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ABSTRACT

Backgrounds: Research on how obtaining basic variables from the forest inventory supports the 
accurate estimation of planted forest production. Therefore, this work aimed to select the best 
modeling method for estimating the heights of trees in a Schizolobium parahyba forest and livestock 
integration system in the countryside of Pará state, Brazil; hence it was established to compare specific 
and general regression equations for the different management types, and to analyze whether there 
is a gain in precision with the increased complexity of the regression models and artificial neural 
networks (ANNs). Three hypsometric regression models were tested: Curtis, Stoffels & Van Soest, 
and Petterson, using linear, mixed, nonlinear, and covariate models. The ANNs were of the Multilayer 
Perceptron type with one and two variables in the input layer.

Results: The linear Stoffels & Van Soest hypsometric models showed the best regression adjustment, 
followed by the Curtis model. The linear and nonlinear regression models performed similarly; hence, 
the linear ones were more efficient based on their simplicity of adjustment. The specific equations 
performed better than the general equation except for stratum II. The artificial neural networks with 
two input variables resulted in better estimates of tree heights.

Conclusion: The linear equation models were selected, including the specific strata I and III, and 
the general equation for stratum II. The increase in the complexity of the regression models did not 
indicate better estimates, unlike the ANNs.

Keywords: Artificial neural networks; forest inventory; production forests; regression models; 
silvopastoral system.

HIGHLIGHTS

The simplest regression models provided better estimates of the height of paricá trees.
Two models with covariates detected the differences among planting strata.
Artificial neural networks showed bias problems in estimating heights.
The regression models had the same trend regardless of the fitting type.
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INTRODUCTION

Forest plantations represent a sustainable alternative 
to reducing timber extraction from native forests, aiding their 
preservation and protection. Fast-growing species, well-
suited to edaphoclimatic conditions, are ideal for planted 
forests. In the Amazon region, Schizolobium parahyba var. 
amazonicum (Huber ex Ducke) Barneby, commonly known 
as paricá, has gained prominence due to its ability to meet 
these requirements. The species can reach heights ranging 
from 15 to 40 m and diameters up to 100 cm, with a straight, 
cylindrical trunk, high adaptability, and significant potential 
for timber production (Rabelo et al., 2023; Santos et al., 2023; 
Cordeiro et al., 2020). This adaptability and productivity have 
attracted interest from the Brazilian forestry sector.

As reported by the Indústria Brasileira de Árvores 
(2023), paricá is one of the most planted native forest species 
in Brazil, alongside Araucaria angustifolia (Bertol.) Kuntze, 
commonly known as araucária. In 2014, these two species 
were cultivated over a total area of 365,000 ha. By 2022, this 
figure had risen to 381,000 ha, marking a 4% increase within 8 
years (IBGE, 2024). Paricá wood has an average basic density 
of 0.30 g cm⁻³, making it particularly suited for veneering 
and laminated panels, constituting its most profitable 
market segment (Silva et al. 2020). Furthermore, the wood 
demonstrates promise for sawdust production, energy 
generation, cellulose, and paper manufacturing applications. 
Economically, paricá is highly valuable due to its versatility in 
packaging, civil construction, and utensils (Mascarenhas et al. 
2021; Setter et al. 2021; Terezo et al. 2021).

A noteworthy ecological advantage of paricá is its 
status as a pioneer species, which allows it to be used in 
restoring degraded areas and promoting reforestation, 
both in homogeneous plantations and agroforestry 
systems (Delarmelina et al. 2023; Sales et al. 2021). Among 
agroforestry systems, silvopastoral systems combine 
forest plantations and livestock farming within the same 
area. These systems offer benefits such as providing 
thermal comfort to cattle, enhancing soil nutrient cycling, 
and facilitating carbon sequestration (Silva et al., 2021a). 
Additionally, diversifying production through silvopastoral 
systems ensures a more stable income for rural properties 
than relying solely on homogeneous plantations or livestock 
farming (Minini et al. 2024). However, further research is 
essential to understand the growth and productive behavior 
of paricá in such integrated systems.

Forest management strives to optimize timber 
production by relying on knowledge and controlling timber 
stocks within forest stands (Xinmei et al. 2020). Achieving 
this goal requires accurately quantifying the variables 
influencing stock availability to better plan forest production 
and management activities (Petris et al. 2022). Among 
these variables, tree height is critical for estimating forest 
production. However, direct measurement of tree height 
can be costly and time-intensive (Shen et al., 2023; Jurjević 
et al., 2020). Consequently, an alternative methodology 
involves establishing a mathematical relationship between 
tree height and diameter at breast height (DBH), measured 
1.3 m above the ground, based on a selected sample. Using 

this relationship alongside management techniques, it 
becomes possible to estimate the heights of the remaining 
trees within acceptable precision and error margins 
(Andrade et al. 2023; Nie and Liu 2023).

This mathematical relationship, called the hypsometric 
relationship in forestry science, allows for estimating forest 
stand dynamics, growth, and productivity (Terra et al., 2022; 
Fernandes et al., 2021). Furthermore, it enables the evaluation 
of planting site quality (Zea-Camaño et al. 2020) and supports 
decision-making in forest management practices, such as 
thinning (Jha et al. 2023; Zhang et al. 2020). Sociological 
position, location, species, age, canopy size, density, and 
silvicultural practices can influence the hypsometric relationship 
(Acosta et al., 2020). Thus, each plantation necessitates a 
specific model to characterize this relationship and minimize 
estimation errors (Cunha et al., 2022; Lanssanova et al., 2021; 
Hofiço et al., 2020; Morais et al., 2020). Regression analysis, a 
statistical method used to evaluate the relationship between 
dependent and independent variables, is typically employed 
for this purpose (Nascimento et al., 2020). Linear regression is 
the most frequently used among regression types, as it seeks 
to establish a line of best fit for observed data (Bonfatti Júnior 
and Lengowski 2022).

Regression models have evolved with advances in 
modeling techniques to improve adjustment efficiency and 
applicability (Cerqueira et al., 2020). For instance, mixed-
effects modeling combines fixed variables that describe 
overall effects, such as the allometric relationship between 
DBH and various heights, with random variables associated 
with localized conditions or variability-blocking factors 
(Leite et al., 2021). Nonlinear models are often preferred, 
as they more accurately describe biological phenomena 
by integrating parameters directly into the model (Abreu 
Neto et al., 2021). Covariates can also be incorporated into 
nonlinear models to identify other independent variables 
that improve estimates of the dependent variable (Silva et 
al., 2024; Lacerte et al., 2021).

Alternatively, the use of artificial intelligence (AI) has 
been highlighted in forestry science (Soares et al., 2021), 
such as predicting DBH and tree height through sensor 
images (Silva et al., 2021b), production projection (Casas 
et al., 2022), productivity modeling (Freitas et al., 2020), 
biomass prediction (Domingues et al., 2020), estimating 
conicity and volume (Șahin, 2024), and hypsometric 
relationship (Shen et al., 2020; Almeida et al., 2022; Costa et 
al., 2022). Artificial neural networks (ANNs) are an AI method 
that can be used as an alternative to traditional modeling 
techniques, such as regression models, because they are 
more generalizable and less sensitive to noise and outliers 
(Bayat et al., 2020). The strong nonlinear modeling capacity 
explains this fact without any predetermined functions, no 
statistical assumptions required between variables, and the 
possibility of processing a large amount of data (Ercanli, 
2020; Ma et al., 2020; Proto et al., 2020).

Thus, the present study aimed to identify the most 
suitable modeling approach for estimating tree heights 
within a Schizolobium parahyba forest and livestock 
integration system in Pará state, Brazil. The research involved 
comparing specific and general regression equations across 
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different management approaches and analyzing potential 
gains in precision using increasingly complex regression 
models and ANNs.

MATERIAL AND METHODS

Study area

The work was carried out at Fazenda Cinco Águas, 
which spans 254 ha, located in Abel Figueiredo, within the 
mesoregion of southeastern Pará state, Brazil. The farm is 
located at the coordinates 05° 21’ 42” S e 48° 47’36” W 
(Figure 1), with main access via BR-222, 1,473 km away 
from Brasilia, the capital of Brazil. The predominant soil is 
a yellow latosol, characterized by good physical properties, 
a medium clayey texture, and an undulating slope ranging 
from 8 to 20% (Santos et al., 2018). The region’s climate 
is classified as Aw, indicating a hot and humid tropical 
savanna, according to the Köppen-Geiger classification 
(Alvares et al., 2013). The vegetation is characterized as a 
submontane-dense ombrophilous Forest, and the average 
annual precipitation ranges from 1,000 to 2,000 mm, with 
an average temperature of 26 °C (Nascimento et al., 2022).

The farm has two forest plantations, one of which is 
Eucalyptus grandis, occupying 120 ha. The other comprises 
a silvopastoral system, consisting of a paricá plantation, 
implemented with seedlings from seeds and occupying an 
area of 46 ha. Due to several crosses, the herd has 40 heads 
of cattle of no defined breed. The pasture was formed with 
the forage species Panicum maximum. The area of the 
silvopastoral system was divided into three strata (Figure 
1), as follows: Stratum I: 12.33 ha of paricá planted in 2020 
with a spacing of 4 x 2 m with pasture; Stratum II: 9.91 ha 
of paricá planted in 2020 with a spacing of 4 x 2 m without 
pasture; and Stratum III: 23.83 ha of paricá planted in 2019 
with and spacing of 3.5 x 3.5 m with pasture. Despite the 
presence and absence of pasture in the strata, cattle moved 
freely throughout the farm area.

Data collection

Data from a 2024 forest inventory with temporary 
plots were used. Forty-six circular plots of 500 m² were 
installed and systematically distributed among the strata, 
with 80 m separating them. Based on the stratum size, 
14, 11, and 24 plots were allocated to stratum I, II, and III, 
respectively (Figure 1).

The diameter at 1.3 m above the ground (DBH) 
was measured using a Haglof Suta Mantax Blue with a 
diameter of 1,300 mm. Two measurements were taken, one 
perpendicular to the other, and the average between the 
two diameters was used. The total individual height of the 
trees was obtained using a Haglöf SWEDEN AB hypsometer, 
with all the trees in the central row of each plot being 
measured. A total of 84 trees were sampled in stratum I, 
73 in stratum II and 89 in stratum III. In stratum I, the mean 
DBH was 13.84 cm, with a standard deviation (SD) of 3.92 
cm. The mean DBH was 14.16 cm, with an SD of 3.98 cm in 
stratum II, and 17.36 cm, with an SD of 4.17 cm in stratum III. 
The mean height was 16.30 m and the standard deviation 
(sd) was 3.83 m in stratum I, the mean height was 18.15 m 
and the sd was 5.03 m in stratum II, and the mean height 
was 18.18 m and the sd was 4.05 m in stratum III.

Modeling methods 

The hypsometric models proposed by Curtis (1967) 
(Crt), Stoffels & Van Soest (1953) (SVS), and Petterson 
(1967) (Ptt) were selected due to their ability to provide 
adjustments in both arithmetic and nonlinear forms. Four 
adjustment approaches were applied: 1) Linear regression: 
Hypsometric equations were adjusted using the selected 
models in their linear form, with one equation fitted for each 
stratum and one general equation for the entire plantation 
using the least squares method; 2) Nonlinear regression: 
A general equation was fitted for the entire plantation, as 
well as one for each stratum, using the selected models 

Figure 1: Cinco Águas farm location within the Amazon (highlighted) in Brazil (Source: IBGE, SIRGAS 2000).
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in their nonlinear form with the parameters obtained by 
weighted least squares estimation; 3) Mixed Effect Models: 
The selected models were adjusted in their linear form, using 
the maximum likelihood method, incorporating plantation 
strata as a random effect, and; 4) Models with covariates: The 
selected models were adjusted in their nonlinear form, by the 
generalized least squares method, adding plantation strata 
as covariates to both parameters estimated in the regression. 
The strata were coded as random effects in the mixed-
effects models, representing inherent variation within each 
group (Table 1). This treatment allowed for adjusting inherent 
differences among strata while maintaining cohesion in data 
modeling. In the case of nonlinear regressions, covariates 
were incorporated as fixed terms and evaluated for their 

interaction with other explanatory factors, enhancing the 
predictive capacity of the models.

The dataset was divided randomly into two equal 
subsets—one for fitting and one for validation—each 
containing 50% of the measurements. This division was 
implemented due to the intrinsic inter-individual variability 
of the seminal stand. Allocating more data to the validation 
set increases the likelihood of detecting errors when the 
model is extrapolated across the entire area, thereby either 
validating or challenging the accuracy of the estimations. 
Furthermore, dividing the dataset equally ensures that the 
training and validation subsets adequately represent the 
data’s variability (Raj, 1968), thereby reducing potential bias 
that could emerge from disproportionate set sizes.

Abbreviation Adjustment model
Linear model

Crt 0 1
1

iH
D

     (1)

SVS    0 1 iln H ln D     (2)

Ptt 0 1
1 1
1,3H D

  


(3)

Non-linear model

Crt 0 1
1
D

iH e
 



  
  

    
(4)

SVS 1
0  iH D   (5)

Ptt

0 1

1 1,3
1

H

D


 

 
 
    
         

(6)

Linear mixed-effects model

Crt  0 0 1 1
1

Est Est iH
D

         (7)

SVS      0 0 1 1    
Est Est iln H ln D         (8)

Ptt  0 0 1 1
1 1
1,3 Est Est iH D

        


(9)

Non-linear models with covariates

Crt  0 0 1 1
1

Est Est D
iH e

   


  
    

    
(10)

SVS  1 1
0 0 ( ) Est

Est iH D  
  


   (11)

Ptt

 0 0 1 1

1 1,3
1

Est Est

H

D


   

 
 
    
           

(12)

Where: H is the total individual height of the trees; D is the diameter at 1.3 m from the ground; βi are the adjusted parameters of the models; Est is 
the planting strata.

Table 1: Structure of linear, non-linear, linear mixed-effects and non-linear regression models with covariates.
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For the Curtis, Stoffels & Van Soest linear models with 
mixed effects, the Meyer Correction Factor was employed 
to refine the estimates, as the models utilize a logarithmic 
transformation (Heberle et al., 2022). Regression model 
analysis for the fitted data employed statistical criteria 
(Table 2), including the Akaike Information Criterion (AIC) 
and the Bayesian Information Criterion (BIC), as well as 
graphical residual analysis. Efficiency Evaluation (EE) and 
Average Residual Error in percentage (RE%) were employed 
for graphical analysis of the validation dataset estimates. 
All analyses were performed using RStudio version 4.3.2 
(2023), with the “lme4” package used for fitting mixed 
models and the “nlme” package for models with covariates.

These metrics were chosen based on comparing 
models with different forms of adjustment and several 
equation parameters. Thus, AIC and BIC allow for better 
comparison between adjustment methods by considering 
the estimation error and the number of parameters in the 
same evaluation metric (Dziak et al., 2020). EE and RE% are 
similar to the Adjusted Coefficient of Determination (R2

aj) and 
Residual Standard Error (Syx%) statistics, but these metrics 
are applied only to those adjusted by the least squares 
method. Thus, for application in other adjustment methods, 
the EE and RE% metrics were used (Nascimento et al., 2020). 

The Artificial Neural Networks (ANNs) were of the 
Multilayer Perceptron type, chosen for their superior analytical 
capacity compared to other neural network structures. These 
networks feature hidden layers that capture nonlinearities 
in the data (Oliveira Neto et al., 2022). Ercanlı (2020) 
developed an initial network and iteratively modified certain 
components until achieving a configuration with the smallest 
error. Key components of the tested networks included: Input 
layer variables: Either one (DBH) or two (DBH and plantation 
strata, with strata coded into binary categorical variables), 
consistent with the regression models described earlier; 
Number of hidden layers: One or two layers were tested; 
Number of neurons per layer: Configurations tested included 
three, four, and five neurons, with optimal combinations 
balancing result accuracy and computational efficiency. The 
number of neurons was calculated as twice the number of 

hidden layers minus one (Heaton, 2008); Activation functions: 
Hyperbolic tangent and logistic functions were examined; 
Training algorithms: Resilient backpropagation with weight 
propagation (“rprop+”), smallest absolute gradient (“sag”), 
and smallest learning rate (“slr”) were tested. The error 
function stopping criterion was set at 0.01, with a maximum 
of 10,000,000 combinations to ensure rigorous network 
evaluation. Supervised training was applied to validate the 
fit of the training and validation datasets (Hao et al., 2020). 
The training of the ANNs was divided into architectures 
with one and two hidden layers with the logistic activation 
function and the “rprop+” algorithm. After this training, the 
ANN with the lowest error among those tested was selected, 
alternating the activation function and the algorithm. Of the 
18 ANNs tested, the 6 best were selected for analysis.

Evaluation metrics for the neural networks included 
Efficiency Evaluation (EE), Average Residual Error in 
percentage (RE%), and graphical analysis of estimates. 
Additional criteria included network error and the number 
of combinations required to achieve the results. ANNs were 
processed using RStudio version 4.3.2 (R Core Team, 2024) 
with the support of the “neuralnet” package.

RESULTS

Regarding the linear models, the Stoffels & Van Soest 
model provided the best statistics for adjusting the general 
equation. In the fit for each stratum, the Stoffels & Van Soest 
model was also the best for strata I and II, while the Curtis model 
was the best for stratum III. The separate fit of strata I and III 
showed better statistics than the general equation (Table 3).

The graphs of the observed and estimated heights 
indicated similarity in the dispersion pattern of the results 
among the three models, both for the fit and validation 
data (Figure 2). In all adjustments, the Stoffels & Van Soest 
model was the one that indicated the lowest tendency for 
estimation errors. The trend lines of the validation data for 
stratum I indicated the worst results, corroborating the 
adjustment statistics, when compared with the other strata.

Statistical criteria Formulas

AIC 22  n (1)

BIC       
2
p logn  (2)

EE
 
 

 
 

2

2

ˆ 1
1

y y n
n py Y

  
         
        




(3)

RE%
 2
1

ˆ

100

n i i
i

y y
n

Y



 (4)

Where: AIC is the Akaike Information Criterion, BIC is the Bayesian Information Criterion (BIC), EE is the Efficiency Evaluation, RE% is the Average Residual 
Error in percentage,  yi is the observed value; ŷi is the estimated value, θj is the maximum likelihood of parameters, σ2 is the variance of the observed data, n is 
the number of observations, L is the is the joint density of the estimates, p is the number of parameters, and Ȳ is the arithmetic mean of the dependent variable.

Table 2: Evaluation metrics for regression models and artificial neural networks.
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Considering the general equation of the nonlinear 
models, the Petterson model showed the best statistics. The 
Stoffels & Van Soest model was the best among those tested 

in stratum I. In strata II and III, statistics from the fit database 
for the Stoffels & Van Soest models were similar, while for 
the validation database, the best fit was achieved with the 

Figure 2: Observed and estimated individual heights using linear models in a paricá plantation within a silvopastoral system.
Where: Crt is the Curtis model, SVS is the Stoffels & Van Soest model, Ptt is the Petterson model, blue line is the 1:1 line, 
and the red line is the trend line of estimates.

Models β0 β1

Fit Validation
AIC BIC EE RE (%)

General equation
Crt 3.4064* -8.0912* 1.0098 1.0113 0.9934 17.59

SVS 1.0349* 0.6666* 1.0043 1.0058 0.9935 17.54
Ptt 0.0232* 0.4679* 1.0125 1.0140 0.9930 17.64

Stratum I
Crt 3.4194* -8.1636* 0.7197 0.7017 0.9857 20.16

SVS 0.8671* 0.7377* 0.6680 0.6501 0.9866 18.13
Ptt 0.0202* 0.4936* 0.6865 0.6686 0.9864 18.58

Stratum II
Crt 3.5038* -8.5738* 1.2466 1.2220 0.9729 17.27

SVS 0.8840* 0.7496* 1.2107 1.1860 0.9775 17.53
Ptt 0.0213* 0.4584* 1.2608 1.2361 0.9665 18.52

Stratum III
Crt 3.4515* -9.7617* 1.0009 0.9855 0.9802 15.10

SVS 0.7988* 0.7254* 1.0035 0.9881 0.9791 16.88
Ptt 0.0197* 0.5752* 1.0016 0.9862 0.9788 16.34

Where: Ct is the Curtis model, SVS is the Stoffels & Van Soest model, Pt is the Petterson model, AIC is the Akaike information criterion, BIC is the 
Bayesian information criterion, EE is the efficiency evaluation, RE is the mean residual error (%), and * are the parameters significant at 5%.

Table 3: Adjusted coefficients and evaluation metrics for the fit and validation data of the linear models.
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Curtis model. Concerning the fit of the linear models, the 
strata I and III equations indicated better results than the 
general equation (Table 4).

The graphs of the observed and estimated heights 
of the non-linear models maintained the same pattern as 
the models in their linear form for all fitted data (Figure 3).

Figure 3: Observed and estimated individual heights by nonlinear models in a paricá plantation in a silvopastoral system.
Where: Crt is the Curtis model, SVS is the Stoffels & Van Soest model, Ptt is the Petterson model, blue line is the 1:1 line, 
and the red line is the trend line of estimates.

Models β0 β1

Fit Validation
AIC BIC EE RE (%)

General equation
Crt 3.4609* -8.6606* 1.0034 1.0049 0.9943 17.43

SVS 3.1452* 0.6321* 1.0000 1.0015 0.9933 17.24
Ptt 0.0222* 0.4592* 0.9970 0.9985 0.9939 17.11

Stratum I
Crt 3.4695* -8.7307* 0.7132 0.6953 0.9863 20.66

SVS 2.4463* 0.7317* 0.6668 0.6488 0.9864 18.35
Ptt 0.0187* 0.5047* 0.6785 0.6606 0.9867 19.02

Stratum II
Crt 3.6390* -10.1210* 1.2272 1.2025 0.9823 16.59

SVS 2.3254* 0.7734* 1.2026 1.1780 0.9808 17.07
Ptt 0.0140* 0.5257* 1.2076 1.1830 0.9821 16.84

Stratum III
Crt 3.5085* -10.5364* 0.9958 0.9804 0.9838 14.72

SVS 2.6639* 0.6669* 0.9990 0.9836 0.9781 16.21
Ptt 0.0204* 0.5443* 0.9940 0.9786 0.9807 15.46

Where: Ct is the Curtis model, SVS is the Stoffels & Van Soest model, Pt is the Petterson model, AIC is the Akaike information criterion, BIC is the 
Bayesian information criterion, EE is the efficiency evaluation, RE is the mean residual error (%), and * are the parameters significant at 5%.

Table 4: Adjusted coefficients and evaluation metrics for the fit and validation data of the nonlinear models.
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The Stoffels & Van Soest model provided the best 
fit and validation statistics among the mixed models. When 
analyzing the random effect, the tested models indicated a 
difference among the strata only in the estimated β1 (Table 
5). The strong correlation between the data explains the 
lack of differentiation of the estimated coefficients, with the 
correlation index being -0.80 for the Curtis model, -0.96 
for Stoffels & Van Soest, and -0.83 for the Petterson model. 

The similarity between the pattern of the distribution 
of estimated heights is once again noticeable in the mixed-
effect models (Figure 4). With the exception of the Stoffels 
& Van Soest model in the fitting data, the results were 
underestimated up to a height of 15 m. From there, the results 
were overestimated. In the validation data, all models indicated 
overestimation of the results up to a height of 20 m.

In the models with covariates, Petterson’s model had 
the best statistics. The estimated coefficients of the strata 
were not significant in any of the equations tested (Table 6).

The Curtis model showed the same fit pattern as 
the linear, nonlinear, and mixed models (Figure 5). Although 
the coefficients of the covariates were not significant, the 
Stoffels & Van Soest and Petterson models were able to 
capture the differences in the height/DBH ratio of each 
stratum. The Stoffels & Van Soest and Peterson models 
underestimated all results, both for the adjustment and 
validation data. The Curtis model did not indicate trends for 
the adjustment data. In the validation data, the results were 
underestimated up to a height of 20 m. After this height, 
the results showed a tendency to overestimate.

The neural networks tested with two variables in 
the input layer (Net3, Net5, and Net6) demonstrated better 
performance in estimating the height of the trees than the 
networks with only one variable (Net12, Net17, and Net18). Net12, 

with a hidden layer of five neurons, logistic activation function, 
and “rprop+” activation algorithm, showed the best statistics 
for estimating the height of the paricá trees (Table 7).

Except for Net12, the estimated values   were 
concentrated at 14, 16 and 20 m, with notable differences in 
Net5 and Net6 (Figure 6). Despite the results of the network 
adjustments, there was no tendency to underestimate or 
overestimate the results of the adjustment data. In the 
validation data, up to a height of 15 m, a tendency to 
underestimate the results is observed. Between 15 and 
30 m, there is a tendency to overestimate the results. This 
pattern was observed in all tested networks, especially in 
Net12 and Net17.

DISCUSSION

Hypsometric relationship equations are 
fundamental in conducting forest inventories, which 
explains the considerable research effort dedicated to 
developing methodologies for accurately estimating tree 
heights. When comparing linear and nonlinear models, 
the evaluation metrics (EE, AIC, BIC, and RE) were closely 
aligned, and the graphical distributions of the estimates 
appeared similar. Among the models tested, the Stoffels & 
Van Soest equation exhibited the most favorable metrics 
in both modeling approaches, with the nonlinear models 
performing slightly better overall. In terms of the general 
equation, mixed linear models outperformed others in EF 
and ER metrics, whereas linear models demonstrated higher 
AIC and BIC values. While nonlinear models with covariates 
presented better evaluation metrics than standard nonlinear 
models, the non-significance of their coefficients rendered 
them unsuitable for selection.

Mixed effect β0 β1

Fit Validation
AIC BIC EE RE (%)

Curtis
Intercept 3.4443 -8.6367

1.0341 1.0385 0.9936 17.57
Stratum I 3.4443 -8.4778
Stratum II 3.4443 -8.0154
Stratum III 3.4443 -9.4168

Stoffels & Van Soest
Intercept 0.8815 0.7259

1.0012 1.0056 0.9939 17.39
Stratum I 0.8815 0.7313
Stratum II 0.8815 0.7464
Stratum III 0.8815 0.7000

Peterson
Intercept 0.0212 0.4968

1.0326 1.0369 0.9931 17.64
Stratum I 0.0212 0.4850
Stratum II 0.0212 0.4683
Stratum III 0.0212 0.5369

Where: AIC is the Akaike Information Criterion, BIC is the Bayesian Information Criterion, EE is the efficiency evaluation, and RE is the mean residual 
error (%).

Table 5: Adjusted coefficients and evaluation metrics for the linear mixed fit and validation models.
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The choice of fitting methods was guided by the need 
to capture data variability and ensure model flexibility. Linear 
and nonlinear regression models were employed as classic 
approaches to describe basic relationships in the data. In 
contrast, mixed-effects models were adopted for their ability 
to handle hierarchical data structures, such as plantation 
strata, allowing the simultaneous capture of both intra- and 
inter-group variation. This approach considers the correlation 
between observations within the same stratum, which 
traditional regression methods cannot efficiently address. 
Additionally, models with covariates, including plantation 
strata, were selected to explore how these characteristics 
influence the estimated parameters. For example, including 
strata as covariates enabled the modeling of complex 

interactions and provided a more detailed evaluation of the 
impact of specific factors on the nonlinear fit.

As a result, linear models are recommended for 
estimating the height of trees in young paricá plantations 
under silvopastoral systems. Linear hypsometric models are 
particularly advantageous due to their simplicity, ease of 
equation adjustment (Monti et al. 2022), and straightforward 
interpretation (Dantas et al., 2024). These attributes make 
them preferable to mixed linear, nonlinear, and nonlinear 
models with covariates. In juvenile stands, linear models are 
likely to yield more accurate predictions of dendrometric 
variables (Santos et al., 2019). Several other studies have 
corroborated the superior performance of linear over 
nonlinear hypsometric models (Araújo et al., 2023; Dantas 
et al., 2024; Machado et al., 2019; Souza et al., 2017).

Across all evaluation metrics, equations developed 
for strata I and III outperformed the general equation in both 
linear and nonlinear approaches. This result can be attributed 
to superior data classification, as individual equations account 
for the specific height/DBH relationships unique to each 
stratum. Consistent with these findings, previous studies have 
advised against using a single, general hypsometric equation 
for diverse planting conditions. For instance, Carielo et al. 
(2022) assessed different Pinus species and age groups, while 
Murta Júnior et al. (2020) examined variations in age and 
thinning intensities; both studies reached similar conclusions. 
However, the specific equation for stratum II demonstrated 
inferior performance, with higher AIC and BIC values compared 
to strata I and III. This result suggests a weaker correlation 
between diameter and height in this stratum (Vendruscolo 
et al., 2015). Furthermore, general equations inherently 
benefit from being derived from larger samples (Pearl, 2014). 
Consequently, the general equation performed better than the 
specific equation for stratum II. Similarly, Figueiredo Filho et al. 
(2010) found that a general equation across different ages of 
Araucaria angustifolia yielded superior results compared to a 

Covariates β0 β1

Fit Validation
AIC BIC EE RE (%)

Curtis
Intercept 3.4695* -8.7307*

1.0110 1.0154 0.9950 17.22Stratum II 0.1694 ns -1.3902 ns

Stratum III 0.0389 ns -1.8056 ns

Stoffels & Van Soest
Intercept 2.4463* 0.7301*

0.8948 0.8992 0.9963 14.93Stratum II -0.1205 ns 0.0432 ns

Stratum III 0.2175 ns -0.0632 ns

Peterson
Intercept 0.0187* 0.5047*

0.8709 0.8753 0.9963 14.59Stratum II -0.0046 ns 0.0210 ns

Stratum III 0.0017 ns 0.0396 ns

Where: Ct is the Curtis model, SVS is the Stoffels & Van Soest model, Pt is the Petterson model, AIC is the Akaike information criterion, BIC is the 
Bayesian information criterion, EE is the efficiency evaluation, RE is the mean residual error (%), * are the parameters significant at 5%, and ns are the 
non-significant parameters.

Figure 4: Observed and estimated individual heights 
using mixed models in a paricá plantation within a 
silvopastoral system.
Where: Crt is the Curtis model, SVS is the Stoffels & Van 
Soest model, Ptt is the Petterson model, blue line is the 
1:1 line, and the red line is the trend line of estimates.

Table 6: Adjusted coefficients and evaluation metrics for the fit and validation data of the nonlinear models with 
covariates.
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single equation. These contrasting outcomes underscore the 
need for further research to refine hypsometric relationships 
tailored to the specific conditions of each planting system 
(Atanazio et al., 2017).

Increasing the complexity of regression model 
adjustments, progressing from linear models to mixed linear 
models, nonlinear models with and without covariates, and 
ultimately to Artificial Neural Networks (ANNs), did not result 
in meaningful improvements in estimate accuracy. ANNs 
produced only marginal enhancements in EF and ER values 
compared to linear models, which does not justify their 
selection. Overfitting—where the same height is predicted for 
differing diameters—likely compromised the performance 
of most ANN models. Even the best-performing ANN (Net 
12) displayed a wider error dispersion than the traditional 
models. Given the suitability of linear models in young stands 
(Santos et al., 2019), the use of more complex methods 
designed to facilitate biological interpretation (Dantas et al., 
2024) did not yield significant benefits.

In contrast to this study, works by Ou and Quiñónez-
Barraza (2023), Skudnik and Jevšenak (2022) and Tuan et 
al. (2019) reported better statistical outcomes for ANNs 
compared to regression models. While ANNs generally 
excel at relating numerical and categorical variables 

and their distributions (Domingues et al., 2020; Binoti 
et al., 2013), this approach was not ideal for paricá trees 
in silvopastoral systems in this study. Lafetá et al. (2024) 
also found that linear models outperformed nonlinear 
models and ANNs when applied to a seminal stand of 
Eucalyptus cloeziana F. Muell. Variations in the success of 
different estimation methodologies across studies are likely 
attributable to differences in species, site conditions, data 
structure variability, and other factors (Seki 2023). The size 
of the database (less than a thousand observations) can 
influence the efficiency of ANNs, which can also explain 
the superiority of simpler models (Bartol et al., 2022). The 
random and aleatory characteristics of ANN training make 
it difficult to perform more in-depth analyses of the results 
based on the interaction between the method applied and 
the nature of the data (Ye et al., 2018).

Network Combinations Error
Fit Validation

EE RE (%) EE RE (%)
Net-3 78,898 506.9781 0.9938 16.75 0.9937 17.92
Net-5 1,493,455 486.9117 0.9942 16.41 0.9931 18.46
Net-6 476,629 477.9310 0.9943 16.26 0.9929 19.25

Net-12 1,075,284 375.6785 0.9961 14.42 0.9933 22.83
Net-17 2,309,468 380.6287 0.9960 14.51 0.9890 29.18
Net-18 156,972 406.9305 0.9956 15.00 0.9938 18.78

Where: EE is the efficiency evaluation, and RE is the mean residual error (%).

Figure 5: Observed and estimated individual heights 
using models with covariates in a paricá plantation within 
a silvopastoral system.
Where: Crt is the Curtis model, SVS is the Stoffels & Van 
Soest model, Ptt is the Petterson model, blue line is the 
1:1 line, and the red line is the trend line of estimates.

Table 7: Evaluation metrics for the fit and validation data of artificial neural networks.

Figure 6: Observed and estimated individual heights 
using artificial neural networks in a paricá plantation 
within a silvopastoral system.
Where: Net is the symbol for artificial neural networks, 
blue line is the 1:1 line, and the red line is the trend line of 
estimates.
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Within ANNs, increasing the number of hidden 
layers did not improve tree height estimations due to 
the overfitting above. However, ANNs incorporating 
two variables (DBH and forest stand) in their input layer 
outperformed those with a single variable (DBH), as 
evidenced in prior research (Almeida et al., 2022). The 
optimal configuration for ANN Net 12—comprising one 
hidden layer, two input variables, and five neurons—
demonstrated better estimation distributions than other 
ANN configurations, though the evaluation metrics were 
comparable.

CONCLUSION

Linear models proved to be the most efficient in 
estimating the height of trees in Schizolobium parahyba var. 
amazonicum (Huber ex Ducke) Barneby plantations within a 
silvopastoral system located in the countryside of Pará state, 
Brazil. The equations tailored to each stratum of the paricá 
plantation delivered more accurate results in estimating tree 
height compared to the adjustments derived from general 
equations designed for the entire plantation. 

Increasing the complexity of regression models—
progressing from linear and linear mixed models to models 
without and with covariates, and eventually to artificial 
neural networks (ANNs)—did not significantly enhance 
the accuracy of tree height estimates. However, within the 
framework of ANNs, greater complexity achieved through 
the addition of input layer variables and an increased 
number of neurons in the hidden layer yielded improved 
tree height estimates.

Despite the similarity observed in evaluation metrics 
across all approaches, the computational effort required 
to implement ANNs is not justified for 4- and 5-year-old 
paricá stands. Nonetheless, as time progresses, these 
linear relationships between DBH and height may evolve, 
necessitating further studies to assess their accuracy and 
potentially revealing variations in the performance of 
estimation methods.
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