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ABSTRACT

Background: The Caatinga biome has high deforestation rate, so the correct identification of species 
is important to conserve resources. The objective of this study was to evaluate the potential of NIR 
spectroscopy to distinguish tree barks from eight species from the Caatinga biome based on the 
development of multivariate models. Three trees of each species were felled, and the trunk was cut at 
six positions to obtain bark sample discs: 0%, diameter at breast height (DBH) (1.30 m from ground), 
25%, 50%, 75% and 100% of commercial height. Spectra were collected with resolution of 4 cm-1 and 
wavenumber ranging from 10 000 to 4 000 cm-1 using a probe with 2 mm aperture. All discs obtained 
from the six positions were approximately 5 mm from the probe, and 24 spectra were collected from 
each disc, for a total of 144 per tree and 432 per species. Classification methods were based on all 
spectra and only the DBH position, by applying linear discriminant analysis, support vector machine 
and k-nearest neighbors (K-NN). 

Results: Better results were obtained with K-NN and first derivative spectra, with accuracy of 0.91 
(all tree positions) and 0.85 (only DBH). NIR spectroscopy with multivariate analysis has potential to 
discriminate Caatinga species based on spectra of bark samples. 

Conclusion: The use of near infrared in forest can confirm the correct species before cut on forest 
management, contributing to conservation of Caatinga resources and an adequate use of species 
with high aggregated value. 

Key words: Forest inspection; multivariate analysis; native woods; NIR.

HIGHLIGHTS
It is possible to discriminate Caatinga species based on bark spectra.
There is influence of tree height on the near-infrared spectra obtained from the bark.
Better results in discriminating the bark of Caatinga species were observed using K-NN.
In K-NN, the processed data into first derivative presented higher precision values.
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INTRODUCTION

The Caatinga is a Brazilian biome that has approximately 
3 347 species, 962 genera and 153 families of plants, 43.7% of 
them classified as woody. The principal families are Fabaceae, 
Myrtaceae, Euphorbiaceae, Rutaceae, Malvaceae, Rubiaceae, 
Bignoniaceae and Sapindaceae, while the main genera are 
Croton L., Mimosa L., Chamaecrista (L.) Moench, Senna Mill. 
and Eugenia L. (Fernandes et al., 2020). These occur in the 
states of Maranhão, Piauí, Ceará, Rio Grande do Norte, Paraíba, 
Pernambuco, Alagoas, Sergipe, Bahia and the northern region 
of Minas Gerais. The biome’s sustainable use and forest 
resources conservation are important for commerce of wood 
and non-wood products (Pareyn et al., 2024).

In 2023, Caatinga biome presented a deforestation 
of 11% from its area, representing 201 687 ha, being the third 
biome degraded in this year, with increase of 43% related to 
2022. Cerrado was the first, with 1 110 326 ha, and Amazon 
the second with 454 271 ha (MapBiomas, 2024). The biome 
has a high deforestation index due to increasing population 
density, conversion of forest areas to farmland and grazing 
pasture, and aggressive exploitation of natural resources, 
resulting in climate change and sometimes desertification 
(Demartelaere et al., 2021). 

The caatinga has a great diversity of cultural 
applications, although it is composed of small trees. Native 
Caatinga tree species can legally be cut for firewood and other 
uses through authorization, demonstrated by a “Forest Origin 
Document” (DOF), indicating that the wood is from an area 
with an active forest management plan. Illegal exploitation 
of wood aggravates deforestation in tropical forests, and 
many species are listed as at risk according to the Convention 
on International Trade in Endangered Species of Wild Flora 
and Fauna (CITES). An alternative for adequate use of forest 
resources is to limit exploitation to areas under certified 
sustainable management, involving replanting with native 
species, because many of them are endemic to the Caatinga. 
However, for this system to function properly, correct 
identification of species based on taxonomic information is 
necessary, so as to deter illegal logging (Morais et al., 2018).

In Caatinga, not always leaves are available for 
analysis once many species are deciduous tree, i.e., loose 
leaf in some climatic period in the year. So, it is necessary 
the use of other tree part for identification. Bark can be 
an alternative in function of its availability and easiness of 
access through the seasons in forest, and also, thinking in 
commerce, in storage of logs in industry.

It is known that the morphological and macroscopic 
characteristics of bark can be applied for this identification, 
but alone these are not very effective due to the natural 
variability and similar general texture pattern of various 
species. Other drawbacks are the lengthy testing process 
and subjectivity of human optical sensitivity (Kim et al., 
2022; MacFarlane, 2024).

Near-infrared spectroscopy (NIR) can be an alternative 
because it is fast and the analysis can be accomplished with a 
great range of material, such as leaves, bark and wood (Zhou 
et al., 2020; Tsuchikawa et al., 2023; Silva et al., 2021, Silva et 
al., 2024). Regarding Caatinga species, Nisgoski et al. (2018) 

evaluating wood and charcoal to verify the potential of NIR to 
discriminate six species in the municipality of Coremas, Paraiba 
state, described better results applying principal component 
analysis with linear discriminant analysis (PCA-LDA) and the 
use of second derivative spectra, highlighting there was no 
influence of anatomical surface in material distinction, which 
is important for practical applications.

With regard to bark spectra, studies have evaluated 
the chemical composition (Acquah et al., 2015; Bridson et al., 
2024), presence of bark in waste composition (Acquah et al., 
2016), influence of cutting/analysis period (Kim et al., 2013), 
and quantification of salicylates and flavonoids in poplar bark 
(Mazurek et al., 2022). The separation of Quercus suber L. 
trees from two geographic regions for analysis of the quality 
of cork planks (Prades et al., 2010), and the discrimination 
of seven species from Costa Rica, with accuracy of 74.2% 
(Clark and Roberts, 2012), are among the first works involving 
distinction of trees based on bark spectra.

Using bark spectra obtained with portable 
spectrometer, Hadlich et al. (2018) evaluated 254 trees (eleven 
species, ten genera, eight families) with Principal Component 
Analysis and Linear Discriminant Analysis, and obtained 
correct identification of 98% (inner bark) and 94% (outer bark). 
Other authors discriminated Betula pendula, Pinus sylvestris 
and Picea abies by applying Support Vector Machine and a 
mobile handheld hyperspectral camera (Juola et al., 2020), 
and reiterated intra/interspecific variation of bark reflectance 
of boreal/temperate tree species (Juola et al., 2022)

There are some limitations on the use of NIR 
for species identification in practice. Chiefly, accuracy is 
dependent on the quality of the calibration model and 
spectral variability between and within species, which also 
can be affected by surface contamination, moisture content 
and texture. Also, a large database is required to ensure 
that spectral data are really representative of the species 
being evaluated (Tsuchikawa et al., 2023).

Considering the importance of species identification 
and the scarcity of literature relating NIR spectroscopic 
analysis to Caatinga species, we aimed to discriminate the 
species: Anadenanthera colubrina, Cenostigma pyramidale, 
Capparidastrum frondosum, Commiphora leptophloeos, 
Mimosa tenuiflora, Manihot baccata, Guapira sp. and 
Aspidosperma pyrifolium from the northeastern region of 
Brazil based on bark analysis, increasing research database, for 
application in forestry supervision.

MATERIALS AND METHODS

The farm where species were cut has an active 
sustainable forest management plan for exploitation of wood 
for energy generation. Species (Tab. 1) were selected based 
on frequency and index of importance values, i.e. based on 
number of trees in each species and its dimensions, in function 
of forest inventory to development of the management plan. 
To develop a robust model and to simulate the obtention of 
spectra in industry when the position is unknown, the trunks 
were divided into six positions: 0% (10 cm from ground), 
diameter at breast height (DBH - 1.30 m from ground), 25%, 
50%, 75% and 100% of commercial height. A schematic 
representation of methodology is in figure 1. 
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Figure 1: Schematic representation of cut position, spectra obtention and analysis for evaluated caatinga species.

Vernacular name 
in Portuguese Code Scientific name - Family DBH (cm) Commercial Height (m) Total height (m)

Angico ANG
Anadenanthera colubrina (Vell.) Brenan - 

Fabaceae

14.01 6.7 10.00
15.92 4.0 11.20
22.12 5.0 10.96

Catingueira CAT
Cenostigma pyramidale (Tul.) E. Gagnon & G.P. 

Lewis - Fabaceae

14.64 4.6 7.86
14.96 3.5 8.43
14.01 4.0 8.18

Feijão Bravo FEB
Capparidastrum frondosum (Jacq.) Cornejo & Iltis 

- Capparaceae

14.01 5.0 6.92
13.37 4.4 6.90
13.32 3.3 8.39

Imburana IMB
Commiphora leptophloeos (Mart) J.B. Gillett - 

Burseraceae

12.73 2.7 6.26
15.28 3.5 8.37
23.55 4.5 8.26

Jurema Preta JUP Mimosa tenuiflora (Willd.) Poir. - Fabaceae
14.96 4.1 9.15
17.19 2.9 6.52
16.55 3.9 7.13

Maniçoba MAN Manihot baccata Allem - Euphorbiaceae
12.73 4.5 8.20
14.01 5.7 8.60
20.05 5.3 8.56

Pau Mole PAM Guapira sp. - Nyctaginaceae
18.78 5.5 7.73
15.28 4.0 8.30
13.37 3.05 6.77

Pereiro PER
Aspidosperma pyrifolium Mart. & Zucc. - 

Apocynaceae

12.73 3.05 6.73
13.37 2.67 6.45
13.37 2.85 7.0

DBH=Diameter at breast height. 

Table 1: Information about the vernacular and scientific names, code, diameter at breast height, commercial and total 
height of the individuals analyzed.

Material

The Caatinga species (Tab. 1, Fig. 2) were collected 
from the Riacho do Cabra farm, in the municipality of 
Santa Cruz, Rio Grande do Norte, Brazil (06°13’44.4”S, 
36°01’22.8”W). The climate is classified as BSs’h’ on the 

Köppen scale, semiarid with precipitation lower than 
evaporation, a rainy season in autumn and dry season 
lasting six months. In the period of 2022-2024 mean annual 
precipitation varied from 581 mm to 815 mm, mean annual 
temperature from 26 °C to 28 °C and mean annual relative 
humidity is approximately 70% (EMPARN, 2024). 
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Three trees were cut from species and had eight 
years old when cut. The vegetation in the region is 
classified as hyperxerophylous Caatinga. The access to 
the material is registered with the Brazilian Council for 
Management of Genetic Heritage (CGEN/SISGEN) under 
number A432EB4.

Near infrared spectroscopy

All discs remained at the same ambient temperature 
until reaching an equilibrium moisture content with the 
environment of approximately 16%, and before analysis 
the samples were stored in a climate-controlled room with 
temperature of 25 ± 2 °C and relative humidity of 60%, to 
reach approximately 12% moisture content. 

For spectral analysis, a Bruker Tensor 37 
spectrometer (Bruker Optics, Ettlingen, Germany) 
equipped with a probe with 2 mm aperture was used. 
Spectra were collected with resolution of 4 cm-1, 64 scans 
and wavenumber range from 10 000 to 4 000 cm-1. In 
function of irregularities in bark surface, all discs from the 
six trunk positions were put at approximately 5 mm from 
the probe, and 24 spectra were collected from each disc, 
for a total of 144 per tree, 432 per species, totaling 3 456 
for analysis. Region where spectra was collected varied to 
better represent structure and composition of bark.  

Multivariate Analysis 

Data were analyzed in raw form and after first- 
and second-derivative processing of Savitzky-Golay, both 
in polynomial order = 2 and smoothing points = 21. 
Exploratory modeling was done by visual analysis of the 
score and loading graphs obtained by principal component 
analysis (PCA), to verify possible differences/groupings 
of species. PCA was performed based on the NIPALS 
algorithm, with random cross-validation using 3 segments. 

To verify the possibility of external discrimination 
of species, three classifications were performed: linear 
discriminant analysis (LDA), k-NN and Support Vector Machine 
(SVM) analysis. Spectra were divided into 66% for model 
construction and 33% for external analysis, i.e., data from 
two trees for model construction and one tree for species 
classification, in two situations: i) using all tree positions; and 
ii) using only the DBH position. LDA was performed with 
PCA scores based on the Mahalanobis distance, projecting 
3 components assuming equal prior probabilities. Support 
vector machines with kernel radial basis function (SVM) and 
k-nearest neighbors (k-NN) were tested using the function 
“train” for different methods available in the “caret” package 
in the R software (Kuhn et al., 2020). External classification was 
evaluated with all wavenumbers in raw form and after first- 
and second-derivative transformation. PCA and LDA were 
performed with the Unscrambler X chemometric program 
(version 10.1, CAMO Software, Oslo, Norway, www.camo.com). 

RESULTS

Mean bark spectra by species (Fig. 3) indicated 
the materials similarity, and some regions showed good 
information for differentiation, for example, wavenumbers 
from 8 470 – 8 150 cm-1 and from 4 930 – 4 490 cm-1. 

To verify visual grouping, principal component 
analysis (PCA) were performed with spectra in raw form and 
after first- and second-derivative transformation (Fig. 4). PCA 
with raw spectra (Fig. 4a) identified a mixture of all species, 
although some fine distinction of MAN and PER samples 
were observed. PCA with first-derivative spectra (Fig. 4b) 
indicated more proximity of samples inside each species and 
their better identification, but PC1 represented only 35% of 
variations between species. According to PCA with second-
derivative spectra (Fig. 4c), the first PC represented 64% of 
the spectral variation between species, and the samples from 
CAT, FEB and PER were divided into two groups, probably in 
function of intrinsic bark variation based on tree height.

To verify the potential of NIR spectra from tree 
bark to differentiate the Caatinga species, LDA, k-NN and 
SVM classification were tested with raw data along with 
first- and second-derivative spectra by applying all tree 
positions (Tab. 2) and only with DBH position (Tab. 3). Table 
4 indicates correct percentage of classification for each 
species, pretreatment and model applied and the accuracy 
of all performed tests is reported in Table 5. The results 
reinforce the influence of pretreatment and classification 
methods for analysis. 

Figure 2: Illustration of tree bark in DBH from studied 
species: ANG (a), CAT (b), FEB (c), IMB (d), JUP (e), MAN (f), 
PAM (g) e PER (h).
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DISCUSSION

In bark tree spectra (Fig. 3), the signals in the 
region from 8 470 – 8 150 cm-1 were attributed to cellulose, 
hemicellulose and lignin; a band at 5 795 cm-1 was related to 
lignin, one at 5 776 cm-1 to cellulose, and another at 5 178 

cm-1 to water. Wavenumbers at 4 930 and 4 490 cm-1 were 
attributed to cellulose, hemicellulose, lignin and extractives 
(Schwanninger et al., 2011).

Bark NIR spectra can be influenced by genetic 
factors and tree provenance, as sometimes can occur 
species natural hybridization and/or adaptation in diverse 

Figure 4: Graphic scores of principal component analysis of raw spectra (a), first derivative (b) and second derivative 
(c) spectra.

Figure 3: Mean NIR raw spectra from all positions of bark samples of eight Caatinga species.
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habitats, for example, to improve resistances against 
drought and UV-radiation, increasing growing rates and 
altering its properties (Zhang et al., 2014), as well as by the 
surface evaluated (Prades et al., 2010, Hadlich et al., 2018). 

Bark in general absorbs less light than leaves 
(Acquah et al., 2015) and its spectral properties can vary in 
the same tree and/or between trees, as well as in function 
of water and chemical content (Clark and Roberts, 2012). 
The chemical composition and thickness of bark has a direct 
relation with herbivory, due to chemical defense of the 
plant, and environmental stressors, as fire, frost, drought 
and waterlogging (Ilek et al., 2021; MacFarlane, 2024). It is 
more variable than wood and has high content of lignin, 
extractives and inorganic material, with lower percentage 
of polysaccharides (Heim et al., 2022; Supriyadi et al., 2025). 

Score graphic of PCA (Fig. 4) indicate grouping 
formation of samples from the same tree after derivative 
pretreatments. Some species can be distinguished from 
others, what is corroborated by visual observation of the 
bark surface (Fig. 2), which indicated irregular surfaces 
with thin bark, except for JUP, and flaked appearance for 
IMB and MAN. Variable bark thickness can be used to 

distinguish species, but also can vary between trees of the 
same species due to herbivory, fire, biomechanical support, 
respiration, age, stem position and climatic conditions 
(Shearman and Varner, 2021; Nie et al., 2022).

In this study, we evaluated young trees and 
observed that spectra from bark in different axial trunk 
position had some differences and influence in correct 
species discrimination. The analysis of oldest trees must be 
tested and compared, but some standardization on position 
of spectra obtention at DBH can contribute to practical 
applications, as the factor species is the most important, 
and properties are more variable and important in lower 
positions of tree (Rodriguez-Perez et al., 2022).

The use of spectra only from the DBH position 
increased correct classification of species (Tab. 4), as did the 
use of derivatives. LDA had the lowest correct classification. 
K-NN and SVM performed well using 1st and 2nd derivative, 
varying in function of species. For k-NN, five species were 
correctly classified above 91% with first derivative and 6 
species with second derivative, while according to SVM, one 
species was adequately identified with first derivative and 5 
with second derivative. 

LDA – Raw data KNN – Raw data SVM – Raw data
ANG CAT FEB IMB JUP MAN PAM PER ANG CAT FEB IMB JUP MAN PAM PER ANG CAT FEB IMB JUP MAN PAM PER

ANG 82 15 0 8 1 3 3 3 ANG 85 0 2 2 1 0 2 12 ANG 100 3 0 1 0 0 3 19

CAT 4 4 0 2 0 0 0 0 CAT 9 96 1 17 6 5 21 6 CAT 4 110 2 11 4 5 10 2

FEB 10 119 59 13 12 15 12 11 FEB 19 5 94 5 5 5 13 27 FEB 9 3 104 4 1 2 14 26

IMB 37 3 22 74 38 4 106 26 IMB 0 7 11 73 0 0 6 4 IMB 10 4 12 107 4 13 20 3

JUP 0 0 4 2 53 1 4 2 JUP 5 6 1 15 119 8 9 1 JUP 2 3 0 5 127 4 2 3

MAN 0 2 22 7 12 114 12 37 MAN 1 3 4 13 11 112 20 22 MAN 0 4 2 11 5 102 17 14

PAM 9 0 8 8 4 5 7 2 PAM 24 25 18 17 1 5 67 14 PAM 15 14 12 2 2 14 73 9

PER 2 0 29 30 24 2 0 63 PER 1 2 13 2 1 9 6 58 PER 4 3 12 3 1 4 5 68

LDA – First derivative KNN – First derivative SVM – First derivative
ANG CAT FEB IMB JUP MAN PAM PER ANG CAT FEB IMB JUP MAN PAM PER ANG CAT FEB IMB JUP MAN PAM PER

ANG 97 107 5 5 19 30 13 48 ANG 130 0 0 0 0 0 0 5 ANG 3 0 0 0 0 0 0 0

CAT 5 29 0 15 1 3 31 0 CAT 0 144 0 3 0 0 2 1 CAT 0 10 0 0 0 0 0 0

FEB 0 4 82 0 0 0 1 17 FEB 1 0 125 0 1 0 5 14 FEB 0 0 34 0 0 0 0 1

IMB 5 0 2 109 8 0 82 4 IMB 0 0 1 132 0 0 4 0 IMB 141 134 109 144 75 92 126 109

JUP 1 0 8 6 100 0 1 2 JUP 4 0 2 3 143 0 0 4 JUP 0 0 0 0 69 0 0 0

MAN 0 0 7 1 5 101 1 2 MAN 0 0 0 6 0 140 6 0 MAN 0 0 0 0 0 52 0 0

PAM 5 0 4 7 9 10 9 4 PAM 3 0 12 0 0 4 123 5 PAM 0 0 1 0 0 0 18 0

PER 31 4 36 1 2 0 6 67 PER 6 0 4 0 0 0 4 115 PER 0 0 0 0 0 0 0 34

LDA – Second derivative KNN – Second derivative SVM – Second derivative
ANG CAT FEB IMB JUP MAN PAM PER ANG CAT FEB IMB JUP MAN PAM PER ANG CAT FEB IMB JUP MAN PAM PER

ANG 17 0 0 0 0 7 0 18 ANG 110 0 0 0 0 0 0 3 ANG 0 0 0 0 0 0 0 0

CAT 43 0 0 50 0 38 8 39 CAT 25 144 0 0 0 0 0 0 CAT 0 0 0 0 0 0 0 0

FEB 71 2 128 58 34 3 65 74 FEB 0 0 141 0 2 0 0 2 FEB 0 0 0 0 0 0 0 0

IMB 6 0 3 0 1 18 18 4 IMB 0 0 0 144 2 0 0 0 IMB 3 0 1 144 1 0 0 1

JUP 0 0 3 14 100 1 7 0 JUP 0 0 0 0 91 0 0 0 JUP 19 0 20 0 69 0 0 0

MAN 0 0 0 15 3 50 38 0 MAN 0 0 0 0 48 24 0 0 MAN 3 0 1 0 72 24 0 1

PAM 3 0 10 6 6 27 5 7 PAM 6 0 2 0 0 120 128 0 PAM 28 0 24 0 0 120 127 0

PER 4 142 0 1 0 0 1 2 PER 3 0 1 0 1 0 16 139 PER 91 144 98 0 2 0 17 142

Table 2: Confusion matrix of external classification by LDA, KNN and SVM based on NIR spectra in all tree positions 
(n=144 in each species).
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There was no pattern of bark characteristics for 
incorrect classification of samples, which can be explained 
in function of morphological characteristics of bark related 
to different surface irregularities, or perhaps the presence 
of fungi. This variation is in accordance with the results 
described in Amazonian trees, where the authors reported 
the absence of a clear pattern for correct or incorrect 
classification (Hadlich et al., 2018), and analysis in a boreal 
forest (Juola et al., 2022).

Other authors have also described that 
SVM produces better results than LDA, such as for 
discrimination of western hemlock and hem-fir green mix 
of timber (Zhou et al., 2020). SVM was also efficient in 
discrimination of Betula pendula, Pinus sylvestris and Picea 
abies stem bark (Juola et al., 2020) and was described as 
the best classification method for determining biofuel 
quality based on NIR spectra (Mancini et al., 2019). 
Similarly, SVM had an accuracy of 93% in discriminating 
Chinese trees with different origins (Li et al., 2022), and 
accuracy above 99% in identification of 25 wood species 
applied in floors (Pan et al., 2021). On the other hand, 

Sem et al. (2018) reported that LDA was more sensitive to 
class-imbalance than SVM.  

Table 5 indicates that better accuracy results were 
obtained with K-NN and first-derivative spectra. Lower 
accuracy (spectra in all tree positions and from DBH) 
were obtained for LDA classification by applying spectra 
after second-derivative adjust. It is important to comment 
that other author’s obtained good results using LDA to 
distinguish Amazonian species with bark samples (Hadlich 
et al., 2018), highlighting the importance of studies with 
multivariate analysis and different plant tissues and also 
different biomes.

Although bark typically has more intraspecific 
spectral variation, as a result of environmental effects, 
thickness and plant age, which can hinder the discrimination 
power of NIR (Hadlich et al., 2018), our results indicate the 
technique’s potential to identify Caatinga species based on 
bark spectra. It is important to evaluate the same species 
with different ages in forest and after cut, as logs, before 
debarking in industry, to confirm the accuracy of technique 
in practical applications. 

LDA – Raw data KNN – Raw data SVM – Raw data
ANG CAT FEB IMB JUP MAN PAM PER ANG CAT FEB IMB JUP MAN PAM PER ANG CAT FEB IMB JUP MAN PAM PER

ANG 9 0 0 0 0 0 1 0 ANG 13 0 0 0 0 0 3 0 ANG 9 0 0 0 0 0 0 0

CAT 1 2 0 0 0 0 0 0 CAT 0 14 0 5 0 0 6 1 CAT 0 13 0 2 0 0 6 0

FEB 1 0 9 0 0 1 2 1 FEB 5 0 14 1 0 0 2 9 FEB 3 1 16 1 0 0 1 5

IMB 7 18 6 21 20 1 19 2 IMB 1 3 1 5 0 0 2 1 IMB 9 3 2 12 0 11 6 2

JUP 0 0 0 1 2 0 0 0 JUP 0 0 0 4 22 1 2 1 JUP 0 0 0 0 22 1 0 0

MAN 3 2 1 0 1 21 1 6 MAN 1 1 1 1 1 9 3 3 MAN 1 5 1 4 2 12 4 2

PAM 2 2 1 0 1 1 1 0 PAM 4 3 3 5 1 3 6 0 PAM 0 2 2 3 0 0 7 2

PER 1 0 7 2 0 0 0 15 PER 0 3 5 3 0 11 0 9 PER 2 0 3 2 0 0 0 13

LDA – First derivative KNN – First derivative SVM – First derivative
ANG CAT FEB IMB JUP MAN PAM PER ANG CAT FEB IMB JUP MAN PAM PER ANG CAT FEB IMB JUP MAN PAM PER

ANG 15 0 0 0 0 0 0 2 ANG 22 0 0 0 0 0 0 0 ANG 0 0 0 0 0 0 0 0

CAT 2 20 0 0 2 0 0 0 CAT 0 24 0 2 0 0 2 0 CAT 0 9 0 0 0 0 0 0

FEB 1 0 18 0 0 0 0 2 FEB 0 0 23 0 0 0 0 7 FEB 0 0 8 0 0 0 0 1

IMB 0 0 0 21 1 0 21 1 IMB 0 0 0 22 0 0 2 0 IMB 24 15 16 24 20 23 24 22

JUP 0 0 0 0 12 0 0 0 JUP 0 0 0 0 24 0 0 0 JUP 0 0 0 0 4 0 0 0

MAN 0 0 0 0 1 17 0 0 MAN 0 0 0 0 0 13 0 0 MAN 0 0 0 0 0 1 0 0

PAM 1 0 1 3 8 6 0 3 PAM 0 0 0 0 0 11 20 1 PAM 0 0 0 0 0 0 0 0

PER 5 4 5 0 0 1 3 16 PER 2 0 1 0 0 0 0 16 PER 0 0 0 0 0 0 0 1

LDA – Second derivative KNN – Second derivative SVM – Second derivative
ANG CAT FEB IMB JUP MAN PAM PER ANG CAT FEB IMB JUP MAN PAM PER ANG CAT FEB IMB JUP MAN PAM PER

ANG 6 0 0 0 0 0 1 1 ANG 22 0 0 0 0 0 0 0 ANG 0 0 0 0 0 0 0 0

CAT 12 7 3 3 3 0 0 7 CAT 0 24 0 0 0 0 0 1 CAT 0 24 0 0 0 0 0 1

FEB 2 0 3 0 0 0 9 5 FEB 1 0 24 0 1 0 0 7 FEB 0 0 24 0 1 0 0 1

IMB 0 0 4 0 0 0 10 1 IMB 0 0 0 24 0 0 0 0 IMB 0 0 0 24 0 0 2 0

JUP 0 0 0 0 11 0 0 1 JUP 0 0 0 0 23 0 0 0 JUP 0 0 0 0 23 0 0 0

MAN 0 0 0 7 0 0 0 0 MAN 0 0 0 0 0 0 0 0 MAN 0 0 0 0 0 0 0 0

PAM 0 0 3 9 10 11 0 0 PAM 0 0 0 0 0 24 22 0 PAM 0 0 0 0 0 24 21 0

PER 4 17 11 5 0 13 4 9 PER 1 0 0 0 0 0 2 16 PER 24 0 0 0 0 0 1 22

Table 3: Confusion matrix of external classification by LDA, KNN and SVM based on NIR spectra in DBH position (n=24 
for each species).
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Also, the study of other species from the same region 
or other forest origin, with variations in point of spectra 
obtention to confirm that the DBH is the position more indicate 
to distinction of material. The use of near infrared in forest can 
confirm the correct species before cut on forest management, 
contributing to conservation of Caatinga resources and an 
adequate use of species with high aggregated value. 

CONCLUSIONS

The accuracy values ranged from 0.19 to 0.91, varying 
in function of different pretreatments of spectral data and 
also classification methods. Near-infrared spectroscopy with 
multivariate analysis has potential to discriminate Caatinga 

species. Considering the diverse discriminant models 
tested, better results were obtained for K-NN classification 
with first-derivative spectra, with data obtained at all tree 
height positions. Also, satisfactory results were obtained 
only applying spectra obtained in DBH position, making 
the access and spectra obtention easiness in forest. It is 
important to note that for application in the field, more 
data on these species are necessary.
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Analysis Transformation
Accuracy (%)

Spectra in all tree position Spectra from DBH
LDA Raw data 0.42 0.42

1st derivative 0.52 0.62
2nd derivative 0.26 0.19

SVM Raw data 0.69 0.54
1st derivative 0.32 0.25
2nd derivative 0.44 0.72

K-NN Raw data 0.61 0.48
1st derivative 0.91 0.85
2nd derivative 0.81 0.81

All tree positions
Method/transformation ANG CAT FEB IMB JUP MAN PAM PER

LDA

Raw spectra 56.9 2.7 41.0 51.4 36.8 79.2 4.9 43.7

1st derivative 67.4 20.1 56.9 75.7 69.4 70.1 6.2 46.5

2nd derivative 11.8 0 88.9 0 69.4 34.7 3.5 1.4

k-NN

Raw spectra 59.0 66.7 65.3 50.7 82.6 77.8 46.5 40.3

1st derivative 90.3 100 86.8 91.7 99.3 97.2 85.4 79.9

2nd derivative 76.4 100 97.9 100 63.2 16.7 88.9 96.5

SVM

Raw spectra 69.4 76.4 72.2 74.3 88.2 70.8 50.7 47.2

1st derivative 2.1 6.9 23.6 100 47.9 36.1 12.5 23.6

2nd derivative 0 0 0 100 47.9 16.6 88.2 98.6

Only DBH position
Method ANG CAT FEB IMB JUP MAN PAM PER

LDA

Raw spectra 37.5 8.3 37.5 87.5 8.3 87.5 4.2 62.5

1st derivative 62.5 83.3 75.0 87.5 50.0 70.8 0 66.7

2nd derivative 25.0 29.2 12.5 0 45.8 0 0 37.5

k-NN

Raw spectra 54.2 58.3 58.3 20.8 91.7 37.5 25.0 37.5

1st derivative 91.7 100 95.8 91.7 100 54.2 83.3 66.7

2nd derivative 91.7 100 100 100 95.8 0 91.7 66.7

SVM

Raw spectra 37.5 54.2 66.7 50.0 91.7 50.0 29.2 54.2

1st derivative 0 37.5 33.3 100 16.7 4.2 0 4.2

2nd derivative 0 100 100 100 95.8 0 87.5 91.7

Table 4: Correct classification in external prediction for Caatinga species discrimination.

Table 5: Accuracy of tests performed to distinguish Caatinga species.
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