from 0 to 
100. Results approaching 0 represent incorrect classification, 
while values approaching 100 indicate that the image has 
been correctly classified (Mellor et al., 2013).

Evaluation of ML Models and In-Situ Measurements 
Results 

Statistical calculations were performed to determine 
the SMTs performance of RF and SVM algorithms applied 
to drone images. The Agreement Index (IA) (Guo and Wu, 
2023) was calculated to assess the agreement between 
drone and in-situ measurements at 20-meter intervals 
along the study area road. A SMT is considered successful 
when IA results were close to 1.0 (Guo and Wu, 2023), 
indicated high level of accuracy. Equations of these 
measure were given in Equations (5) as follows:

(5)

where n total number of annual measurements, Pi is 
predicted values, Oi is observed values, P is mean of 
the predicted values, O is mean of the observed values, 
σP is standard deviation of the predicted values, σo is 
standard deviation of the observed values. IA results 
vary between 0 and 1. The varying IA results are 
classified as follows: 0-0.20 ‘Extremely inappropriate’, 
0.20-0.40 ‘Inappropriate’, 0.40-0.60 ‘Moderately 
appropriate’, 0.60-0.80 ‘Very appropriate’ and 0.80-1 
‘Extremely appropriate’ (Guo and Wu, 2023; Al-Jawhar 
and Rezouki, 2013).

RESULTS

In this study, training data created from in-situ 
measurements were transferred to UAV-based orthomosaic 
image for the purpose of image classification. The location 
of sample training data was given in Figure 3. Both RF and 
SVM classification methods were applied to map SMT of cut 
slopes along the road. 
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In the field study conducted, training data from the 
cut slope were generated using GPS. During the production 
of training data, the TUREF TM 30 EPSG: 5254 coordinate 
system was used in the GPS. The created orthomosaic is 
also in the TUREF TM 30 coordinate system. The generated 
training data was exported from the GPS and saved in CSV 
format. The recorded training data and orthomosaic were 
downloaded to GEEp. In GEEp, the downloaded data were 
subjected to RF and SVM ML classification algorithms using 
the Java programming language. The classification results 
of the orthomosaic were presented in Figure 4.

For the statistical assessment of the orthomosaic 
classified with RF and SVM algorithms, Kappa Coefficient 
and Overall Accuracy (%) assessments were conducted. 
To evaluate the internal accuracy of each category of the 
classified orthomosaic, Conditional Kappa analysis was 
applied. According to the applied Conditional Kappa analysis, 
the impact of data in each classified category on the total 
accuracy was determined. The general Kappa Coefficient, 
Overall Accuracy (%) and Conditional Kappa results of the 
orthomosaic classified according to RF and SVM algorithms 
were given in Table 2.

According to the analysis results, when examining 
the Kappa Coefficient results, the RF algorithm provided a 
better classification given compared to SVM. The RF Kappa 
Coefficient result falls into the “Almost Perfect” category, as 
per the classification by Shivakumar and Rajashekararadhya 
(2018), while the SVM classification result is in the “Excellent” 
category. According to the Conditional Kappa analysis 
applied to RF and SVM classifications, the highest accuracy 

was found in the “Rocky” class. The lowest accuracy was 
in the “Loose Soil” class, and this class lowered the overall 
Kappa Coefficient in both classifications. The RF and SVM 
classifications was successful in identifying the “Soil” class, 
similar to the “Rocky” class. The Overall Accuracy (%) results 
indicated that classification with the RF algorithm was more 
successful compared to SVM.

The road orthomosaic classified according to the RF 
and SVM methods was clipped at 20-meter intervals. A total of 
40 different clipped 20-meter interval images were produced 
from each of the classified UAV images. Each of the produced 
interval images was install into GEEp. The install classified 
images were perceived as continuous data in GEEp, so a 
“threshold” was applied to the data. This allowed the classes in 
the images to be identified in GEEp, and the “count numbers” 
were automatically determined from the rows in the data tables 
of the classified images. The classes were calculated in % using 
the identified “count numbers. In this way, the data identified 
by in-situ measurement was made ready for statistical analysis 
with the classified images. The results related to the data in 
% detected from in-situ measurement and classified images 
were given in Table 3 and the descriptive statistics applied to 
the data were provided in Table 4.

According to SMT area percentage in-situ 
measurments, each road section has minimum 25% soil in 
the cut slope area, but Loose Soil and Rocky classes were not 
observed in some road sections. In other words, some road 
sections a 100% soil type of SMT. But RF and SVM classification 
resulted that maximum area of soil type of SMT as 92%, and 
81%, respectively. Loose soil type SMT was mapped minimum 

Figure 3: Drone images and sample training data obtained from in-situ measurements (GPS).
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8% and 19% with RF and SVM classification in some road 
sections but its minimum area 0% in in-situ measuremnts. 
In the In the “Rocky” class, the minimum % results from 
both RF and SVM classifications are the same as the in-situ 
measurements.The most accurate % result in the classification 
was achieved in the “Rocky” class. The percentage distribution 
results identified in Table 3 were subjected to IA analyses. The 
results of the statistical analyses were presented in Table 5.

In the RF classification, the highest IA was observed in 
the Rocky category (0.93), whereas the lowest was detected in 
the Loose class (0.74). For the SVM classification, the highest IA 
was found in the Rocky category (0.89), while the lowest IA was 
in the loose soil class (0.54). When comparing the results of the 
IA and Conditional Kappa analysis, the results show similarities.

DISCUSSION

Forest road related studies using remote sensing 
technique such UAV has been increased since they are used 

as an alternative to traditional in-situ measurements. They 
are faster, easier and cost-effective. This study aimed to use 
UAV data for mapping SMT of a forest road selected. 20-m 
road sections were determined and area percentage of each 
SMT in each section was calculated. In traditional method 
applied in Turkish forestry, the definition of SMTs is made by 
human expert with visual evaluation in the field. The expert 
roughly estimates the area percentage of SMTs in each 
section. However, this estimation is not always accurate and 
precise, and is entirely subjective. In addition, the experience 
of the human expert plays very important role. Depending 
on the excavation volume and surface material classes, 
the forestry administration makes a final payment to the 
company constructing the road. That’s why, more accurate 
mapping of SMTs is required. In expert field studies, each 
20-meter road section is completed in approximately 7.5 
minutes. Additionally, experts are paid $170 for fieldwork. 
Therefore, for each new forest road construction in Türkiye, 
cost and time savings cannot be achieved in field studies. 

Statistics
RF SVM

Soil Loose Soil Rocky Soil Loose Soil Rocky
Conditional Kappa 0.88 0.75 0.92 0.84 0.65 0.89

Statistics RF SVM
Kappa Coefficient 0.85 0.79

Overall Accuracy (%) 89 83

Figure 4: RF and SVM classification results.

Table 2: Kappa Coefficient, Overall Accuracy (%) and Conditional Kappa results of the orthomosaic classified according 
to the RF and SVM methods.
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Section
(m)

Soil
(obs.) RF SVM Loose Soil

(obs.) RF SVM Rocky
(obs.) RF SVM

20 100 92 79 0 8 21 0 0 0

40 100 87 79 0 13 21 0 0 0

60 100 89 81 0 11 19 0 0 0

80 75 71 68 20 21 25 5 8 7

100 75 72 66 20 21 28 5 7 6

120 75 69 65 25 31 35 0 0 0

140 75 70 66 25 30 34 0 0 0

160 80 76 74 20 24 26 0 0 0

180 75 73 70 20 27 30 0 0 0

200 75 71 69 25 29 31 0 0 0

220 75 70 68 25 30 32 0 0 0

240 25 22 20 25 36 40 50 42 40

260 25 21 21 25 38 40 50 41 39

280 25 22 19 25 38 43 50 40 38

300 25 23 21 25 36 40 50 41 39

320 25 24 20 25 34 40 50 42 40

340 25 23 21 25 38 42 50 39 37

360 70 66 62 20 22 24 10 12 14

380 70 67 61 30 33 39 0 0 0

400 70 65 62 30 35 38 0 0 0

420 80 77 74 20 23 26 0 0 0

440 70 63 61 20 24 28 10 13 11

460 75 71 69 20 22 24 5 7 7

480 75 71 70 20 25 24 5 4 6

500 80 71 68 20 29 32 0 0 0

520 80 72 71 20 28 29 0 0 0

540 25 22 20 25 34 39 50 44 41

560 25 20 18 25 38 42 50 42 40

580 80 73 70 20 27 30 0 0 0

600 25 22 19 25 36 41 50 42 40

620 80 72 70 20 28 30 0 0 0

640 80 73 66 10 19 22 10 8 12

660 80 72 71 10 19 22 10 9 7

680 80 73 71 10 18 22 10 9 7

700 70 64 62 20 30 33 10 6 5

720 25 23 22 25 34 36 50 43 42

740 25 19 16 25 39 41 50 42 43

760 60 51 49 30 40 44 10 9 7

780 60 53 52 30 41 44 10 6 4

800 60 51 49 30 44 47 10 5 4

Table 3: Comparison of area percentage of each SMT in each section (obs. is observed).
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In this study, a UAV flight was conducted in approximately 
5 minutes with no cost. Therefore, this research aimed 
to identify SMTs with UAVs and test their applicability in 
such applications, achieving both cost and time savings. In 
literature, many different applications were made for forest-
road related studies. Many of them was about creating 
higher spatial resolution data for forest roads (Biçici and 
Zeybek, 2021; Kınalı and Çalışkan, 2022; Ciritcioğlu and 
Buğday, 2022; Türk et al., 2022; Hasegawa et al., 2023; Türk 
and Canyurt 2024), monitoring forest roads degradations 
(Dobson et al., 2013; Díaz-Vilariño et al., 2016; Hrůza et 
al., 2016; Akgül et al., 2017; Akay et al., 2018; Akgül et al., 
2019; Türk et al., 2019a; Türk et al., 2019b; Eker, 2023; Türk 
et al., 2024 ), and mapping of forest road-stream crossings 
(Açıl et al., 2023). However, there is no study in the current 
literature aiming to map SMTs for forest road using RF 
classification from high resolution UAV data. 

In this study, machine learning algorithms, RF and 
SVM classifiers, were used to map SMTs. The RF algorithm 
was a reliable classifier used in remote sensing images. 
The RF algorithm has been successfully applied in remote 
sensing data in studies such as urban vegetation mapping 
(Feng et al., 2015), forest volume and biomass detection 
(Esteban et al., 2019), land cover classification (Gislason et 
al., 2006) and flood risk mapping (Farhadi and Najafzadeh 
2021). In addition to these studies, it was also possible to see 
studies on road extraction (Biçici and Zeybek, 2021) used 
the RF algorithm. In recent years, there have been studies 
conducted using RF, SVM, and other algorithms for the 
classification of drone images (Fan, 2023; Zhou et al., 2021; 
Hosseinalizadeh et al., 2019). Algorithms such as Extreme 
Gradient Boosting (XGBoost), Logistic Regression (LR), RF, 
SVM, Artificial Neural Network (ANN), Generalized Additive 
Model (GAM), K-Nearest Neighbors (KNN), Convolutional 
Neural Network (CNN), Bayes, and decision tree (DT) have 
been used in these studies. Among the algorithms used, RF 
has been one of the algorithms with the highest accuracy. 
Additionally, Zhou et al. (2021) found that SVM was also 
successful in classification. The studies focused on land 
classification, and no study was found that used drone 
images to detect soil, loose soil and rocky areas on cut 
slopes. In the study conducted, SMT maps were classified 
and obtained from drone images using RF, and a Kappa 

coefficient of 0.85 was determined. It is possible to say 
that as the Kappa Coefficence (Sim and Wright, 2005) and 
IA (Al-Jawhar and Rezouki, 2013) value approaches 1, the 
model’s success increases. When the success of detected 
soil, loose soil and rocky areas used the SMT created 
with the RF algorithm was examined, it was observed 
that Rocky (IA: 0.93) had the best detection performance 
while loose soil had the lowest detection performance (IA: 
0.74). Another algorithm used in creating SMT was SVM. 
The SVM algorithm has been used in habitat classification 
(Sanchez-Hernandez et al., 2007), land cover mapping (Pal, 
2008; Shi and Yang, 2015) and crop classification (Mathur 
and Foody 2008). When the studies conducted were 
examined, it was not possible to see the use of the SVM 
algorithm in detected soil, loose soil, and rocky areas on 
cut slopes. The SMT map obtained used the SVM algorithm 
detected Kappa Coefficence of 0.79. According to the SVM 
algorithm, the highest success rate in classification was for 
rocky areas (IA: 0.89), while the lowest was for loose soil 
(IA: 0.54). The reason for the low detection success of loose 
soil in RF and SVM is that loose soil was in the transition 
stage with evolution into soil (Gu et al., 2014). Therefore, 
the algorithms were success in detected loose soil has 
decreased. In both ML classification algorithms used to 
create SMT, RF achieved the best performance. In the past 
studies examined the success of RF and SVM in created 
SMTs maps (Thanh Noi and Kappas, 2017; Sheykhmousa 
et al., 2020; Sabat-Tomala et al., 2020) have found RF to 
be more successful than the SVM algorithm. In this study 
as well, RF best performed rather than SVM in accuracy 
evaluation. The most important result of this case study is 
that by choosing RF, the images obtained from UAV flights 
resulted in better detection of SMTs, providing time and 
cost saving.

In the present study, a UAV system which has 20 MP 
CMOS sensor, was used. The integrated sensor takes images 
in RGB spectral bands. Therefore, classification of SMTs has 
some limitations. Türk et al. (2022b) discussed limitations 
of UAV system for forest road surface deformations. 
Similar limitations are subject for this study. One important 
limitation is blockage of cut slope by trees in forested areas. 
Since UAV system take images in nadir-view, tree crowns 
can blockage the surface. Another important limitation is 

Section (m) Soil (obs.) RF SVM Loose Soil (obs.) RF SVM Rocky (obs.) RF SVM
Max. 100 92 81 30 44 47 50 44 43
Min. 25 19 16 0 8 19 0 0 0

Average 62.5 57.2 54 20.9 28.8 32.6 16.5 14.0 13.4
SD 24.6 23.1 22.10 7.7 8.5 7.87 20.9 17.4 16.7

Table 4: Comparison of some descriptive statistics of area percentage of each SMT in each section.

Statistics
RF SVM

Soil Loose Soil Rocky Soil Loose Soil Rocky
IA 0.89 0.74 0.93 0.83 0.54 0.89

Table 5: Comparison of classification accuracies of ML approaches.
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shadow effect. Trees or high mountains, especially forest 
road is located in valleys, causes shadowing of the surface 
resulting misclassification of SMTs. Or sun lights can make 
some pixels brightener than actual situation which can be 
reason of misclassification of SMTs. Also, spatial resolution 
of output ortomosaic image depends on the flight altitude. 
However, in mapping of SMTs, coarser spatial resolutions 
by 10-15 centimeters could be acceptable, even though 
new sensors allow to get higher resolutions (2-3 cm). To 
overcome such limitations, manual UAV flights can be 
carried out for mapping SMTs. Also, terrestrial or close-
range photogrammetric systems, that were proposed by 
Eker (2023) and Türk et al. (2024) can be used. As Eker (2023) 
stated, close-range photogrammetric system could be the 
best option in eliminating shadow and/or brightness effects 
since images are taken at lower altitudes. Terrestrial or 
close-range photogrammetric systems can produce images 
with higher spatial resolution. Therefore, Soil, Loose, and 
Rocky classes can be more clearly distinguished from the 
images. However, the spatial resolution of the orthomosaic 
in this study is 2.94 cm, which allows for the identification 
of SMTs on forest roads, and thus does not present a 
disadvantage. If the spatial resolution of the orthomosaic 
were in millimeters (mm), higher accuracy results could be 
determined using the classification methods used.

In addition, another UAV system carrying a multi-
spectral sensor (including NIR, SWIR bands) should 
be tested. Because Abidin and Ariff (2023) states that 
using multispectral UAV system increase the accuracy 
of classification in detecting detection of road defects. 
Besides, spectral signs should be collected by using 
spectroradiometer to increase confidence of classification. 
Herold et al. (2008) and Kavzoğlu et al. (2009) used a 
spectrometer to determine of spectral characteristics of a 
selected road surface. A similar approach could be applied 
to map SMTs for forest roads. In this study, a quick and 
simple application was carried out by using RGB images. 
When compared to traditional in-situ measurements in 
Turkish forestry, the current application provided more 
accurate and reliable results for forestry authorities. 

The detection of SMTs on cut slopes is determined 
using drone images and is also crucial for recovery efforts 
to be conducted after forest road construction. This is 
emphasized by the research conducted by Hosogi et al. 
(2006), which highlights the importance of parameters 
such as SMTs, slope, and aspect in revegetation efforts on 
cut slopes. In this study, SMTs were detected from drone 
images, and environmental parameters such as slope and 
aspect can also be generated from these images for the cut 
slope. Therefore, the use of drone images is advantageous. 
Additionally, research by Hernando and Romana (2015), Al-
Bared et al. (2019), Solgi et al. (2021), Navarro-Hevia et al. 
(2016), Li et al. (2020), and Liu et al. (2019) indicates that 
soil erosion can occur if recovery efforts are not conducted 
on cut slopes. These studies emphasize the importance of 
detecting SMTs on cut slopes and note that soil erosion 
occurs as a result of rainfall. Therefore, detecting SMTs 
on cut slopes is crucial for preventing soil erosion and 
implementing necessary measures.

CONCLUSIONS

Forest roads contribute significantly to the 
country’s economy by enabling the inventorying of 
forests. In addition, they provide access to rehabilitation 
areas for people, resulting in social benefits. 
Forest roads play a facilitating role in supporting 
individuals’ physical and mental health by providing 
access to forests In addition, by facilitating access to 
educational and cultural activities, they make significant 
contributions to the cultural services part of ecosystem 
services for society. Besides the benefits of forest 
roads, there are also construction costs involved and 
the distributions of soil, loose soil and rocky areas in 
cut slopes are determined to identify these costs. In-
situ measurements are conducted to determine the 
distributions of soil, loose soil and rocky areas. In-situ 
measurements in field studies can be time-consuming 
and increase costs. In this study, soil, loose soil, and 
rocky areas in cut slopes were classified using drone 
images with ML algorithms such as RF and SVM. The 
soil, loose soil, and rocky areas detected by RF and SVM 
were compared with in-situ measurements. RF provided 
the highest accuracy in the classified drone images, 
particularly in the detection of soil and rocky areas. It 
is possible to detect soil and rocky areas in cut slopes 
using SVM as well. However, it can be said that both ML 
algorithms used in classification are not as successful in 
detecting loose soil areas as they are in detecting soil 
and rocky areas. Loose soil detection in drone images 
can be improved with field studies. Therefore, it is 
essential to collect more training data with GPS during 
field studies for the loose soil class. This study indicates 
that drone images can be used to detect soil and rocky 
areas in cut slopes but RF one of the ML classification 
methods, is more suitable for detecting loose soil 
areas. This study suggests that using drone images for 
classification can reduce the time spent in field studies 
and make it possible to determine the construction 
costs of forest roads. In addition, the importance of 
detecting SMTs on cut slopes for recovery efforts after 
forest road construction has also been emphasized.

AUTHORSHIP CONTRIBUTION

Project Idea: TÇ, YT
Funding: TÇ, YT, AA, RE
Database: YT, AA, RE
Processing: TÇ, YT, AA, RE
Analysis: TÇ
Writing: TÇ, YT, AA, RE
Review: TÇ, YT, AA, RE

DATA AVAILABILITY

The datasets supporting the conclusions are 
included in the article.



11

Çınar et al.

CERNE (2025) 31: e-103563

REFERENCES

ABİDİN, M. S. Z.; ARİFF, M. F. M. UAV Photogrammetry for road defects 
mapping. Journal of Advanced Geospatial Science Technology, v. 3, n.1, 
p.1-14, 2023. https://doi.org/10.11113/jagst.v3n1.58

AÇIL, A.; AYDIN, A.; EKER, R.; DUYAR, A.  Use of UAV data and HEC-RAS 
model for dimensioning of hydraulic structures on forest roads. Croatian 
Journal of Forest Engineering. Journal for Theory and Application of 
Forestry Engineering, v. 44, n.1, p. 171-188, 2023. https://doi.org/10.5552/
crojfe.2023.1701

AGAPİOU, A. Remote sensing heritage in a petabyte-scale: Satellite data 
and heritage Earth Engine applications. International journal of digital 
earth, v.10, n.1, p. 85-102, 2017. https://doi.org/10.1080/17538947.2016
.1250829

AKAY, A. O.; AKGUL, M.; DEMİR, M. Determination of temporal changes 
on forest road pavement with terrestrial laser scanner. Fresenius 
Environmental Bulletin, v. 27, n.3, p.1437-1448, 2018.

AKGUL, M.; AKBURAK, S.; YURTSEVEN, H.; et al. Potential impacts of weather 
and traffic conditions on road surface performance in terms of forest 
operations continuity. Applied Ecology and Environmental Research, v.17, 
n.2, p. 2533-2550, 2019. http://dx.doi.org/10.15666/aeer/1702_25332550

AKGUL, M.; YURTSEVEN, H.; AKBURAK, S.; et al. Short term monitoring 
of forest road pavement degradation using terrestrial laser 
scanning. Measurement, v. 103, p. 283-293 https://doi.org/10.1016/j.
measurement.2017.02.045, 2017.

AL-BARED, M. A. M.; HARAHAP, I. S. H.; MARTO, A.; et al. Stability of cut 
slope and degradation of rock slope forming materials–a review. Malaysian 
Construction Research Journal, v. 6, n. 1, p. 215-228, 2019. https://www.
scopus.com/inward/record.uri?eid=2-s2.0-85077391214&partnerID=40&
md5=4d3cb2a7c6e07064ebe154d4b2509731

AL-JAWHAR, H. D.; REZOUKI, S. E. Identifying appropriate procurement 
systems in the construction industry in Iraq using procurement systems 
judgment method. Applied Mechanics and Materials, v. 357-360, p. 
2885-2889, 2013. https://doi.org/10.4028/www.scientific.net/AMM.357-
360.2885

ALLAMANIS, M.; BARR, E. T.; DEVANBU, P.; et al. A survey of machine 
learning for big code and naturalness. ACM Computing Surveys (CSUR), v. 
51, n. 4, p. 1-37, 2018. https://doi.org/10.1145/3212695

AMEDE, E. A relationship between productivity and significant controlling 
factors of highway construction earthwork. Cogent Engineering, v. 9, n. 1, 
2114203, 2022. https://doi.org/10.1080/23311916.2022.2114203

BERENJI TEHRANI, F.; MAJNOUNIAN, B.; ABDI, E.; et al. Impacts of forest 
road on plant species diversity in a Hyrcanian Forest, Iran. Croatian 
Journal of Forest Engineering, v. 36, n. 1, p. 63-71, 2015. https://hrcak.
srce.hr/136129

BICICI, S.; ZEYBEK, M. Effectiveness of training sample and features 
for random forest on road extraction from UAV-based point cloud. 
Transportation Research Record, v. 2675, n. 12, p. 401–418, 2021. https://
doi.org/10.1177/03611981211029645

BREIMAN, L. Random forests. Machine Learning, v. 45, n. 1, p. 5–32, 2001. 
https://doi.org/10.1023/A:1010933404324

BRUZZONE, L.; BOVOLO, F. A novel framework for the design of change-
detection systems for very-high-resolution remote sensing images. IEEE, v. 
101, n. 3, p. 609–630, 2012. doi: 10.1109/JPROC.2012.2197169

BUGDAY, E. Capabilities of using UAVs in forest road construction activities. 
European Journal of Forest Engineering, v. 4, n. 2, p. 56–62, 2018. https://
doi.org/10.33904/ejfe.499784

CHANDRA, M. A.; BEDI, S. S. Survey on SVM and their application in image 
classification. International Journal of Information Technology, v. 13, n. 5, 
p. 1–11, 2021. https://doi.org/10.1007/s41870-017-0080-1

CHENG, B.; JI, H.; WANG, Y. A new method for constructing roads map in 
forest area using UAV images. Journal of Computational Methods in Sciences 
and Engineering, p. 1–15, 2023. https://doi.org/10.3233/JCM-226621.

CHONPATATHIP, S.; SUANPAGA, W.; MUTTITANON, W. Earthwork volume 
measurement in road construction using unmanned aerial vehicle (UAV). 
International Journal of Geoinformatics, v. 19, n. 12, p. 51–64, 2023. https://
doi.org/10.52939/ijg.v19i12.2977

CIRITCIOGLU, M. G.; BUGDAY, E. Assessment of unmanned aerial vehicle 
use opportunities in forest road project (Düzce sample). Journal of Bartin 
Faculty of Forestry, v. 24, n. 2, p. 247–257, 2022. https://doi.org/10.24011/
barofd.1066636

CONTRERAS, M.; ARACENA, P.; CHUNG, W. Improving accuracy in 
earthwork volume estimation for proposed forest roads using a high-
resolution digital elevation model. Croatian Journal of Forest Engineering, 
v. 33, n. 1, p. 125–142, 2012.

DIAZ-VILARINO, L.; GONZALEZ-JORGE, H.; MARTINEZ-SANCHEZ, J.; et 
al. Determining the limits of unmanned aerial photogrammetry for the 
evaluation of road runoff. Measurement, v. 85, p. 132–141, 2016. https://
doi.org/10.1016/j.measurement.2016.02.030 

DOBSON, R. J.; BROOKS, C.; ROUSSİ, C.; COLLİNG, T. Developing an 
unpaved road assessment system for practical deployment with high-
resolution optical data collection using a helicopter UAV. In International 
Conference on Unmanned Aircraft Systems (ICUAS), p. 235-243, 2013. doi: 
10.1109/ICUAS.2013.6564695.

DOLI, A.; BAMWESIGYE, D.; HLAVACKOVA, P.; et al. Forest park visitors’ 
opinions and willingness to pay for sustainable development of the 
Germia Forest and Recreational Park. Sustainability, v. 13, n. 6, p. 3160, 
2021. https://doi.org/10.3390/su13063160

EKER, R. Comparative use of PPK-integrated close-range terrestrial 
photogrammetry and a handheld mobile laser scanner in the measurement 
of forest road surface deformation. Measurement, v. 206, p. 112332, 2023. 
https://doi.org/10.1016/j.measurement.2022.112322

EKER, R.; ALKIS, K. C.; UCAR, Z.; et al. Using machine learning in forestry. 
Turkish Journal of Forestry, v. 24, n. 2, p. 150–177, 2023.

EKER, R.; AYDIN, A. Assessment of forest road conditions in terms of 
landslide susceptibility: a case study in Yığılca Forest Directorate (Turkey). 
Turkish Journal of Agriculture and Forestry, v. 38, n. 2, p. 281–290, 2014.

ESTEBAN, J.; MCROBERTS, R. E.; FERNANDEZ-LANDA, A.; et al. Estimating 
forest volume and biomass and their changes using random forests and 
remotely sensed data. Remote Sensing, v. 11, n. 16, 1944, 2019.

FAN, C. L. Ground surface structure classification using UAV remote 
sensing images and machine learning algorithms. Applied Geomatics, v. 
15, n. 4, p. 919–931, 2023.

FARAGALLAH, R. N.; RAGHEB, R. A. Evaluation of thermal comfort and urban 
heat island through cool paving materials using ENVI-Met. Ain Shams 
Engineering Journal, v. 13, n. 3, 101609, 2022. https://doi.org/10.1016/j.
asej.2021.10.00

FARHADI, H.; NAJAFZADEH, M. Flood risk mapping by remote sensing data 
and random forest technique. Water, v. 13, n. 21, 3115, 2021.

FENG, Q.; LIU, J.; GONG, J. Urban flood mapping based on unmanned 
aerial vehicle remote sensing and random forest classifier — A case of 
Yuyao China. Water, v. 7, n. 4, p. 1437–1455, 2015. https://doi.org/10.3390/
w7041437

FIDELUS-ORZECHOWSKA, J.; WALDYKOWSKI, P.; CHROBAK-ZUFFOVA, 
A.; et al. Erosion rates for forest roads in the Gorce and Western Tatra 
Mountains in Southern Poland. Earth Surface Processes and Landforms, v. 
50, n. 1, e70001, 2025. https://doi.org/10.1002/esp.70001

FOODY, G. M.; MATHUR, A. Toward intelligent training of supervised image 
classifications: Directing training data acquisition for SVM classification. 
Remote Sens. Environ, 93, pp. 107–117, 2004. https://doi.org/10.1016/j.
rse.2004.06.017

GDF. Forest roads planning, construction and maintenance. https://www.
ogm.gov.tr/tr/e-kutuphane-sitesi/mevzuat-sitesi/Tebligler/Orman%20
Yollar%C4%B1%20Planlamas%C4%B1,%20Yap%C4%B1m%C4%B1%20
ve%20Bak%C4%B1m%C4%B1%20(292%20Say%C4%B1l%C4%B1%20
Tebli%C4%9F).pdf. Accessed in: 26.12.2024.

https://doi.org/10.1177/03611981211029645
https://doi.org/10.1177/03611981211029645
https://doi.org/10.52939/ijg.v19i12.2977
https://doi.org/10.52939/ijg.v19i12.2977
https://doi.org/10.52939/ijg.v19i12.2977
https://doi.org/10.3390/su13063160
https://doi.org/10.3390/su13063160
https://doi.org/10.1016/j.asej.2021.10.00
https://doi.org/10.1016/j.asej.2021.10.00
https://doi.org/10.1016/j.asej.2021.10.00
https://doi.org/10.1002/esp.70001
https://doi.org/10.1002/esp.70001
https://www.ogm.gov.tr/tr/e-kutuphane-sitesi/mevzuat-sitesi/Tebligler/Orman%20Yollar%C4%B1%20Planlamas%C4%B1,%20Yap%C4%B1m%C4%B1%20ve%20Bak%C4%B1m%C4%B1%20(292%20Say%C4%B1l%C4%B1%20Tebli%C4%9F).pdf
https://www.ogm.gov.tr/tr/e-kutuphane-sitesi/mevzuat-sitesi/Tebligler/Orman%20Yollar%C4%B1%20Planlamas%C4%B1,%20Yap%C4%B1m%C4%B1%20ve%20Bak%C4%B1m%C4%B1%20(292%20Say%C4%B1l%C4%B1%20Tebli%C4%9F).pdf
https://www.ogm.gov.tr/tr/e-kutuphane-sitesi/mevzuat-sitesi/Tebligler/Orman%20Yollar%C4%B1%20Planlamas%C4%B1,%20Yap%C4%B1m%C4%B1%20ve%20Bak%C4%B1m%C4%B1%20(292%20Say%C4%B1l%C4%B1%20Tebli%C4%9F).pdf
https://www.ogm.gov.tr/tr/e-kutuphane-sitesi/mevzuat-sitesi/Tebligler/Orman%20Yollar%C4%B1%20Planlamas%C4%B1,%20Yap%C4%B1m%C4%B1%20ve%20Bak%C4%B1m%C4%B1%20(292%20Say%C4%B1l%C4%B1%20Tebli%C4%9F).pdf
https://www.ogm.gov.tr/tr/e-kutuphane-sitesi/mevzuat-sitesi/Tebligler/Orman%20Yollar%C4%B1%20Planlamas%C4%B1,%20Yap%C4%B1m%C4%B1%20ve%20Bak%C4%B1m%C4%B1%20(292%20Say%C4%B1l%C4%B1%20Tebli%C4%9F).pdf


Çınar et al.

12 CERNE (2025) 31: e-103563

GISLASON, P. O.; BENEDIKTSSON, J. A.; SVEINSSON, J. R. Random forests 
for land cover classification. Pattern Recognition Letters, v. 27, n. 4, p. 
294–300, 2006.

GOVENDER, T.; DUBE, T.; SHOKO, C. Remote sensing of land use–land cover 
change and climate variability on hydrological processes in Sub-Saharan 
Africa: Key scientific strides and challenges. Geocarto International, v. 37, 
n. 25, p. 10925–10949, 2022.

GU, X.; HUANG, M.; QIAN, J. DEM investigation on the evolution of 
microstructure in granular soils under shearing. Granular Matter, v. 16, n. 
1, p. 91–106, 2014.

GUO, Q.; WU, W. Application of parameter optimization methods based 
on Kalman formula to the soil-crop system model. International Journal 
of Environmental Research and Public Health, v. 20, n. 5, p. 4567, 2023.

GWET, K. Kappa statistic is not satisfactory for assessing the extent of 
agreement between raters. Statistical Methods for Inter-Rater Reliability 
Assessment, v. 1, n. 6, p. 1–6, 2002.

HASEGAWA, H.; SUJASWARA, A. A.; KANEMOTO, T.; et al. Possibilities of 
using UAV for estimating earthwork volumes during process of repairing a 
small-scale forest road, Kyoto Prefecture, Japan. Forests, v. 14, n. 4, p. 677, 
2023. https://doi.org/10.3390/f14040677

HERNANDO, D.; ROMANA, M. G. Development of a soil erosion classification 
system for cut and fill slopes. Transportation Infrastructure Geotechnology, 
v. 2, p. 155–166, 2015. https://doi.org/10.1007/s40515-015-0024-9

HEROLD, M.; ROBERTS, D.; NORONHA, V.; SMADI, O. Imaging spectrometry and 
asphalt road surveys. Transportation Research Part C: Emerging Technologies, 
v. 16, n. 2, p. 153–166, 2008. https://doi.org/10.1016/j.trc.2007.07.001

HOLLOWAY, J.; MENGERSEN, K. Statistical machine learning methods and 
remote sensing for sustainable development goals: A review. Remote 
Sensing, v. 10, n. 9, p. 1365, 2018. https://doi.org/10.3390/rs10091365

HOSOGI, D.; YOSHINAGA, C.; NAKAMURA, K.; et al. Revegetation of an 
artificial cut-slope by seeds dispersed from the surrounding vegetation. 
Landscape and Ecological Engineering, v. 2, p. 53–63, 2006. https://doi.
org/10.1007/s11355-005-0024-y

HOSSEINALIZADEH, M.; KARIMINEJAD, N.; CHEN, W.; et al. Gully headcut 
susceptibility modeling using functional trees, naïve Bayes tree, and 
random forest models. Geoderma, v. 342, p. 1–11, 2019. https://doi.
org/10.1016/j.geoderma.2019.01.050

HOSSEINI, S. A.; KHALILPOUR, H.; NEJAD, A. M.; et al. Comparing the 
expenses of forest road cut and fill operations with standard rules (Study 
Area: Northern Forests of Iran). European Journal of Experimental Biology, 
v. 2, n. 4, p. 1023–1028, 2012.

HRUZA, P.; MIKITA, T.; JANATA, P. Monitoring of forest hauling roads 
wearing course damage using unmanned aerial systems. Acta Universitatis 
Agriculturae et Silviculturae Mendelianae Brunensis, 2016. http://dx.doi.
org/10.11118/actaun201664051537

ISHWARAN, H.; KOGALUR, U. B. Random survival forests for R. R News, v. 
7, n. 2, p. 25–31, 2007.

JEONG, E.; CHO, M.; CHO, H.; et al. Characteristics of forest road cut slopes 
affecting the movement of mammals in South Korea. Forest Science and 
Technology, v. 17, n. 3, p. 155–161, 2021. https://doi.org/10.1080/215801
03.2021.1967789

KAVZOGLU, T.; SEN, Y. E.; CETIN, M. Mapping urban road infrastructure 
using remotely sensed images. International Journal of Remote Sensing, v. 
30, n. 7, p. 1759–1769, 2009. https://doi.org/10.1080/01431160802639582

KHOIROM, S.; SONIA, M.; LAIKHURAM, B.; et al. Comparative analysis 
of Python and Java for beginners. International Research Journal of 
Engineering and Technology, v. 7, n. 8, p. 4384–4407, 2020.

KINALI, M.; CALISKAN, E. Use of unmanned aerial vehicles in forest road 
projects. Journal of Bartin Faculty of Forestry, v. 24, n. 3, p. 530–541, 2022.

KREMIC, E.; SUBASI, A. Performance of random forest and SVM in face 
recognition. International Arab Journal of Information Technology, v. 13, 
n. 2, p. 287–293, 2016.

KUMAR, M.; SINGH, P.; SINGH, P. Machine learning and GIS-RS-based 
algorithms for mapping groundwater potentiality in the Bundelkhand 
Region, India. Ecological Informatics, v. 74, p. 101980, 2023. https://doi.
org/10.1016/j.ecoinf.2023.101980

LARY, D. J.; ALAVI, A. H.; GANDOMI, A. H.; et al. Machine learning in geosciences 
and remote sensing. Geoscience Frontiers, v. 7, n. 1, p. 3–10, 2016.

LASCHI, A.; FODERI, C.; FABIANO, F.; et al. Forest road planning, construction 
and maintenance to improve forest fire fighting: a review. Croatian Journal 
of Forest Engineering, v. 40, n. 1, p. 207–219, 2019.

LEHTO, C.; SIREN, A.; HEDBLOM, M.; et al. A conceptual framework of 
indicators for the suitability of forests for outdoor recreation. Ambio, v. 54, 
n. 2, p. 184–197, 2025.

LEMENKOVA, P.; DEBEIR, O. R libraries for remote sensing data classification 
by k-means clustering and NDVI computation in Congo River Basin, DRC. 
Applied Sciences, v. 12, n. 24, p. 12554, 2022. https://doi.org/10.3390/
app122412554

LI, L.; LAN, H.; PENG, J. Loess erosion patterns on a cut-slope revealed by 
LiDAR scanning. Engineering Geology, v. 268, 105516, 2020. https://doi.
org/10.1016/j.enggeo.2020.105516

LI, Y.; HUANG, X.; LIU, H. Unsupervised deep feature learning for urban village 
detection from high-resolution remote sensing images. Photogrammetric 
Engineering and Remote Sensing, v. 83, n. 8, p. 567–579, 2017.

LIAO, W.; CHANUSSOT, J.; DALLA MURA, M.; et al. Taking optimal advantage 
of fine spatial resolution: promoting partial image reconstruction for the 
morphological analysis of very-high-resolution images. IEEE Geoscience 
and Remote Sensing Magazine, v. 5, n. 2, p. 8–28, 2017

LIAW, A.; WIENER, M. Classification and regression by random forest. R 
News, v. 2, p. 18–22, 2002.

LIU, G.; HU, F.; ZHENG, F.; et al. Effects and mechanisms of erosion control 
techniques on stairstep cut-slopes. Science of the Total Environment, v. 
656, p. 307-315, 2019. https://doi.org/10.1016/j.scitotenv.2018.11.385 

MATHUR, A.; FOODY, G. M. Multiclass and binary SVM classification: 
implications for training and classification users. IEEE Geoscience and 
Remote Sensing Letters, v. 5, n. 2, p. 241–245, 2008.

MELLOR, A.; HAYWOOD, A.; STONE, C.; et al. The performance of 
random forests in an operational setting for large-area sclerophyll forest 
classification. Remote Sensing, v. 5, n. 6, p. 2838–2856, 2013.

NAVARRO-HEVIA, J.; LIMA-FARIAS, T. R.; DE ARAUJO, J. C.; et al. Soil 
erosion in steep road cut slopes in Palencia (Spain). Land Degradation and 
Development, v. 27, n. 2, p. 190–199, 2016

OANCEA, B.; DRAGOESCU, R. M. Integrating R and hadoop for big data 
analysis. Revista Română de Statistică, v. 2, 83-91, 2014.

PAL, M. Ensemble of support vector machines for land cover classification. 
International Journal of Remote Sensing, v. 29, n. 10, p. 3043–3049, 2008.

PAL, M. Random forest classifier for remote sensing classification. 
International Journal of Remote Sensing, v. 26, n. 1, p. 217–222, 2005.

PARK, S.; KIM, J. H.; BYUN, C.; et al. Identification of restoration species 
for early roadcut slope regeneration using functional group approach. 
Restoration Ecology, v. 29, n. 7, e13424, 2021.

PARSAKHOO, A.; HOSSEINI, S. A. Effect of bioengineering treatments on 
reduction of soil erosion from road cut slope and fill slope. Journal of Forest 
Science, v. 69, n. 9, p. 367–376, 2023. https://doi.org/10.17221/55/2023-JFS

POONA, N. K.; VAN NIEKERK, A.; NADEL, R. L.; ISMAIL, R. Random forest 
(RF) wrappers for waveband selection and classification of hyperspectral 
data. Applied Spectroscopy, v. 70, n. 2, p. 322–333, 2016.

SABAT-TOMALA, A.; RACZKO, E.; ZAGAJEWSKI, B. Comparison of support 
vector machine and random forest algorithms for invasive and expansive 
species classification using airborne hyperspectral data. Remote Sensing, v. 
12, n. 3, 516, 2020.

SANCHEZ-HERNANDEZ, C.; BOYD, D. S.; FOODY, G. M. Mapping specific 
habitats from remotely sensed imagery: support vector machine and 
support vector data description-based classification of coastal saltmarsh 
habitats. Ecological Informatics, v. 2, n. 2, p. 83–88, 2007.

https://doi.org/10.3390/f14040677
https://doi.org/10.3390/f14040677
https://doi.org/10.1007/s40515-015-0024-9
https://doi.org/10.1007/s40515-015-0024-9
https://doi.org/10.1007/s11355-005-0024-y
https://doi.org/10.1007/s11355-005-0024-y
https://doi.org/10.1007/s11355-005-0024-y
https://doi.org/10.1016/j.geoderma.2019.01.050
https://doi.org/10.1016/j.geoderma.2019.01.050
https://doi.org/10.1016/j.geoderma.2019.01.050
http://dx.doi.org/10.11118/actaun201664051537
http://dx.doi.org/10.11118/actaun201664051537
http://dx.doi.org/10.11118/actaun201664051537
https://doi.org/10.1016/j.ecoinf.2023.101980
https://doi.org/10.1016/j.ecoinf.2023.101980
https://doi.org/10.1016/j.ecoinf.2023.101980
https://doi.org/10.3390/app122412554
https://doi.org/10.3390/app122412554
https://doi.org/10.3390/app122412554
https://doi.org/10.1016/j.enggeo.2020.105516
https://doi.org/10.1016/j.enggeo.2020.105516
https://doi.org/10.17221/55/2023-JFS
https://doi.org/10.17221/55/2023-JFS


13

Çınar et al.

CERNE (2025) 31: e-103563

SCHULZ, K.; HÄNSCH, R.; SÖRGEL, U. Machine learning methods for remote 
sensing applications: an overview. Earth Resources and Environmental Remote 
Sensing/GIS Applications IX, 2018. https://doi.org/10.1117/12.2503653

SHAMSHİRİ, R. R.; HAMEED, I. A.; PİTONAKOVA, L.; WELTZİEN, C.; 
BALASUNDRAM, S, K.; YULE, I, J. et al. Simulation software and virtual 
environments for acceleration of agricultural robotics: Features highlights and 
performance comparison. International Journal of Agricultural and Biological 
Engineering, 11(4), 15-31, 2018.

SHEYKHMOUSA, M.; MAHDİANPARİ, M.; GHANBARİ, H.; MOHAMMADİMANESH, 
F.; GHAMİSİ, P.; HOMAYOUNİ, S. Support vector machine versus random forest 
for remote sensing image classification: A meta-analysis and systematic review. 
IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, 13, 6308-6325, 2020.

SHİ, D.; YANG, X. Support vector machines for land cover mapping from 
remote sensor imagery. Monitoring and Modeling of Global Changes. A 
Geomatics Perspective, 265-279, 2015.

SHAMSHIRI, R. R.; HAMEED, I. A.; PITONAKOVA, L.; et al. Simulation 
software and virtual environments for acceleration of agricultural robotics: 
features, highlights and performance comparison. International Journal of 
Agricultural and Biological Engineering, v. 11, n. 4, p. 15–31, 2018.

SHEYKHMOUSA, M.; MAHDIANPARI, M.; GHANBARI, H.; et al. Support 
vector machine versus random forest for remote sensing image 
classification: a meta-analysis and systematic review. IEEE Journal of 
Selected Topics in Applied Earth Observations and Remote Sensing, v. 13, 
p. 6308–6325, 2020.

SHI, D.; YANG, X. Support vector machines for land cover mapping from 
remote sensor imagery. Monitoring and Modeling of Global Changes: A 
Geomatics Perspective, p. 265–279, 2015.

SHIRMARD, H.; FARAHBAKHSH, E.; MÜLLER, R. D.; CHANDRA, R. A review 
of machine learning in processing remote sensing data for mineral 
exploration. Remote Sensing of Environment, v. 268, 112750, 2022. https://
doi.org/10.1016/j.rse.2021.112750

SHIVAKUMAR, B. R.; RAJASHEKARARADHYA, S. V. An investigation on land cover 
mapping capability of classical and fuzzy-based maximum likelihood classifiers. 
International Journal of Engineering Technology, v. 7, n. 2, p. 939, 2018.

SIM, J.; WRIGHT, C. C. The kappa statistic in reliability studies: use, 
interpretation, and sample size requirements. Physical Therapy, v. 85, n. 
3, p. 257–268, 2005.

SOLGI, A.; NAGHDI, R.; ZENNER, E. K.; et al. Evaluating the effectiveness 
of mulching for reducing soil erosion in cut slope and fill slope of forest 
roads in Hyrcanian Forests. Croatian Journal of Forest Engineering, v. 42, 
n. 2, p. 259–268, 2021.

SONOBE, R.; YAMAYA, Y.; TANI, H.; et al. Assessing the suitability of data 
from Sentinel-1A and 2A for crop classification. GIScience and Remote 
Sensing, v. 54, n. 6, p. 918–938, 2017.

TAMIMINIA, H.; SALEHI, B.; MAHDIANPARI, M.; et al. Google Earth Engine 
for geo-big data applications: a meta-analysis and systematic review. ISPRS 
Journal of Photogrammetry and Remote Sensing, v. 164, p. 152–170, 2020.

TAMPEKIS, S.; SAMARA, F.; SAKELLARIOU, S.; et al. An eco-efficient and 
economical optimum evaluation technique for forest road networks: 
the case of the mountainous forest of Metsovo, Greece. Environmental 
Monitoring and Assessment, v. 190, p. 1–15, 2018.

TANG, L.; SHAO, G. Drone remote sensing for forestry research and 
practices. Journal of Forestry Research, v. 26, p. 791–797, 2015.

TARAZONA, Y.; BENITEZ-PAEZ, F.; NOWOSAD, J.; et al. Scikit-eo: a Python 
package for remote sensing data analysis. Journal of Open Source 
Software, v. 9, n. 99, 6692, 2024. https://doi.org/10.21105/joss.06692

THANH NOI, P.; KAPPAS, M. Comparison of random forest, k-nearest 
neighbor, and support vector machine classifiers for land cover 
classification using Sentinel-2 imagery. Sensors, v. 18, n. 1, p. 18, 2017.

TÜRK, Y.; AYDIN, A.; EKER, R. Effectiveness of open-top culverts in forest 
road deformations: preliminary results from a forest road section, Düzce-
Turkey. In: Proceedings of the 2nd International Symposium of Forest 
Engineering and Technologies, p. 147–152, 2019b.

TÜRK, Y.; AYDIN, A.; EKER, R. Comparison of autonomous and manual UAV 
flights in determining forest road surface deformations. European Journal 
of Forest Engineering, v. 8, n. 2, p. 77–84, 2022b.

TÜRK, Y.; BOZ, F.; AYDIN, A.; et al. Evaluation of UAV usage possibility in 
determining forest road pavement degradation: preliminary results. In: 
Proceedings of the 3rd International Engineering Research Symposium, 
p. 630–633, 2019a.

TÜRK, Y.; CANYURT, H. Capabilities of using UAVs to determine forest road 
excavation volumes in mountainous areas. Sumarski List, v. 148, n. 3–4, p. 
137–150, 2024.

TÜRK, Y.; CANYURT, H.; EKER, R.; et al. Determination of forest road cut 
and fill volumes using unmanned aerial vehicles: a case study in the 
Bolu-Taşlıyayla. Turkish Journal of Forestry Research, 2022a. https://doi.
org/10.17568/ogmoad.1093695

TÜRK, Y.; ÖZÇELIK, V.; AKDUMAN, E. Capabilities of using UAVs and close-
range photogrammetry to determine short-term soil losses in forest road 
cut slopes in semi-arid mountainous areas. Environmental Monitoring and 
Assessment, v. 196, n. 1, 149, 2024. https://doi.org/10.1007/s10661-024-
12339-1

VAPNIK, V. N. The nature of statistical learning theory. Springer, Berlin, 
1995.

WALDNER, F.; CANTO, G. S.; DEFOURNY, P. Automated annual cropland 
mapping using knowledge-based temporal features. ISPRS Journal of 
Photogrammetry and Remote Sensing, v. 110, p. 1–13, 2015.

WANG, J.; SUN, K.; CHENG, T.; et al. Deep high-resolution representation 
learning for visual recognition. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, v. 43, n. 10, p. 3349–3364, 2020.

WANG, Q.; WANG, X.; ZHOU, Y.; et al. The dominant factors and influence 
of urban characteristics on land surface temperature using random forest 
algorithm. Sustainable Cities and Society, v. 79, 103722, 2022. https://doi.
org/10.1016/j.scs.2022.103722

WUEST, T.; WEIMER, D.; IRGENS, C.; et al. Machine learning in manufacturing: 
advantages, challenges, and applications. Production & Manufacturing 
Research, v. 4, n. 1, p. 23–45, 2016.

XING, E. P.; HO, Q.; XIE, P.; et al. Strategies and principles of distributed 
machine learning on big data. Engineering, v. 2, n. 2, p. 179–195, 2016.

XIONG, J.; LIN, C.; CAO, Z.; et al. Development of remote sensing algorithm 
for total phosphorus concentration in eutrophic lakes: conventional or 
machine learning? Water Research, v. 215, 118213, 2022. https://doi.
org/10.1016/j.watres.2022.118213

XIE, Y.; SHA, Z.; YU, M. Remote sensing imagery in vegetation mapping: a 
review. Journal of Plant Ecology, v. 1, n. 1, p. 9–23, 2008.

YU, J.; ZHAO, Q.; YU, Z.; et al. A review of the sediment production and 
transport processes of forest road erosion. Forests, v. 15, n. 3, 454, 2024. 
https://doi.org/10.3390/f15030454

ZHANG, C.; LIU, C.; ZHANG, X.; et al. An up-to-date comparison of state-
of-the-art classification algorithms. Expert Systems with Applications, v. 
82, p. 128–150, 2017.

ZHANG, L.; ZHANG, L.; DU, B. Deep learning for remote sensing data: a 
technical tutorial on the state of the art. IEEE Geoscience and Remote 
Sensing Magazine, v. 4, n. 2, p. 22–40, 2016.

ZHAO, Z.; LIU, Z. Y.; XU, C. Slope unit-based landslide susceptibility 
mapping using certainty factor, support vector machine, random 
forest, CF-SVM and CF-RF models. Frontiers in Earth Science, v. 9, 
589630, 2021.

ZHENG, B.; MYINT, S. W.; THENKABAIL, P. S.; et al. A support vector machine 
to identify irrigated crop types using time-series Landsat NDVI data. 
International Journal of Applied Earth Observation and Geoinformation, 
v. 34, p. 103–112, 2015.

ZHOU, R.; YANG, C.; LI, E.; et al. Object-based wetland vegetation 
classification using multi-feature selection of unoccupied aerial vehicle 
RGB imagery. Remote Sensing, v. 13, n. 23, 4910, 2021.

https://doi.org/10.1117/12.2503653
https://doi.org/10.1117/12.2503653
https://doi.org/10.21105/joss.06692
https://doi.org/10.21105/joss.06692
https://doi.org/10.1007/s10661-024-12339-1
https://doi.org/10.1007/s10661-024-12339-1
https://doi.org/10.1007/s10661-024-12339-1
https://doi.org/10.1016/j.scs.2022.103722
https://doi.org/10.1016/j.scs.2022.103722
https://doi.org/10.1016/j.scs.2022.103722
https://doi.org/10.1016/j.watres.2022.118213
https://doi.org/10.1016/j.watres.2022.118213
https://doi.org/10.1016/j.watres.2022.118213
https://doi.org/10.3390/f15030454
https://doi.org/10.3390/f15030454

	_heading=h.1spkgoivr4cd
	_heading=h.h1khq5uhswrg
	_heading=h.1dnqfrc3l0ta
	_heading=h.pkxwm5p6h8k0
	_heading=h.8e471rzgob9w
	_heading=h.8ozavkxwj5m7
	_heading=h.xs0ib3kz084i
	_heading=h.xpmqp2lbxslj
	_heading=h.riii3s5lm6zu
	MTBlankEqn
	_heading=h.1vvsusgutiyv
	_heading=h.ctdaenun7ebw
	_heading=h.ynqzexri7ltm
	_heading=h.n094hx3swxv4
	_heading=h.w8gxolhis7eo

