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ABSTRACT
Background: The principal challenge in forest transportation lies in minimizing the fleet of vehicles 
and cranes while adhering to operational constraints. Addressing this intricate operational issue yields 
numerous advantages. This research is dedicated to the development and evaluation of a controlling 
device designed to enhance timber logistics. A queue simulator is utilized to estimate prospective wait 
times for the optimized system. Two scenarios are analyzed: one integrating the controlling device and 
the other excluding it. The study underscores the advantages of vehicle type A, which, due to its higher 
number of wheelers and fewer cranes compared to vehicle type B, demonstrates greater efficacy in 
establishing a robust queuing system.

Results: Although comprehensive numerical analysis is not provided, the utilization of fewer cranes 
indicates potential cost reductions. The Forest Transportation Problem (FTP) model is employed to 
optimize the spatial allocation of trucks and cranes during loading and unloading operations. The 
succinct mathematical formulation of this model renders it both effective and user-friendly. The 
fuzzy controlling device (FCD), which emulates human decision-making processes in the allocation of 
wheelers to cranes, significantly enhances the comprehension of optimization outcomes. A comparative 
assessment reveals that scenario 1 (excluding the FCD) appears more advantageous for replicating the 
queuing system under the specified conditions. Notably, the integration of the FCD with the queue 
simulator engenders logical and coherent queue behavior within the forest transportation framework.

Conclusion: The findings of this study substantiate the effectiveness of the developed controlling 
device in optimizing timber logistics by augmenting the efficiency of the queuing system and 
potentially reducing crane utilization costs. Vehicles associated with higher crane productivity required 
fewer trucks to perform transportation tasks more efficiently compared to those with less productive 
cranes. The incorporation of the FCD refines the decision-making process and yields valuable insights 
into the operational dynamics of forest transportation. The study’s outcomes contribute significantly 
to the field, offering practical implications for optimizing resource allocation and enhancing logistical 
performance in forestry operations.

Keywords: Decision-making; Fuzzy controlling device; Queuing system; Timber logistics; Timber 
trucking.

HIGHLIGHTS

Vehicle scheduling boosts efficiency, aiding economic growth and environmental goals.
Queue simulator and fuzzy device improved queuing system in the case study.
Model results support better decisions and strategic planning in transportation.
Fuzzy controller outperformed the base case in queuing system simulation.
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INTRODUCTION

Transportation is a critical component of forest 
logistics. Effective transportation planning plays a pivotal 
role in reducing operational costs, optimizing resource 
utilization, and minimizing environmental impacts 
(Bordón, Montagna, & Corsano, 2018; Rönnqvist et al., 
2015). Nevertheless, forest transportation encompasses 
considerable complexity, involving multiple interdependent 
criteria, including cost efficiency, queuing dynamics, 
vehicle capacity, and road conditions. Compounding 
these complexities are uncertainties and imprecisions, 
such as fluctuations in queuing durations at loading and 
unloading points, variations in travel times, degradation 
of forest roads, and unanticipated truck breakdowns 
(Amrouss et al., 2017; Malladi & Sowlati, 2017). Sibdari and 
Sepasi (2022) addressed these challenges by applying a 
simulation-optimization approach that incorporates various 
uncertainties, such as stochastic travel times and external 
disturbances including random demand and road delays at 
mills and forests. Their approach demonstrated scalability 
and practicality for real-world applications. Similarly, Han et 
al. (2018) developed a mixed-integer programming model 
integrated with a network algorithm to optimize biomass 
feedstock logistics within a tree-shaped road network. Their 
findings revealed a cost reduction of up to 11% compared 
to conventional logistics systems by minimizing grinding, 
transportation, residue loading, machine mobilization, and 
processing site construction costs.

The optimization of forest transportation remains a 
critical research domain in logistics and forest planning. It 
forms an integral part of the forest industry supply chain, 
where transport plans must incorporate diverse operational 
criteria to ensure sustainable and efficient transportation (Akay 
& Demir, 2022; Anderson & Mitchell, 2016; Malladi & Sowlati, 
2017). Traditional optimization methodologies frequently 
assume deterministic and precise input parameters (Palander 
& Vesa, 2022; Santos et al., 2019). However, such assumptions 
may not hold true in real-world scenarios where uncertainties 
prevail (Rönnqvist et al., 2015). Forest transportation involves 
additional operational layers, such as timber loading and 
unloading, which generate queues throughout the planning 
horizon. Various studies have sought to mitigate queuing 
occurrences through deterministic methodologies. For 
instance, Rix et al. (2015) developed a mixed-integer linear 
programming model utilizing column generation techniques 
to minimize transportation costs and queuing durations 
over a one-year horizon. Similarly, Bordón, Montagna, 
and Corsano (2018) introduced a Mixed-Integer Linear 
Programming (MILP) model for generating cost-efficient 
truck routes while ensuring continuous log supply.

Alternative heuristic-based approaches have also 
been explored. Haridass et al. (2014) implemented simulated 
annealing techniques integrated with deterministic simulation 
models to minimize total unloaded mileage. Oliveira et al. 
(2022) addressed the vehicle routing problem under forest 
transportation constraints by testing non-exact algorithms—
Simulated Annealing, Greedy, and a hybrid Greedy-
Simulated Annealing approach—across multiple operational 

strategies. However, as Bychkov et al. (2021) highlighted, 
queuing problems in forest transportation are inherently 
stochastic, necessitating approaches that account for intrinsic 
uncertainties and imprecisions. Recent advancements have 
positioned Fuzzy Sets as a robust framework for addressing 
uncertainties and imprecisions in decision-making processes 
(Bhardwaj & Sharma, 2021; Özkir & Demirel, 2012; Sarkar & 
Amrita, 2012). Fuzzy inference systems, in particular, enable 
partial membership of elements within sets ideal for contexts 
where category boundaries are ill-defined (Ljubomir et al., 
2019). Within forest transportation, fuzzy inference systems 
facilitate simultaneous consideration of multiple criteria and 
uncertainties. For example, Akay and Demir (2022) employed 
a hybrid fuzzy multi-criteria decision-making method to 
determine the most suitable vehicle types for forest product 
transportation under various operational conditions. Chen et al. 
(2020) developed a multi-objective, multi-period fuzzy mixed-
integer programming model that integrated carbon emission 
considerations with cost minimization to assess uncertainties’ 
impacts on timber supply networks’ configurations. This study 
contributes by proposing a novel approach that employs 
fuzzy inference systems to control post-optimized forest 
transportation operations. The objective is to provide a 
realistic representation of queuing systems through simulation 
and to develop a robust controlling framework focusing on 
minimizing queuing times during timber trucking operations.

MATERIAL AND METHODS

Forest tranportation instance

The dataset utilized in this study comprises machinery 
production data collected over a six-month period through 
a comprehensive time and motion study. In the forest 
industry, such studies are instrumental in orchestrating 
weekly transportation operations, encompassing timber 
trucking, loading, and unloading activities. For the purposes 
of this research, the company implemented an independent 
loading system tailored to two distinct vehicle types (A and 
B). This system accounts for the specific daily production 
capacities of each vehicle type, as well as the corresponding 
crane productivity. Under this operational framework, each 
vehicle type is paired with a dedicated crane type for loading 
operations. Conversely, during unloading operations, both 
vehicle types compete for access to all available cranes. This 
competition inherently generates queuing times during 
loading and unloading cycles. The number of operational 
cycles a vehicle can complete per day is contingent upon 
various delays encountered throughout the process. Notably, 
significant delays at any stage, either the vehicle displacement, 
loading, or unloading, can severely disrupt operational flow, 
necessitating effective queuing management strategies. This 
study addresses the outlined logistical operations by evaluating 
two distinct strategic scenarios, designated as Scenario 1 and 
Scenario 2. A detailed exposition of these scenarios is provided 
in the corresponding “Scenario and Simulations” section, 
wherein their respective impacts on queuing dynamics and 
overall operational efficiency are thoroughly analyzed.
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The machinery allocation model 

The Machinery Allocation Model (MAM), applied 
to vehicle fleets (trucks and cranes) in forestry, is based 
on the Transportation Problem and requires specific 
adaptations. It must account for crane loading and 
unloading capacities, vehicle transportation capacities, 
and the number of cycles per vehicle. This information 
ensures accurate modeling of timber trucking operations 
to meet target timber volumes from harvested stands to 
processing mills at unloading yards (Figure 1).

The proposed integer programming (IP) model, 
outlined in Equations 1–9, aims to minimize the total number 
of equipment - vehicles (Y) and cranes (X) - required for 
transport operations (Equation 1). The model does not 
specify which cranes or trucks are activated but assumes that 
operations occur wherever loading and unloading cranes 
are available, allowing a block of stands to be considered for 
the operation. This problem is further detailed in Monti et al. 
(2020). Here, Yᵢ represents the number of vehicles of type i, 
where i ∈ {A, B}, and Xᵢ denotes the number of cranes assigned 
to vehicle type i during loading. Loading cranes are truck-
type-specific, meaning each vehicle type has a designated 
crane type. The decision variable W represents the number 
of cranes available for unloading operations, which serve 
all vehicle types, introducing competition among them. In 
contrast, loading cranes are exclusive to their corresponding 
vehicle types, eliminating such competition between vehicle 
types. The constant Qᵢ indicates the required timber volume 
each vehicle must deliver to the mill. The parameters LIᵢ and 
ULᵢ define the lower and upper bounds for the number of 
vehicles per type. The model’s time components, Vᵢ and 
Hᵢ, measured in hours/day, represent the time needed 
for each vehicle type to complete a cycle and the total 
operational hours allowed per day, respectively. A cycle, in 
this context, comprises the sequence of departing empty 
from the unloading station, traveling to the loading station, 
completing the loading, returning to the unloading station, 
and completing the unloading operation.

The model incorporates key production parameters, 
including the daily production capacity of each vehicle type 
(CAPᵢ, in tons/day), the loading capacity of cranes assigned 
to each vehicle type Cᵢ, in tons/hour/day, and the unloading 
capacity of cranes Cw, in tons/hour/day. Equations 2 
ensure that the mill’s target volume is met. Equations 3–5 
establish the minimum daily production requirements and 
the upper and lower production bounds for each vehicle 
type. Equations 6 address the total daily transportation 
time, while Equations 7–8 define the relationship between 
the number of cranes required and the number of trucks to 
be loaded or unloaded per vehicle type. Finally, Equations 
9 specify the decision variables related to the integer set. 
The productivity yield data for each vehicle and crane type, 
along with operational time and target volumes required by 
the mill, are summarized in Table 1. According to machinery 
specifications, loading crane type A operates at 36.63 tons/
hour, while type B achieves 65.85 tons/hour. The unloading 
cranes exhibit a production capacity of 160.97 tons/hour.

Fuzzy Controlling Device

The proposed fuzzy controlling device (FCD) utilizes 
queuing time and the proportion of vehicles served by 
each crane as key variables to streamline the transportation 
operation. The fuzzy system developed for this study 
adopts the classical Mamdani approach, employing 
trapezoidal membership functions. The trapezoidal 
function was selected due to its resemblance to classical 
set theory in decision-making processes. In classical set 
theory, a measured value falling within a defined threshold 
is classified as belonging entirely to that category, 
represented by a step function. In contrast, fuzzy theory 
assigns a degree of membership to multiple categories 

Figure 1: Basic representation of forest logistics of timber trucking.
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simultaneously, represented by trapezoidal functions. This 
allows for a more nuanced classification when boundaries 
between categories are not clearly defined. For this model, 
three classes—Low, Medium, and High—were established 
for each input variable (Figure 2), representing queuing 
time (in hours) and the proportion of vehicles being loaded 
or unloaded by specific cranes.

The thresholds for the High, Medium, and Low classes 
were defined based on the Medium class. Specifically, the 
Medium class was set to represent half the range of each input’s 
support. For instance, the proportion of vehicles falls within 
the interval [0, 1], meaning the Medium class encompasses the 
value 0.5. The trapezoidal membership function’s legs were 
initially determined through expert opinion and refined via 
sensitivity tests. The fuzzy output represents the proportion 
of vehicles allocated to each crane at the moment they begin 
moving toward it. To enhance control over this allocation, five 
output classes were established: very low, low, medium, high, 
and very high (Figure 3).

The aggregation operator used was the “min” 
function for the “and” connections between fuzzy rules. 
All nine possible combinations were considered as the 
antecedents of the fuzzy rules (Table 2). The consequent 
of fuzzy rules was defined based on the assumption that a 
higher queuing time and a greater proportion of vehicles 
being served by a crane should result in fewer vehicles being 
directed to that crane. The centroid method was chosen for 
defuzzification due to its ability to return the average value 
of the geometric shape formed by the interaction between 
the fuzzy rules and the distribution classes of each input 
variable. In the context of queuing control, this method 
ensures that the average vehicle allocation reflects the 
integrated relationship between the input variables.

Each crane type (both loading and unloading) 
was assigned a unique fuzzy inference system designed 
to determine the proportion of vehicles associated with 
that crane during each cycle. The controller device makes 
decisions based on an integrated analysis of each crane 

Vehicle type Q
(tons/day)

Number of vehicles H
(h/day)

V
(h/day)

CAP
(tons/day)Lower Upper

A 1,500 10 50 14.59 7.29 74
B 6,000 10 50 16.13 5.38 351

Where: Q – daily demand of timber supply to the mill, H- daily work hours; V- time to complete a cycle; CAP- vehicle capacity.

Figure 2: Membership functions of input variables: Queuing Time (hours) and Proportion of Vehicles at Crane.

Table 1: The overall daily information about vehicle type to solve the forest optimization problem.
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type independently during the loading operation, ensuring 
no cross-association between crane types at this stage. For 
the unloading operation, the process is repeated; however, 
unlike the loading operation, the fuzzy controller device 
imposes no restrictions on which vehicle type is served by 
the cranes. As a result, all vehicle types compete for any 
available crane during unloading. This proposed approach 
extends the framework described by Monti (2020) by 
incorporating a controlling device specifically designed 
to manage the queuing system, thereby enhancing 
operational efficiency and reducing queuing delays.

Scenarios and Simulation

For this study, the optimal number of trucks per 
vehicle type and cranes per crane type was determined by 
using the proposed Machinery Allocation Model (MAM). A 
queue simulator was developed to replicate the queuing 
times associated with forest transportation operations. To 
evaluate the controlling capacity of the developed Fuzzy 
Controlling Device (FCD), the FCD was integrated with the 
queue simulator (QLsim), allowing for an optimal distribution 
of vehicles throughout the timber trucking process, thereby 

ID Queuing time Proportion of vehicles Vehicle allocation
1 High High Very low
2 Medium High Low
3 Low High Medium
4 High Medium Low
5 Medium Medium Medium
6 Low Medium High
7 High Low Medium
8 Medium Low High
9 Low Low Very high

Figure 3: Membership function for the fuzzy output.

Table 2: Fuzzy rules for the antecedent (queuing time and proportion of vehicles) and the corresponding rules for the 
consequent (vehicle allocation).
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providing a more accurate representation of queuing times. 
The model’s performance was assessed by comparing 
queuing time results from two scenarios: (1) MAM + QLsim 
(base scenario) and (2) MAM + FCD + QLsim (Figure 4). 
In the base scenario, the number of machinery units was 
optimized following the methodology outlined in Section 
2.1, after which the queue simulator was applied to simulate 
the queuing system based on this optimal configuration. To 
introduce realism into the simulation, various delay times—
0h, 1h, 2h, and 3h—were incorporated, simulating road 
delays commonly encountered in logistical operations. 
For each scenario, the long-run average queue time and 
the probability of crane idleness were computed using 
an appropriate queuing model. Additionally, the effective 
work time for each vehicle type and the corresponding 
average queue time were calculated based on the outputs 
generated by the queue simulator.

The queue simulator algorithm was developed using 
the R environment, while the Forest Transportation Problem 
(FTP) model was solved with the “lpSolve” package (Berkelaar 
et al., 2022). The Queue Logistic Simulator (QLsim) replicates 
the company’s logistics system through the following four steps:
1. Simultaneous Arrival: All vehicles arrive at the loading 
station at 5 AM and are served following the “first-in, first-
out” (FIFO) scheme;
2. Queue Computation: Queues are calculated by aligning 
the production rates of cranes with the capacities of the 
corresponding vehicle types;
3. Sequential Processing: After a vehicle is served, the 
next vehicle in the queue begins loading, while the loaded 
vehicle proceeds to the unloading station;
4. Unloading Competition: At the unloading station, vehicle 
types A and B compete for crane availability under the FIFO 
scheme. Upon completion, the cycle restarts with the next 
batch of vehicles.

The QLsim is a heuristic designed to align timber 
production yields for various vehicle types and cranes during 
loading and unloading operations, following the four steps 
outlined previously. The simulator generates queues for each 
truck based on crane and vehicle production rates; however, 
it does not optimize truck-to-crane scheduling for queue time 
minimization. An illustrative example of queue time computed 
by QLsim is presented in Figure 5. Suppose two type A trucks 
(A1 and A2) begin service at 5 AM and require one hour to 
reach the loading station, arriving simultaneously at 6 AM. 
With only one crane available at the station, a queue forms 
with the second truck (A2) waiting. Truck A1 requires one hour 
for loading, causing A2 to wait for one hour before its turn. 
A1 departs the loading station at 7 AM and proceeds to the 

Figure 4: Dynamics of scenario 2 with the queue simulator 
(QLsim) and FCD operators.

Figure 5: Example of computation of queue time by the QLsim for two trucks of the same type.
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unloading station, while A2 begins loading. The completion 
times for both trucks differ due to A2’s initial waiting period. At 
the unloading station, no waiting time is observed. The QLsim 
exclusively calculates waiting times occurring during loading 
and unloading operations. Delays simulating real-world 
disruptions are introduced at both the loading and unloading 
stations, affecting overall queuing performance.

The queue model for the simulated problem is 
characterized as an M/M/c model under the “First-in, First-
out” (FIFO) scheme. In this context, the first M denotes the 
assumption that interarrival times follow an exponential 
distribution, while the second M indicates that service 
times also follow an exponential distribution. The term c 
represents the number of servers (cranes) operating within 
the queue system. This queue model operates as a Poisson 
process, with cranes performing loading and unloading 
tasks under an exponential service time distribution. The 
probability density function (PDF) assumed for the FIFO 
scheme, f (t) = (µ− λ)e−(µ−λ)t for t > 0, and zero otherwise.

RESULTS

Fleet Minimization: MAM Assessment

The Machinery Allocation Model (MAM) optimized 
the fleet size for both vehicle types and cranes, as presented 
in Table 3. The integer programming model identified the 
optimal solution in 2.3 seconds. The daily timber production 
optimized by the model slightly exceeded the minimum 
required tonnage per truck, accommodating the unloading 

operation’s constraints. Specifically, unloading cranes were 
required to handle an amount of timber equal to or greater 
than the transported volume. For the unloading operation, 
three cranes were allocated as the global optimum. The total 
volume produced by the optimized combination of cranes 
and vehicles reached 7,872 tons per day. The optimized fleet 
consisted of 51 vehicles, comprising 21 type A vehicles, 18 
type B vehicles, nine cranes for loading, and three cranes for 
unloading operations (Table 3).

Scenario Assessment

Base Scenario: MAM + QLsim

The base scenario, combining the MAM with the 
QLsim, generated the queuing plan for the fleet of vehicle 
types A and B, along with their corresponding crane services 
for loading and unloading operations. Under conditions 
without simulated delays, the effective working times 
averaged 23.93 hours for vehicle type A and 24.60 hours 
for vehicle type B. Simulated delays revealed a decreasing 
trend in effective working time as delay duration increased 
(Table 4). Despite these delays, the average queuing time 
remained constant within each vehicle type during the 
loading operation. This consistency occurs because delays in 
earlier cycles shift the timing of vehicles entering the queue 
without altering the queue time itself. However, applying a 
fixed delay value introduces uniformity in the simulation, 
which can misrepresent the queuing system when individual 
truck-to-crane assignments are not explicitly managed.

Vehicle 
Type

Delay 
(h)

Effective working time
(h)

Average queuing time
(h)

A 0 23.93 2.40
A 1 21.51 2.40
A 2 25.51 2.40
A 3 16.81 2.40
B 0 24.60 1.10
B 1 21.30 1.10
B 2 25.30 1.10
B 3 16.20 1.10

Unloading 0 24.26 3.24
Unloading 1 21.41 2.78
Unloading 2 25.41 2.78
Unloading 3 16.51 2.26

Table 4: Summary of effective working time and average queuing time for each vehicle type and trucking operation in 
scenario 1.

Vehicle Type Number of Vehicles Number of Cranes Production (tons/day)

A 21 3 1,554
B 18 6 6,318

Table 3: Optimized number of vehicles and cranes. Note: Cranes belonging to the loading operation only.
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In the unloading operation, queuing time decreased 
as delay duration increased. This behavior is expected, 
considering that all vehicles initially arrived simultaneously 
at the loading station during the first cycle. With longer 
delays, vehicles spent more time traveling and less time 
forming queues. The queuing system follows an M/M/c 
model under the “First-in, First-out” (FIFO) scheme, where c 
represents the number of cranes available. For the loading 
operation, c equals 3 for vehicle type A and 6 for vehicle 
type B. In the unloading operation, c equals 3. Based on 
the queuing system outlined in scenario 1, the probability 
of crane idleness (Figure 6) was calculated. Vehicle type B 
exhibited the highest probability of crane idleness across 
the different delay scenarios, with the lowest probability 
at a 3-hour delay and the highest at a 2-hour delay. This 
suggests that a 2-hour delay results in the most efficient 
transportation operation for vehicle type B concerning its 
independent queuing structure. The fleet for vehicle type B 
was optimized to 18 vehicles. Consequently, the interarrival 
time, defined as the interval between consecutive vehicle 
arrivals, was optimized at approximately 7 minutes 
(calculated as 2 hours × 60 minutes/hour ÷ 18 vehicles).

Vehicle type A and the unloading operation 
exhibited a lower probability of crane idleness, which 
increases the likelihood of queuing over the long term. 
For vehicle type A, the interarrival time is approximately six 
minutes. In contrast, no interarrival time is calculated for 
the unloading operation due to its dependency on delays 
affecting the loading process. Specifically, the unloading 
operation absorbs timing shifts from the loading operation, 
causing the interarrival time at the unloading stage to 
reflect changes originating from earlier cycles. The long-run 
average queue time for each vehicle type during loading 
and unloading operations was computed (Figure 7). Vehicle 
type A displayed significant variability across delay scenarios, 
with the shortest queue time occurring at a two-hour delay. 

Vehicle type B demonstrated minimal sensitivity to delay 
variations in both loading and unloading operations. For 
both vehicle type B and the unloading operation, the lowest 
long-run average queue time corresponded to a two-hour 
delay. This outcome aligns with the observed probability of 
crane idleness, confirming that the two-hour delay scenario 
optimizes queuing efficiency for these operations.

Vehicle type A exhibited significant variability 
in projected queuing times, with optimal performance 
observed under scenarios with no delay and a two-hour 
delay. However, this outcome may be misleading, as a 
no-delay scenario would typically result in queuing times 
comparable to or exceeding those observed with a one-
hour delay. Specifically, in the no-delay scenario, total 
queuing time for all 21 type A vehicles was approximately 15 
hours, averaging less than one hour per vehicle. In the two-
hour delay scenario, the intervals between vehicle arrivals 
were well distributed during the unloading operation, 
contributing to reduced queuing times. Conversely, 
scenarios involving one-hour and three-hour delays yielded 
the highest long-run average queuing times. One plausible 
explanation for this discrepancy is the interaction between 
the crane production yield during loading and unloading 
operations and the production capacity of vehicle type 
A. This interaction may have contributed to the distinct 
behavior observed for vehicle type A compared to vehicle 
type B. These findings underscore a critical limitation 
of scenario 1 (base scenario), which only matches the 
aggregate production rates of vehicles and cranes without 
assigning specific vehicles to designated cranes. Such 
an approach overlooks individual scheduling dynamics, 
leading to unrealistic queuing patterns under certain delay 
conditions. Addressing this limitation by incorporating 
more granular control over vehicle-to-crane assignments 
is essential to achieve more accurate and reliable queuing 
performance outcomes.

Figure 6: Probability of idleness of the cranes for each simulated delayed time for scenario 1 (base scenario).
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Scenario 2: MAM + FCD + QLsim

In scenario 2, the FCD serves as an intermediary 
between the Machinery Allocation Model (MAM) and the 
queue simulator. The primary function of the FCD is to 
allocate vehicles of types A and B to the appropriate cranes 
during both loading and unloading operations. When the 
FCD is incorporated as an intermediate step, the queuing time 
(Table 5) follows a logical pattern, increasing proportionally 
with the delay time for both vehicle types during the loading 
process. For the unloading operation, queue time is observed 
only in the no-delay scenario. This occurs because delays 
introduced during the loading phase affect the unloading 
schedule, allowing the unloading operation to adjust vehicle 
group schedules in accordance with crane availability and 

dynamics. Consequently, when delays are present in the 
loading phase, they help distribute vehicle arrivals more 
evenly during unloading, reducing queuing times.

The effective work hours were proportionally influenced 
by delays, with longer delays resulting in increased work 
hours. Assigning vehicles individually to cranes enhanced 
operational control and mimicked human decision-making, 
effectively reducing queue times even under high-delay 
scenarios. The probability of crane (server) idleness during 
loading operations varied across tested delay options, with 
vehicle type A exhibiting a higher likelihood of idle cranes 
(Figure 8). Although vehicle type A operated with 21 wheelers 
and three cranes, it showed greater idle crane probability 
due to the shorter time required to load its vehicles. Despite 
the lower productivity of cranes assigned to vehicle type A 

Delay 
(h)

Vehicle Type Effective working time
(h)

Average queuing time
(h)

0 A 27.30 1.00
1 A 29.63 1.33
2 A 31.97 1.67
3 A 34.30 2.00
0 B 23.90 3.60
1 B 28.61 3.94
2 B 33.33 6.09
3 B 38.04 8.23
0 Unloading 26.32 1.73
1 Unloading 29.35 0.00
2 Unloading 32.79 0.00
3 Unloading 36.41 0.00

Table 5: Summary of effective working time and average queuing time for each vehicle type and trucking operation in 
scenario 2.

Figure 7: Long-run simulation of the average time spent in the queue for scenario 1 (base scenario).
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compared to those assigned to vehicle type B, the idleness 
probability remained higher for vehicle type A. This outcome 
aligns with the Forest Transportation Problem (FTP) model, 
which optimized the allocation of 21 type A vehicles to three 
cranes and 18 type B vehicles to six cranes. The integration 
of the Fuzzy Controlling Device (FCD) with the FTP model 
provided deeper insights into the transportation process, 
highlighting the dynamics between crane productivity, 
vehicle allocation, and queuing behavior.

For the unloading operation, the probability of 
crane idleness increases with simulated delays. This occurs 
because delays shift the truck schedule, reducing queuing 
times in subsequent cycles. The FCD results corroborate 
the logical expectation that queuing times decrease as 
transportation delays increase. As a result, trucks take 
longer to reach unloading stations, spend less time in 
queues, and crane idleness becomes more pronounced. 
This behavior is particularly evident in the abrupt change 
observed between the no-delay and one-hour delay 
scenarios (Figure 8). The queuing system simulation 
for vehicle type A showed a higher average time spent 
in queues compared to vehicle type B in the long-
term analysis (Figure 9). The delay scenarios highlight 
differences between the two vehicle types during the 
loading operation. For vehicle type B, the average queuing 
time increased almost linearly with delays. In contrast, 
vehicle type A exhibited a non-linear increase in queuing 
time as delays grew. This suggests that vehicle type B 
faces operational challenges in aligning wheeler-to-crane 
assignments, despite being allocated more cranes (six 
cranes) in the optimization process.

The lower probability of idle cranes for vehicle type 
B (Figure 8) supports this conclusion, indicating intensive 
crane utilization but higher queuing times. In scenario 
2, the unloading operation displayed behavior more 
consistent with queuing theory expectations, particularly 

when the number of clients (wheelers) exceeded the 
number of servers (cranes). As delay times increased, the 
long-term average queuing time decreased, reaching 
its minimum. This outcome is attributed to the higher 
productivity rates of cranes during unloading compared 
to loading operations. The queue system analysis validates 
this characteristic of the transportation strategy, confirming 
the operational efficiency gains in the unloading process 
under extended delay scenarios.

DISCUSSION

Vehicle scheduling systems enhance efficiency in 
forestry industries, contributing to both economic and 
environmental benefits (Monti et al., 2020; Weintraub 
et al., 1996). Analyzing truck-crane interactions helps 
identify bottlenecks and idle periods within the forest 
transportation system, which can be optimized to lower 
transportation costs (Monti et al., 2020). Operational 
delays disrupt transportation flow, leading to queues at 
loading and unloading stations (Ghaffariyan, 2021). The 
FTP model, combined with a queue simulator, effectively 
generated a queuing plan for vehicle types A and B and 
their respective loading and unloading cranes. The FTP 
model optimized resource allocation by considering 
the total effective operating time for each vehicle type. 
However, it was not designed to predict the interactions 
among vehicles of the same type during loading, nor the 
queues formed throughout the operation. The queue 
simulator addressed this gap by simulating queuing 
schedules without controlling truck-to-crane assignments 
(scenario 1). In contrast, the FCD refined operational 
control in scenario 2, resulting in more logical outcomes 
through reduced queuing times and improved allocation 
of wheelers to their designated cranes.

Figure 8: Probability of idleness of the cranes for each simulated delayed time for scenario 2.
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Kogler and Rauch (2020) developed a discrete 
event simulation (DES) tool for operational planning within 
an interconnected timber supply chain. This tool allocates 
resources under multiple objectives, aiming to minimize 
equipment use and maximize production while controlling 
queue formation. The FCD + FTP approach mirrors this 
methodology by reducing both queueing and equipment 
use, ultimately lowering transportation costs. The dynamic 
crane allocation strategy enabled by the FCD significantly 
enhances process efficiency. The FTP model optimizes 
timber transportation logistics through a simple yet effective 
framework. When integrated with the queue simulator 
and FCD, it offers post-optimization improvements that 
enhance the queuing system. Scenario 2 demonstrated a 
notable reduction in machinery requirements, optimizing 
the fleet to 51 units, and improving overall queuing 
performance. This finding highlights the FCD’s effectiveness 
in minimizing operational queues and improving resource 

utilization within forest transportation systems. The 
optimization model’s results provide substantial support for 
transportation industry decision-makers. By determining 
the ideal number of trucks and cranes, businesses can 
streamline operations, reduce costs, and enhance overall 
efficiency. Additionally, the successful application of 
transportation-based optimization models underscores 
the critical role of mathematical optimization techniques in 
addressing real-world logistical challenges (Figure 10).

The second key finding of this study is the effectiveness 
of the Fuzzy Controlling Device (FCD) in reducing queue 
times. Simulation results revealed that the fuzzy controller 
significantly lowered queuing times compared to scenarios 
relying solely on the queue simulator, even when critical delays 
were introduced. This highlights the capability of fuzzy logic 
controllers to manage dynamic, complex, and unpredictable 
transportation scenarios. The FCD proved effective across 
various delay conditions (0h, 1h, 2h, 3h), underscoring the 

Figure 9: Long-run simulation of the average time spent in the queue for scenario 2.

Figure 10: Decision making process under forest transportation dynamics and fleet controlling.
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importance of real-time monitoring for improving timber 
logistics efficiency. Amrouss et al. (2017) demonstrated a 
real-time optimization approach for forest transportation 
that uses online communication and positioning devices, 
enabling rapid responses to random disturbances. However, 
this method requires rerunning the model with each 
disruption. In contrast, the FCD autonomously responds 
to such events, emulating expert decision-making and 
narrowing the gap between planned and actual operational 
costs. Similarly, Malladi, Quirion-Blais, and Sowlati (2018) 
reported a 12% reduction in transportation costs through 
optimized scheduling. Teodorovic (1999) emphasized the 
relevance of fuzzy logic in modeling complex traffic and 
transportation systems, citing its ability to handle subjectivity, 
ambiguity, uncertainty, and imprecision in human decision-
making. Traditional linear programming models often fail to 
accommodate these uncertainties, as they assume constant 
travel times and require recalculations upon disruptions. 
Fuzzy controllers, however, address these challenges by using 
linguistic variables and fuzzy rules, enabling quicker system 
responses and streamlined transportation operations.

The green supply chain represents a frontier for 
addressing environmental, social, and economic challenges 
(Paul et al., 2021). The fuzzy system presented in this study 
enhances forest transportation by optimizing vehicle 
assignments, reducing costs, minimizing greenhouse gas 
emissions, lowering resource consumption, and improving 
job safety. Integrating the proposed method with larger 
fleets could further validate its efficiency. Sun and Li (2024) 
explored green logistics optimization using a hybrid algorithm 
combining greedy and genetic algorithms, showing that 
while such methods can help achieve environmental goals, 
queue-related inefficiencies may hinder emission reduction 
efforts. Many studies focus on aligning forest transportation 
models with real business cases, often evaluating model 
efficiency post-operation rather than in real time. Essghaier 
et al. (2023) support the view that deterministic optimization 
may be inadequate for real-world conditions, advocating for 
fuzzy optimization due to its adaptability. The third major 
finding is the comparison between scenarios involving the 
LP model alone and those incorporating both the LP model 
and FCD. The integration of fuzzy logic along with LP-based 
models led to shorter queuing times and enhanced system 
performance. This demonstrates that adding intelligent 
controllers like fuzzy logic significantly improves traditional 
optimization models. Other relevant research includes 
Minh and Noi (2023), who implemented a multi-server 
queuing model combined with genetic algorithms, reducing 
operating costs by 30–50%. Oliveira et al. (2022) identified 
the hybrid greedy-simulated annealing algorithm as the 
most effective for forest vehicle routing. Sarkar et al. (2015) 
used queuing theory to optimize machinery and personnel, 
achieving reduced idle and waiting times. The combination 
of the FTP model, queue simulator, and FCD in this study 
yielded similar improvements.

Forestry 4.0 integrates advanced technologies 
such as AI, IoT, big data analytics, precision forestry, and 
climate change mitigation strategies. Feng and Audy (2020) 
emphasized the importance of integrating digital technologies 

and automated systems for smart decision-making. Many 
forest vehicles now feature web-based allocation and GPS 
tracking systems, allowing real-time operations management. 
The methodology presented here contributes to this digital 
transformation by demonstrating how automated controllers 
can optimize forest transportation processes. In conclusion, 
this study provides key insights for enhancing transportation 
infrastructure and minimizing queuing times. The 
optimization model identified an optimal number of trucks 
and cranes, while the fuzzy controller effectively managed 
uncertainties, reducing queuing times and operational costs. 
Combining fuzzy logic with optimization models offers a 
promising approach for addressing complex transportation 
challenges. Future research should explore the integration of 
additional intelligent control techniques to further optimize 
transportation systems.

CONCLUSION

We have developed a fuzzy controlling device (FCD) 
for timber logistics, optimizing vehicle and crane fleets based 
on operational constraints to minimize queuing times. The 
integration of the Machinery Allocation Model (MAM), FCD, 
and the queue simulator (QLsim) resulted in logical queuing 
behavior within forest transportation operations. While the 
MAM effectively optimized truck and crane fleets for loading 
and unloading through an integer programming model 
under a deterministic framework, the FCD enhanced the 
interpretation of optimization results by replicating human 
decision-making. Specifically, the FCD assigned more vehicles 
to cranes with lower queuing tendencies, effectively addressing 
the queuing problem in forest logistics. Simulation results 
demonstrated that vehicles paired with higher-productivity 
cranes required fewer trucks to achieve efficient transportation 
compared to those with less productive cranes. The dynamic 
nature of vehicle queues in forest logistics highlighted the 
necessity of strategic interventions to improve operational 
efficiency. Our findings indicate that adopting automation 
and optimization approaches can lead to more efficient and 
sustainable practices in forest operations.
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