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ABSTRACT

Background: The determination of seed moisture content is of utmost importance for the evaluation 
of its quality. Near-infrared (NIR) spectroscopy has been successfully applied to estimate properties 
of biological materials. However, studies using this technique on forest seeds are still scarce. Thus, 
the aim of this study was to explore the potential of NIR spectroscopy for estimating the moisture 
content of E. uniflora seeds. NIR spectra were obtained using optical fiber from 100 individual seeds 
that were dehydrated in silica gel for 2, 7, 14, and 21 days. Subsequently, the seeds were subjected 
to the moisture test by the oven method, and had moisture contents of 52.4%, 41.7%, 33.1%, 21.8%, 
and 18.1%, respectively. 

Results: Principal component analysis (PCA) of the spectral signatures explained 100% of the data 
variability. The moisture content was associated with the spectra by partial least squares regression 
(PLS-R) and the predictive model presented a coefficient of determination in cross-validation (R²cv) 
of 0.88 and the root mean square error of cross-validation (RMSEcv) was 5.43%. 

Conclusion: The statistics associated with the models indicate that NIR spectroscopy has potential 
for estimating the moisture content of E. uniflora seeds.

Keywords: Seed desiccation; seed physiology; seed technology.

HIGHLIGHTS

The use of Near-infrared (NIR) spectroscopy coupled with multivariate analysis proved to be efficient 
for predicting the moisture content of E. uniflora seeds, with a coefficient of determination of 0.88 
and a root mean square error of 5.43%, indicating that the model is robust and generated reliable 
estimates.
The moisture content determination of E. uniflora seeds through NIR has the advantages of being 
non-destructive and much faster when compared to the conventional oven method.
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 INTRODUCTION

The moisture content is one of the parameters that 
is most related to seed quality. From it, it is possible to 
determine the harvest time, how it will be handled after 
harvest and for how long it remains viable without losing its 
physiological quality (Garcia and Coelho, 2021).

There are several methods for determining the 
moisture content of seeds, with the most used and 
recommended by the Association of Official Seed Analysts 
(AOSA) and the International Seed Testing Association 
(ISTA) being the method using an air circulation oven 
(Besharati et al., 2021; Hay et al., 2023). This method is 
also cited by the Rules for Seed Analysis (Brazil, 2009) and 
follows a destructive procedure, which often compromises 
the study, since, in the forestry sector, seed lots are almost 
always represented by reduced quantities. In addition, the 
method requires time in an oven at 105°C for 24 hours. 
Therefore, it is important that accurate and fast methods 
are available to determine the moisture content of seeds.

The use of rapid and non-destructive analytical 
techniques, such as near-infrared (NIR) spectroscopy, has 
been widely studied for the determination of different 
characteristics and evaluation of the quality of agricultural 
products (Mendez et al., 2019; Aguiar et al., 2022), wood 
(Medeiros et al. 2023) and paper (Lima et al. 2022). This 
technique is based on electromagnetic radiation in the 
near-infrared region, which extends from a wavelength of 
750 to 2500 nm (or a wavenumber of 12500 cm-¹ to 4000 
cm-¹), and interacts with organic molecules, especially in 
-CH, -OH, -NH, -SH, and C=O interactions (Cao et al., 2020).

Water is a component that is intensely detected 
by electromagnetic radiation in the NIR, so samples with 
high water content (> 80%) are strongly dominated by the 
water band, consequently, the most intense absorption 
appears in the wavelength range of 1940 nm (Larios et al., 
2020). When the samples undergo a dehydration process, 
changes occur in the spectra and a sharp decrease in the 
absorption of infrared intensity in the wavelength range of 
water (Sakare et al., 2020). The determination of moisture 
content from the NIR spectrum does not reflect only water 
due to the specificity of the wavelength range of 1940 nm, 
but also the loss of volatiles during the drying process 
(Genisheva et al., 2018).

Near-infrared spectroscopy presents a number of 
advantages over traditional analytical methods (Zhou et 
al., 2020). In addition to being a non-destructive technique, 
it requires minimal or no sample preparation, no reagent 
is used, so no residue is produced; it is a multianalytical 
technique, that is, several constituents of the same sample 
can be obtained simultaneously, and its accuracy can be 
high (Larios et al., 2020; Ribeiro et al., 2020;). Regarding 
the disadvantages of the technique, it is observed the 
dependence on calibration procedures, these obtained 
from traditional analytical methods. Another disadvantage 
is the complexity in choosing the models that best represent 
the data (Paz et al., 2019).

Numerous studies have applied NIR technology 
to seeds of annual plants and agricultural crops, such as 

peanuts (Raigar et al., 2024), soybeans (Silva et al., 2024), 
and coffee (Macedo et al., 2021). Agelet and Hurburgh 
(2014) reviewed critical aspects of NIRS for single seed 
analysis, including reference methods, sample morphology, 
and spectrometer suitability. In the context of moisture 
estimation in grains, Zhang and Guo (2020) evaluated 
maize seed moisture using visible/near-infrared (Vis/NIR) 
technology. Their findings indicated that PLSR models 
based on NIR spectra outperformed Vis/NIR models in 
predicting maize seed moisture content.

To our knowledge, no studies have explored the 
application of NIR technology for estimating moisture 
content in Eugenia uniflora seeds. Therefore, this study 
aims to develop near-infrared spectroscopy models 
capable of assessing the moisture content of dehydrated 
E. uniflora seeds.

MATERIAL AND METHODS

Seed collection and processing

Ripe E. uniflora fruits were collected in november 
2017 from mother trees located in Lavras, MG (21º14´ S 
and 45º00´ W), and seed processing was carried out by 
macerating the fruits in a sieve under running water.

Seed dehydration

Moisture content was determined individually for 
freshly collected seeds and for seeds that were dehydrated 
in silica gel for 2, 7, 14, and 21 days to achieve target 
moisture levels of 40%, 30%, 20%, and 10%, for a total of 
100 E. uniflora seeds.

Dehydration was performed in a laboratory at a 
temperature of 20 ºC in a hygrostat box made of rigid, dark 
plastic with a ventilation system. The seeds were placed 
on a screen to prevent direct contact with the desiccant 
material and weighed periodically. 

The target weights corresponding to the different 
target moisture levels were calculated according to Hong 
and Ellis (1996). Every time a target weight was reached, 
a sample was removed for the acquisition of spectra and 
subsequent moisture determination in an oven.

Near-infrared (NIR) spectral acquisition

The spectral signatures were obtained using a Bruker 
FT-NIR spectrometer (model MPA, Bruker Optik GmbH, 
Ettlingen, Germany) in a climate-controlled room (20 °C 
and 60% relative humidity). The spectra were measured 
directly on the seeds before the moisture test for each 
treatment. The acquisition of the spectra was performed 
in the range of 12500 to 3500 cm-1 (800 to 2857 nm) with 
spectral resolution of 8 cm-1 and 16 scans per reading in 
diffuse reflectance mode. The multivariate analyses were 
performed using two databases: 1) from 12500 to 4000 
cm-1 and 2) from 9000 to 4000 cm-1. The spectrometer 
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is connected to a computer that stores the data of the 
collected spectra using the OPUS software, version 7.0. 
Twenty (20) seeds from each treatment were individually 
analyzed using a fiber optic probe.

Moisture Test as a Reference Method

After reading the spectra, the moisture content was 
determined for the freshly collected seeds and for those 
that had been dehydrated. In each treatment, 20 seeds 
were individually cut in half, placed in an oven at 105 °C 
for 24 hours under forced air circulation, in accordance 
with the Rules for Seed Analysis – RAS (Brasil, 2009). The 
moisture content was expressed as a percentage based on 
the wet weight.

Multivariate data analysis

Multivariate data analysis was performed using 
the Chemoface® software version 1.61 (Nunes et al., 
2012). Principal component analysis (PCA) was performed 
on raw data to obtain an overview of the data and to 
detect outliers.

Partial Least Squares Regression (PLS-R) was used 
to relate the NIR spectral signatures to the data obtained 
by the reference method performed in the laboratory 
for the moisture test of seeds. The number of latent 
variables was defined based on maximizing the coefficient 
of determination and minimizing the validation error 
standard. The calibration of the models was validated 
using the leave-one-out (full) cross-validation method. 
Mathematical treatments and spectral band selection were 
applied to improve the models. Normalization (Norm), 
Standard normal variation (SNV), Multiplicative scatter 
correction (MSC) and first and second derivatives were 
computed for spectra using the Savitzky‒Golay algorithm 
with 13 smoothing points and either 2 or 3 polynomial 
orders directly within the Chemoface software (https://
www.ufla.br/chemoface/), aiming to diminish noise and 
enhance signal quality.

RESULTS

Seed dehydration and moisture determination

The mean and standard deviation of the moisture 
content of freshly collected seeds obtained in the laboratory 
were 52.4% and 4.1%, respectively, while the moisture 
content predicted by the NIR model was 52.4 ± 2.6%. Seeds 
subjected to dehydration in silica gel for 2 days reached 
a mean and standard deviation of 41.7% ± 6.9%. After 7 
days of dehydration, the seeds reached a moisture content 
of 33.1% ± 11.6%. After 14 days, the seeds had a moisture 
content of 21.8% ± 11.6% and, after 21 days of exposure to 
silica gel, the seeds had a mean and standard deviation of 
18.1% ± 9.2% (Figures 1 and 2).

NIR spectral signature

The acquisition of the spectra of E. uniflora seeds 
was performed in the range of 12500 to 3500 cm-1 (800 
to 2857 nm). However, to improve the quality of the 
information contained in the average spectra based on 
absorbance, the range extending from 12500 to 9000 
cm-1 (800 to 1111 nm) was excluded due to the presence 
of much noise due to the variation of moisture in the 
material (Figure 3A-B).

Principal component analysis (PCA) was performed 
for a preliminary evaluation of the behavior of the spectra 
and possible separation of the moisture content of E. uniflora 
seeds that were or were not subjected to dehydration. The 
principal components PC1 and PC2, based on the raw data, 
explained 100% of the entire variance of the spectral data, 
with PC1 explaining 97.3% of the data variability. There was a 
clear separation of seeds that were exposed to dehydration 
from those that were not dehydrated (freshly collected 
seeds) (Figure 4).

Figure 2: Moisture content (% wet basis) individual of E. 
uniflora seeds obtained through dehydration in silica gel.

Figure 1: Mean and standard deviation values of the 
moisture content obtained through the conventional 
oven method and those predicted by NIR spectra in E. 
uniflora seeds.
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Estimation of moisture content from NIR spectroscopy

Various mathematical treatments were applied to 
build the best model to predict the moisture content of 
E. uniflora seeds. PLS-R models were developed using the 
entire NIR spectra (from 12500 to 4000 cm-1) and a selected 
NIR range (from 9000 to 4000 cm-1). The best model from 
PLS-R was the one where the wavenumber range of 12500 
to 9000 cm-1 (800 to 1111 nm) was excluded due to noise, 
and the mathematical treatment of multiplicative scatter 
correction (MSC) was applied. With this model, a cross-
validation coefficient of determination (R²cv) of 0.88 and a 
cross-validation root mean square error (RMSEcv) of 5.430 
were obtained (Table 1). These data indicate that the models 
are robust and generated reliable estimates.

Figure 5 shows a plot of the moisture content 
obtained by the oven method versus the predicted value 
through NIR spectra for the best model (model 11 from Table 
1). A strong association is observed between the measured 
values and those predicted by the model. Estimates from 
Model 11 are based on the NIR range of 9,000 to 4,000 
cm-1 following the application of Multiplicative Scatter 
Correction. This model predicts moisture content based on 
NIR signatures with a root mean square error of 5.43%.

DISCUSSION

Dehydration, moisture testing, and spectral properties

E. uniflora seeds show uneven drying (Figure 2). 
The moisture content of freshly collected seeds was more 
homogeneous than that of seeds that were subjected 
to dehydration in silica gel (Figure 1). NIR predictions of 
moisture content compared to values obtained by the 
oven method were close, especially for seeds with higher 
moisture contents. As the seeds dried, these measured and 
predicted values fluctuated.

It is important to note that NIR spectra readings 
were made with the presence of the seed coat. Therefore, 
it is inferred that as the seeds dry, the seed coat becomes 
stiffer and this causes the reading to penetrate only very 
superficially into the seed cotyledons. The existing literature 
does not clearly report whether this pattern occurs in other 
species. The penetration depth in organic materials such 
as seeds should be investigated further to determine if 
it is consistent across other species where NIR is used to 
estimate moisture content. For instance, Erdogdu et al. 
(2015) evaluated the penetration depths of different spice 

Figure 3: NIR spectra of E. uniflora seeds submitted or not to dehydration. (A) Crude spectra of all seeds; (B) Average 
of the spectra by average moisture.
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commodities (such as black pepper seeds, paprika powder, 
and oregano leaves) under infrared radiation. They reported 
that the penetration depth values for black pepper seeds 
ranged from 0.26 to 0.36 cm in terms of infrared absorption 
through a glass petri dish.

NIR radiation penetration in seed cotyledons is a topic 
of interest due to its potential effects on seed germination, 
growth, and biochemical processes. Understanding how 
NIR radiation interacts with cotyledons can provide insights 
into plant development and stress responses. 

Figure 4: Two-dimensional dispersion plot for PC1 and PC2 of the principal component analysis (PCA) of NIR spectra 
from seeds of E. uniflora at different moisture levels.

Model Database Treat. R2c RMSEc R2cv RMSEcv LV RPD
1 12.5-4.0 - 0.80 6.868 0.74 7.951 7 1.96
2 12.5-4.0 Norm. 0.90 4.857 0.85 6.043 7 2.58
3 12.5-4.0 1d 0.81 6.801 0.73 8.176 7 1.90
4 12.5-4.0 2d 0.68 8.826 0.61 9.669 4 1.61
5 12.5-4.0 MSC 0.92 4.294 0.87 5.499 7 2.83
6 12.5-4.0 SNV 0.92 4.437 0.87 5.669 7 2.75
7 9.0-4.0 - 0.84 6.245 0.78 7.348 7 2.12
8 9.0-4.0 Norm. 0.88 5.353 0.84 6.310 6 2.47
9 9.0-4.0 1d 0.84 6.106 0.75 7.772 7 2.00

10 9.0-4.0 2d 0.76 7.619 0.67 8.906 4 1.75
11 9.0-4.0 MSC 0.90 4.783 0.88 5.430 5 2.87
12 9.0-4.0 SNV 0.90 4.877 0.87 5.531 5 2.81

Legend: Treat. – treatment; R²c - coefficient of determination for calibration; RMSEc - root mean square error for calibration; R²cv - coefficient of 
determination for cross-validation; RMSEcv - root mean square error for cross-validation; LV - latent variables; RPD - relative performance difference; 
All - all samples; 1d - first derivative; 2d - second derivative; Norm. - normalization; MSC - multiplicative scatter correction; SNV - standard normal variate; 
database: 12.5-4.0 - wavenumber range from 12.500 to 4.000 cm-1; 9.0-4.0 - wavenumber range from 9.000 to 4.000 cm-1.

Table 1: Statistics associated to the Partial Least Squares Regression in calibration and cross-validation for estimating 
seed moisture of E. uniflora by NIR spectra.
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Inspection of the spectra indicated that several 
wavelength regions reflect chemical information related to 
moisture content. NIR spectra of E. uniflora seeds showed 
variation in absorbance along the wavelength with visible 
differences in absorbance between freshly collected seeds 
and those subjected to dehydration. The largest absorption 
band observed for both treatments was around 5168 cm-1 
(1935 nm) (Figure 3), a region of the spectrum associated 
with variation in water content of biological materials 
(Workman and Weyer, 2012).

In this study, dehydration caused a sharp decrease 
in absorbance in the spectrum at the wavelength 
corresponding to water. According to Büning‐Pfaue 
(2003), there is a decrease in absorption in the wavelength 
range corresponding to water in samples undergoing 
dehydration. Thus, due to the specificity of the 1940 nm 
wavelength range for water molecules, the drying process 
can be monitored due to the decrease in NIR absorbance 
caused by drying (Reh et al., 2006; Strabeli et al., 2023).

Based on the PCA scores, it was not possible to 
detect outliers. The spectral variation explained (PC1 + 
PC2) based on the data was 100%. A clear separation was 
observed between the seed samples that were dehydrated 
on different days and those that were not dehydrated (Figure 
4). Adnan et al. (2017) used near-infrared spectroscopy to 
predict moisture in coffee beans. The authors applied PCA 
for outlier inspection and separation of Coffea arabica and 
Coffea canephora species and reported a spectral variation 
in the raw data of 99% for PC1 and PC2.

Moisture content estimation from NIR

Various mathematical treatments were applied to 
the spectra of E. uniflora seeds subjected to dehydration 
or not, in order to reduce noise and obtain a satisfactory 
R² capable of generating models that better estimate the 

moisture content of the seeds. In this study, the model 
characterized as the best was the one that generated 
the highest R², resulted in the smallest number of latent 
variables, and the smallest mean squared error for cross-
validation. Thus, after excluding the range of 12500 to 9000 
cm-1 and applying the MSC mathematical treatment, the 
model 11 with R²cv of 0.88 and RMSECV of 5.43 and was 
generated using only 5 latent variables (Table 1).

Adnan et al. (2017) used these selection criteria to 
choose the best model to predict the moisture content of 
Coffea arabica and Coffea canephora grains, and obtained 
an R²cv of 0.96. For these authors, the choice of a good 
model cannot be based only on R²cv, RMSEcv, or RPD, 
which reflect predictive power. It is important to consider 
the number of latent variables, as a model using fewer 
latent variables is less prone to overfitting.

The PLS-R model based on the spectral data 
of E. uniflora seeds generated good accuracy for both 
calibration and validation (Figure 5). The data measured by 
NIR are close to the values estimated in the method for 
determining the moisture content based on the Rules for 
Seed Analysis. It is suggested that this technique can be 
applied to seeds of other species, since it has the potential 
to replace traditional methods when there is a need for a 
rapid and non-destructive prediction of samples, especially 
when it is desired to estimate the moisture content of a 
larger quantity of seeds and/or grains for the control of the 
production process.

This study reported promising results, but 
encountered technical and operational limitations. Firstly, 
uncertainties remain regarding the depth to which NIR 
radiation penetrates seeds and how moisture content and 
seed coat thickness affect its interaction with seed molecules. 
Additionally, each treatment analyzed only 20 seeds due to 
material constraints. Furthermore, the study was restricted 
to analyzing data at four specific time points (2, 7, 14, and 
21 days). Despite these challenges, the study successfully 
demonstrated the tool’s capability to rapidly and reliably 
estimate humidity. These findings underscore the importance 
of expanding future research to encompass a broader range 
of treatments, moisture levels, and dehydration durations 
across seeds from various plant species.

CONCLUSION

The use of near-infrared (NIR) spectroscopy 
coupled with multivariate analysis proved to be efficient 
for predicting the moisture content of E. uniflora seeds. 
The exploration of NIR spectra, followed by principal 
component analysis (PCA), indicates that spectral 
measurements can be used to discriminate between 
freshly collected E. uniflora seeds and those subjected 
to dehydration. From the partial least squares regression 
(PLS-R) analysis with spectral band selection and 
application of the SNV treatment to the data, a predictive 
model was obtained that presented a coefficient of 
determination (R²cv) of 0.88 and the root mean square 
error (RMSEcv) of 5.43%. These data indicate that the 
model is robust and generated reliable estimates.

Figure 5: Regression graph with values obtained through 
the oven method and predicted by the NIR, for moisture 
content of E. uniflora seeds in percentage.
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