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ABSTRACT

Background: Spondias tuberosa Arruda (Anacardiaceae) is a tree species of growing conservation 
concern due to population decline driven by current land-use practices in the Caatinga, a highly 
vulnerable ecosystem. The decline of S. tuberosa populations is particularly concerning given its 
ecological importance and value to local communities. This study aims to quantify the impact of 
fruit extraction on S. tuberosa populations and to predict current and future climatically suitable 
habitats for the species, thereby providing critical insights for developing effective management and 
conservation strategies. Production data (tons) and commercial value (U.S. dollars) were collected 
from 1994 to 2021. Using the Maxent algorithm, we correlated species occurrence records with key 
climatic variables under two climate change scenarios from the Intergovernmental Panel on Climate 
Change (IPCC): an optimistic scenario (RCP2.6) and a pessimistic scenario (RCP8.5).

Results: Bahia was the leading producer and trader of S. tuberosa fruits between 1994 and 2021, despite 
the species’ broader distribution across the Northeast Brazil. The Maxent models demonstrated high 
predictive accuracy (AUC > 0.94) for both current conditions and future climate change scenarios. 
Annual precipitation was identified as the most influential climatic variable shaping the distribution 
of S. tuberosa.

Conclusion: Future climate scenarios project a significant expansion of suitable habitats for S. tuberosa 
in Pernambuco and Bahia. The findings support the development of sustainable resource management 
strategies, such as establishing commercial plantations and the creation of ex-situ conservation banks 
alongside environmental protection areas.

Keywords: Caatinga; climate change; fruit extraction; habitat prediction; population decline.

HIGHLIGHTS

S. tuberosa faces population decline due to Caatinga land-use practices.
Fruit extraction impacts S. tuberosa populations and future distributions.
Maxent models predict expanded suitable habitats in Pernambuco and Bahia.
Annual precipitation is the key factor in S. tuberosa distribution.
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INTRODUCTION

The Northeast region of Brazil is predominantly 
covered by xerophytic vegetation known as Caatinga, 
classified as Seasonally Dry Tropical Forest and Woodland 
(SDTFW) (Queiroz et al., 2017). The Caatinga’s unique climate, 
characterized by irregular rainfall, has driven the evolution 
of vegetation with remarkable adaptations to prolonged 
drought. However, this ecosystem faces significant threats, 
including anthropization and deforestation, primarily 
due to the intensive illegal exploitation of native plant 
species (Oliveira & Bernard, 2017). These pressures raise 
critical concerns about the conservation and sustainable 
management of the Caatinga.

Overexploitation can lead to environmental 
degradation, especially in biomes already experiencing 
deforestation (Santos et al., 2021). However, for traditional 
populations, sustainable plant extraction provides 
employment opportunities and income while supporting 
environmental conservation through the protection of 
exploited species (Soares et al., 2018). Spondias tuberosa 
Arruda (Anacardiaceae) is among the most economically 
important trees in the Caatinga biome. Official government 
data (IBGE, 2021) report an annual production value 
exceeding $3.6 million from fruit extraction. The fruits 
are rich in bioactive compounds, exhibiting significant 
antioxidant potential, high levels of vitamin C, and abundant 
phenolic compounds (Rodrigues et al., 2024). They also 
contain considerable amounts of total and soluble pectin, 
underscoring their potential for both fresh consumption 
and industrial processing (Santos et al., 2021).

Climate change and its associated shifts in 
temperature and precipitation can dramatically alter suitable 
habitat distributions, potentially causing biome transitions 
in tropical forests (Donoghue & Edwards, 2014). Trees are 
particularly vulnerable due to their slower response times, 
experiencing phenological and distributional disruptions 
(Margrove et al., 2015; Wang et al., 2022). Their limited 
capacity for rapid adaptation increases susceptibility to 
climate-triggered catastrophic events in forest ecosystems, 
including heat and water stress (Butt et al., 2015).

Therefore, studying the ecological factors influencing 
species distribution across different geographic areas is 
crucial. Ecological niche models (ENMs) have become 
a valuable and widely used tool in scientific research, 
contributing significantly to various scientific fields (Nabout et 
al., 2016). ENMs can predict spatial abundance relationships, 
genetic variability, species distribution, habitat suitability, 
and even extinction risks (Soares et al., 2015; Lucas et al., 
2021). Research indicates that S. tuberosa is experiencing 
reduced regeneration capacity, leading to population decline 
(Mertens et al., 2017). When combined with various natural 
and anthropogenic threats, this decline raises concerns 
about potential species extinction (Mertens et al., 2017).

Previous studies have employed modelling 
approaches to evaluate climate change impacts on Spondias 
tuberosa and other wild food plants in the Brazilian semiarid 
region (da Silva et al., 2024). These studies underscore 
the vulnerability of S. tuberosa to habitat reduction and 

overharvesting, highlighting the urgent need for research 
on combined climate change and anthropogenic pressures 
(Caetano et al., 2023). Based on these findings, our study 
aims to analyze historical fruit extraction patterns and 
assess the habitat suitability for Spondias tuberosa under 
current and future climate change scenarios. These analyses 
aim to provide insights for developing management 
and conservation strategies to safeguard the species, 
addressing concerns about population decline, ecological 
importance, and potential socio-economic benefits for 
local communities. We tested the following hypotheses: i) 
regions with greater fruit extraction show higher production 
values, indicating regional commercialization; ii) regions 
with higher extraction have greater suitability; iii) annual 
precipitation, a limiting factor in semiarid environments, is 
the key suitability variable; iv) climate warming may create 
new suitable areas for S. tuberosa.

MATERIAL AND METHODS

Target species

Spondias tuberosa is a tree naturally occurring in the 
semiarid region of Northeast Brazil (Balbino et al., 2018). 
Despite its economic and ecological importance, studies on 
its physiology and interactions with the ecosystem remains 
limited (Mertens et al., 2015). The species survives during 
the dry season through deciduousness, which reduces the 
transpirational surface and effectively controls water loss 
(Veras et al., 2018). The flowers are male and hermaphroditic, 
characterizing an andromonoecious sexual system (Nadia 
et al., 2007). During dry seasons, S. tuberosa provides 
nectar and pollen, attracting various insects, including bees 
(Apis mellifera and Trigona sp.), wasps (Polistes canadensis, 
Zethus mexicanus), and flies (Sarcophagidae) (Nadia et 
al., 2007; Mertens et al., 2015). The fruits are glabrous or 
slightly pilose, rounded, measuring 2-4 cm in diameter and 
weighing 10-20 g (Figure 1). The fruits have barochoric and 
zoochoric dispersal, but the absence of dispersers due to 
hunting pressure contributes to a severe reduction in the 
population of S. tuberosa in the Caatinga (Mertens et al., 
2017). Fruit extraction represents an important income 
source in Northeast Brazil, highlighting its potential as a 
crop with economic and social benefits (Lins Neto et al., 
2010). The fruits are commercialized fresh or processed into 
pulps, drinks, jellies, and sweets (Lins Neto et al., 2010).

Data on fruit extraction, geographical distribution, 
and climatic variables

Production data (fruit extraction) and commercial 
values were obtained from the Brazilian Institute of 
Geography and Statistics (IBGE) database using the 
Automatic Retrieval System (SIDRA) (IBGE, 2021). We 
analysed the most recent 24 years of available data (1994 
to 2021), covering all Brazilian states with records of S. 
tuberosa fruit production. Descriptive statistical analyses 
were then performed.
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S. tuberosa occurrence data were obtained from 
SpeciesLink (http://splink.cria.org.br). After filtering 
available records, only data with geographic coordinates 
spaced ≥ 5 km apart were retained to eliminate duplicates 
and overlapping data (Oliveira et al., 2018). For current 
and future distribution modelling, we considered nineteen 
bioclimatic variables (bio1-bio19) representing temperature, 
precipitation, and seasonality parameters, obtained 
from WorldClim 1.4 at 30 arc-second (~1 km) resolution. 
BIOCLIM variables (Booth et al., 2014) were selected by: (1) 
excluding variables with Area Under the Receiver Operating 
Characteristic Curve (AUC-ROC) values < 0.7; (2) removing 
predictors showing low training/test gain values (Table S1), 
as these demonstrate poor predictive performance (Pearce 
& Ferrier, 2000); and (3) eliminating highly correlated 
variables (|r| ≥ 0.85, Table S2) to avoid multicollinearity (Wei 
et al., 2017). Multicollinearity analysis was performed using 
ENMTools 1.4.3 (http://purl.oclc.org/enmtools), resulting in 
eight final predictor variables (Table S3).

Ecological niche modelling

We used Maxent software version 3.3.3k to build 
models for potential geographic distribution areas (Elith 
et al., 2006; Phillips et al., 2006). We assessed variable 
importance with the Jackknife test and ensured model 

convergence through 5,000 iterations and 10-fold cross-
validation. Maxent computes the Area Under the Curve 
(AUC) index, ranging from 0.5 to 1, with 1 indicating the 
best model fit (Phillips et al., 2006).

The analyses were performed for two periods: 
the current baseline, using the average of the years 1960 
- 1990, and the future period, using the average of the 
years 2061 to 2080 (2070s). Future predictions considered 
optimistic (RCP2.6) and pessimistic (RCP8.5) climate 
scenarios using four Atmospheric General Circulation 
Models (AGCM): HadGEM2-ES, GISS-E2-R, MIROC-ESM, 
and CCSM4 (Watanabe et al., 2011; Goberville et al., 2015) 
(Table 1). Species distribution maps were created using 
QGIS software v. 3.0.0 (https://www.qgis.org/pt_BR/site/). 
Habitat suitability is represented by a colour gradient, 
with red indicating high suitability and blue indicating 
low suitability.

RESULTS

Geographic Distribution and Extractivism

We obtained 253 occurrence records of S. tuberosa, 
with most concentrated in the Northeast Brazil (Figure 2).

Fruit extraction of S. tuberosa (tons) varied among 
states from 1994 to 2021 (Figure 3). Bahia led in production 

Model Code Model Name Source
HADGEM2-ES Hadley Centre Global Environment Model Jones et al. 2011

GISS-E2-R Goddard Institute for Space Studies Schmidt et al. 2014
MIROC-ESM Model for Interdisciplinary Research on Climate Watanabe et al. 2011

CCSM4 The Community Climate System Model Gent et al. 2011

Figure 1: (A) Spondias tuberosa Arruda (Anacardiaceae) specimen in its natural habitat, bearing mature fruits. (B) Close-
up of S. tuberosa fruits, showing their characteristic shape and colour variation. (C) Collected fruit, with a size reference 
in centimetres for scale.

Table 1: AGCM models used for modelling the future scenario.
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throughout this period, peaking at 10,078 tons in 1997. 
However, Bahia’s production declined to 8,624 tons in 
2010 and continuing decreasing in subsequent years. 
Pernambuco maintained the second-highest production, 
equivalent to the levels observed in 1995, totalling 874 tons. 
Minas Gerais showed significant increases starting in 2016, 
reaching 1,198 tons. Notably, Minas Gerais experienced 
substantial production growth between 2016 and 2021, 
reaching 5,077 tons in 2021. 

Bahia dominated fruit production value (U.S. dollars) 
throughout 1994-2021 (Figure 4), maintaining its position 
as the top producer. In 2021, Bahia’s production of S. 
tuberosa fruits amounted to 1,460 thousand dollars. Minas 
Gerais followed closely with 981 thousand dollars in 2021. 
Additionally, Pernambuco and Alagoas achieved significant 
values for the fruit in 2020 ($109 thousand; $125 thousand) 
and 2021 ($125 thousand; $179 thousand), respectively, 
despite lower extraction volumes (tons). 

Figure 2: Geographic distribution of Spondias tuberosa across Brazilian states, including Maranhão (MA), Ceará (CE), Rio 
Grande do Norte (RN), Paraíba (PB), Pernambuco (PE), Piauí (PI), Alagoas (AL), Sergipe (SE), Bahia (BA), and Minas Gerais 
(MG). Projection system: WGS 84 datum.

Figure 3: Annual extraction of Spondias tuberosa fruits in Brazil, measured in tons, from 1994 to 2021. Data source: 
IBGE, 2021.
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Ecological Niche Modelling

Multicollinearity analysis (Table 2) selected eight 
bioclimatic variables for modelling S. tuberosa distribution: 
bio 1, bio 4, bio 7, bio 12, bio 13, bio 15, bio 18, and bio 19 (Table 
S3). After variable selection, the current period model showed 
high predictive accuracy (AUC = 0.94 ± 0.01). Based on the 
Jackknife test for the current period, annual precipitation (bio 
12) was the variable with the most significant impact when 
used alone. This variable also exhibited the highest values 

for information contribution and permutation importance. 
Pre-selection AUC values ranged from 0.63 to 0.93 (Table 2), 
while post-selection values improved between 0.70 and 0.93.

For RCP2.6 scenario projections, annual precipitation 
showed the highest contribution percentage and permutation 
importance across all four AGCMs (Table 3), with consistent 
AUC values (0.97 for all four models). Similarly, under RCP8.5 
scenario, annual precipitation also exhibited the highest 
contribution percentage and permutation importance 
values, with minimal variation in AUC (0.97-0.98).

Figure 4: Economic value of Spondias tuberosa fruit extraction in Brazil, expressed in thousand U.S. dollars (USD), from 
1994 to 2021. Data source: IBGE, 2021.

Pre-selection Post-selection

Variables Description Contribution (%) Perm. Import. (%) AUC Contribution (%) Perm. Import. (%) AUC

bio 1 Annual Mean Temperature 0.1 0.1 0.72 1.9 0.1 0.73
bio 2 Mean Diurnal Range 5 1.7 0.67
bio 3 Isothermality 1.1 1 0.63
bio 4 Temperature Seasonality 5.6 4.9 0.83 8 20.5 0.84

bio 5 Max Temperature of Warmest Month 0.6 0.7 0.68
bio 6 Min Temperature of Coldest Month 1.1 3.2 0.78
bio 7 Temperature Annual Range 1.6 2.3 0.81 7.4 4.8 0.82
bio 8 Mean Temperature of Wettest Quarter 0.8 0.5 0.64
bio 9 Mean Temperature of Driest Quarter 0.2 0.2 0.75
bio 10 Mean Temperature of Warmest Quarter 1.2 0.3 0.64
bio 11 Mean Temperature of Coldest Quarter 0.6 0.3 0.78
bio 12 Annual Precipitation 75.3 77.5 0.93 78 69.6 0.93
bio 13 Precipitation of Wettest Month 1.8 0.0 0.89 1.7 0.6 0.93
bio 14 Precipitation of Driest Month 0.4 2.5 0.70
bio 15 Precipitation Seasonality 0.2 1.1 0.74 0.2 0.1 0.73
bio 16 Precipitation of Wettest Quarter 2.2 0.7 0.90
bio 17 Precipitation of Driest Quarter 0.2 0.2 0.72
bio 18 Precipitation of Warmest Quarter 1.3 0.9 0.80 1.9 4 0.80
bio 19 Precipitation of Coldest Quarter 0.6 1.8 0.71 0.7 0.3 0.70

Post-selection excluded variables meeting any of these criteria: (1) AUC-ROC values < 0.7; (2) low training/test gain values (Table S1); and (3) 
multicollinearity (|r| ≥ 0.85, Table S2). The final model incorporated eight bioclimatic variables.

Table 2: Predictive modelling values before and after variable selection, showing the contribution and permutation 
importance of environmental variables for modelling the ecological niche of Spondias tuberosa for the current period.
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The suitability analysis shows S. tuberosa widely 
distributed across Northeast Brazil, with Pernambuco 
showing the highest suitability intensity, followed by Bahia 
(Figure 5 A). Other states also present suitable environmental 
conditions for S. tuberosa, though in progressively smaller 
proportions moving northward through Maranhão, Piauí, 
Ceará, and Rio Grande do Norte.

Future projections (2070s) across all models (Figure 
5 B-I) indicate an increase in suitable areas under both 
optimistic and pessimistic scenarios. This expansion occurs 
primarily within the Caatinga biome, notably in Rio Grande 
do Norte, northern/southeastern Bahia, and minimally in 
the northern Minas Gerais (Figure 5).

DISCUSSION

The state of Bahia plays a central role in S. tuberosa fruit 
extraction and commercialization, both in quantity (tons) and 
commercial value. Numerous collective interest associations, 
known as “Family Cooperatives”, have been established in 
Bahia, uniting rural producers engaged in fruit extraction and 
processing (Lins Neto et al., 2010). These cooperatives have 
achieved national and international markets recognition 
(Batista et al., 2015), transforming semiarid Bahia’s 
development by demonstrating its economic potential. 
This progress has fostered fruit cultivation expansion in the 
region, diversifying product use through derivatives like 
jellies and sweets (Batista et al., 2015; De Araujo et al., 2016). 

Consequently, these initiatives have created opportunities 
and enhanced living conditions for many farming families 
involved in fruit exploitation (Batista et al., 2015).

Despite conservation efforts (e.g., Sustainable 
Use Conservation Units protecting approximately 7.5% of 
Bahia territory [Hauff, 2008]), S. tuberosa fruit extraction 
declined from 1994 to 2021. This reduction may result 
from: (1) fewer mature S. tuberosa plants; (2) increased land 
fencing; (3) deforestation; and (4) declining reproductive 
adult populations. Land-use changes favouring cotton, 
soybean, and pasture expansion further threaten natural S. 
tuberosa populations in the semiarid region (De Araujo et 
al., 2016). Studies in Brazil’s semiarid areas emphasize risks 
from overexploitation and human disturbances, particularly 
for maintaining natural populations and genetic diversity 
(Santos et al., 2021; Chagas et al., 2023).

The appreciation of S. tuberosa fruit prices over the 
years indicates its increasing scarcity and reduced supply in 
the market, which has stimulated economic activity around 
this fruit. Periodic fluctuations in its commercial value are 
linked to annual variations in fruit production, demonstrating 
the relationship between supply and demand. As supply 
decreases, prices rise, explaining the 25-year upward trend. 
On the other hand, the significant increase in S. tuberosa fruit 
extraction and commercial value in the northern Minas Gerais 
likely results from efforts by EPAMIG (Agricultural Research 
Company of Minas Gerais) and researchers to identify and 
propagate high-yield regional genotypes (Abreu et al., 

RCP2.6 optimistic (2070) HadGEM2-ES GISS-ES-R MIROC-ESM CCSM4
Variables Description %C %IP %C %IP %C % P %C %IP

bio 1 Annual Mean Temperature 4.6 2.5 3.7 3.1 5.9 2 1 0.8
bio 4 Temperature Seasonality 2.2 3.6 14.5 15.1 7.4 5.2 13.2 6.5
bio 7 Temperature Annual Range 27.8 15.3 20.7 6.6 21.6 26.7 22.1 12.1

bio 12 Annual Precipitation 54.1 74.4 57.5 69.2 43.7 40.3 55.6 73.3
bio 13 Precipitation of Wettest Month 0.5 1 1 0.3 0.9 0.8 0.8 0.7
bio 15 Precipitation Seasonality 0.3 0.3 0.2 0.3 0.4 0.7 0.2 0.3
bio 18 Precipitation of Warmest Quarter 0.6 0.6 2 3.4 10.9 20.8 6.4 5.5
bio 19 Precipitation of Coldest Quarter 9.9 2.5 0.5 1.9 9.3 3.4 0.8 0.9
AUC 0.97 ± 0.01 0.97 ± 0.02 0.97 ± ± 0.02 0.97 ± 0,01

RCP8.5 pessimistic (2070) HadGEM2-ES GISS-ES-R MIROC-ESM CCSM4
Variables Description %C %IP %C %IP %C %IP %C %IP

bio 1 Annual Mean Temperature 2.9 2.2 6.8 2.2 5 4.9 1.9 3.1
bio 4 Temperature Seasonality 1.9 6.2 13.9 4.2 9.7 7.6 4.5 4.2
bio 7 Temperature Annual Range 25.7 7.2 10.1 8.8 19.7 17.8 23.2 7.7

bio 12 Annual Precipitation 55 77.3 61.4 80 37.4 42.8 65.7 80.8
bio 13 Precipitation of Wettest Month 1.1 1.6 2.8 1.8 0.9 7.6 0.9 0.6
bio 15 Precipitation Seasonality 0.7 0.7 0.4 0.4 0.4 4 0.8 0.4
bio 18 Precipitation of Warmest Quarter 1.2 0.6 3.8 1.1 10.2 13.7 2.2 2.3
bio 19 Precipitation of Coldest Quarter 11.4 4.1 0.7 1.4 16.7 0.6 0.9 0.9
AUC 0.97 ± 0.01 0.98 ± 0.01 0.97± 0.02 0.98 ± 0.02

Table 3: Percentage of contribution (%C), permutation importance (%IP), and area under the curve (AUC) 
of bioclimatic variables used in four atmospheric general circulation models (AGCM) for Spondias tuberosa.
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2007). This highlights the economic potential of this fruit 
for Brazil’s agriculture and as an alternative income source 
for the semiarid region. However, intense competition from 
producers in states like Bahia and Minas Gerais has caused 
some local traders to abandon the fruit due to unfavourable 
costs- earnings ratios (Lins Neto et al., 2010). 

Future studies should prioritize selecting high-
yield mother trees and establishing commercial orchards. 
Combined in situ/ex situ conservation of genotypes could 
enhance availability of quality propagules (seeds/grafts) to 

meet market demand, supporting extractive production 
in climatically suitable regions. S. tuberosa cultivation 
could focus strategically on Northeast Brazil, particularly 
Pernambuco, as indicated by model performance (AUC = 
0.94). While AUC remains widely used for model evaluation, 
its limitations (Lobo et al., 2008) and tendency for higher 
values in restricted-distribution species (Yang et al., 2013) 
warrant consideration. Despite ongoing AUC accuracy 
debates, it persists as a standard metric in distribution 
modelling (Ayan et al., 2022).

Figure 5: Current and projected future distribution of Spondias tuberosa in Brazil under different climate scenarios for 
2070. (A) Present distribution. (B-I) Projected suitability for 2070 under the RCP2.6 optimistic scenario: (B) HadGEM2-ES, 
(C) GISS-E2-R, (D) MIROC-ESM, (E) CCSM4. Under the RCP8.5 pessimistic scenario: (F) HadGEM2-ES, (G) GISS-E2-R, (H) 
MIROC-ESM, and (I) CCSM4.
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As expected, annual precipitation was the most 
influential variable in our models, given its critical role in 
fruit production. Within the Caatinga biome, precipitation 
influences species distribution (Rodrigues et al., 2015; Chagas 
et al., 2020) and is linked to the reproductive cycle of many 
plants (Rocha et al., 2015). For S. tuberosa, reproduction begins 
during dry periods (Lins Neto et al., 2013) characterized by 
high temperatures and low humidity. This triggers flowering 
followed by the emergence of the first leaves – an adaptation 
for survival and reproduction (Lima Filho, 2011). Leaf emergence 
after a drought reduces water consumption, and the absence 
of leaves during the dry seasons minimizes transpiration until 
the rains return (Lima Filho, 2011).

Both climate scenarios (optimistic and pessimistic) 
reveal similar suitability patterns for S. tuberosa, with high-
suitability areas consistently predicted across all models. 
Notably, all models project suitability expansion within 
the Caatinga biome, particularly in Rio Grande do Norte, 
northern Bahia, and new areas in northern Minas Gerais. 
These results suggest climate change may maintain or even 
increase suitable habitats for the species. Future studies 
should quantify these areas using additional methodologies 
(Chiu-Valderrama et al., 2022) and incorporate soil/
topographic data to better understand environmental 
responses. Spatial analyses should also measure habitat 
expansion, contraction, and persistence patterns.

The projected suitability of Spondias tuberosa in 
future scenarios holds particular importance for food security 
under climate change. Our models predict substantial habitat 
expansions in Pernambuco and Bahia, suggesting this species 
may maintain climatic resilience. This contrasts with most 
wild food plants in semiarid regions, which face projected 
reductions in suitable areas – potentially decreasing species 
richness and altering community composition (da Silva et 
al., 2024). Such changes could significantly impact regional 

nutrition security, subsistence, and economic development. 
Our findings position S. tuberosa as a potential climate 
adaptation resource, supporting conservation and food 
security strategies. 

As demonstrated here, integrating plant extraction 
data with species distribution modelling provides valuable 
insights for managing commercially important native 
species (Vaz & Nabout, 2016). Our suitability maps can 
guide S. tuberosa conservation areas and commercial 
plantations (Nabout et al., 2016). While future studies should 
incorporate production data, physiological responses 
to climate change, and additional variables, our models 
highlight optimal cultivation regions: Rio Grande do Norte, 
Paraíba, Pernambuco, Alagoas, Sergipe, and Bahia.

Sustainable management of S. tuberosa populations 
requires implementing extraction limits to ensure long-
term viability. In situ conservation is needed to preserve 
genetic diversity (Sales et al., 2024), complemented by ex 
situ germplasm banks (Santos et al., 2021). These strategies 
are crucial for guiding S. tuberosa conservation in Brazil’s 
semiarid region, ensuring sustainable resources for 
traditional communities. Figure 6 outlines recommended 
sustainable extraction practices, highlighting collaboration 
between extractivists, researchers, and regulatory agencies.

Experienced extractivists hold valuable traditional 
knowledge about the species and ecosystem, essential for 
implementing sustainable practices. Research findings can 
enhance these methods by recommending: a) rotational 
harvesting to enable population recovery, b) selective 
harvesting of mature fruits to minimize damage to younger 
trees and promote long-term productivity, and c) habitat 
restoration to increase S. tuberosa carrying capacity. 
Simultaneously, environmental agencies can provide 
oversight, enforce sustainable practices, and ensure 
regulatory compliance.

Figure 6: Collaborative approach to sustainable management of Spondias tuberosa. The circular diagram illustrates 
the interactions between experienced extractivists, scientific research, and environmental and regulatory agencies in 
promoting sustainable harvesting practices.
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CONCLUSIONS

Brazilian states with highest S. tuberosa fruit 
production show correspondingly high commercial values, 
with Bahia leading in both extraction and suitable areas. 
Annual precipitation is the key climatic variable influencing 
the species’ distribution, and predictive modelling identified 
favourable regions for its production in Piauí, Rio Grande 
do Norte, Paraíba, Pernambuco, Alagoas, Sergipe, Bahia, 
and northern Minas Gerais. Climate projections indicate 
expanding suitability for S. tuberosa.

Sustainable extraction requires integrating 
traditional extractivist knowledge with scientific research 
and agency coordination. Key recommendations include: 
(1) collecting fruits only from trees bases, (2) leaving 
damaged fruits on the ground, and (3) rotating harvest 
areas to maintain seed dispersal and population viability. 
These practices offer essential guidance for policymakers 
and conservationists in similar ecosystems.
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