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ABSTRACT

Background: This study reveals the surprising impact of large trees on biomass modeling and 
estimation in tropical forests. Findings emerged from viewing tropical forests as an Extremistan 
environment—a domain where a small number of extreme events disproportionately impact overall 
outcomes. The aims were to: (i) determine whether humid tropical forests can be characterized as an 
Extremistan environment, (ii) quantify the impact of large trees on the biomass quantification, and 
(iii) recommend better practices to mitigate the impact of large trees. The methods included forest 
simulation, biomass model calibrated with multi datasets and extensive examination of the impact of 
large trees on model performance and mean biomass estimation. 

Results: The select group of the 1% heaviest trees account for 25–35% of the total biomass, a 
concentration analogous to the wealth concentration in developed countries. Additionally, a “tyranny” 
of the 5% heaviest trees (diameter >18–31 cm) was observed, in which 50-75% of the total biomass 
is retained, significantly affecting biomass modeling and mean biomass estimation regardless of the 
model used.

Conclusions: This study confirms that humid tropical forests behave as an Extremistan environment. 
For biomass and carbon inventories, installing 10,000-m² sample units is recommended to mitigate 
the “tyranny” effect of the 5% heaviest trees, with a minimum size threshold of 4000 m².

Keywords: Biomass and carbon inventory; pantropical biomass database; biomass retention rate; 
tree-level modeling.

HIGHLIGHTS

The Extremistan environment existent in humid tropical forests is demonstrated.
The 1% heaviest trees retain 25–35% of the total biomass in tropical forests.
A “tyranny” of the 5% heaviest trees massively affects the biomass estimation.
Sample units of 10,000 m² are recommended to reduce the “tyranny” effects.
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INTRODUCTION

An Extremistan environment refers to a domain 
where extreme events have a disproportionately significant 
impact on overall outcomes. The concept of Extremistan 
was introduced by Taleb (2007) and has influenced many 
authors across various fields of research, including Earth 
sciences (Rising et al., 2022; Fischer et al., 2021; Merz et 
al., 2021), economics and finance (Chowdhury et al., 2022; 
Yarovaya et al., 2022), risk management (Paté‐Cornell, 2012), 
safety (Paltrinieri et al., 2019), and social sciences (Hofman 
et al., 2017). In an Extremistan environment, the distribution 
of certain phenomena is characterized by a high degree 
of inequality, where a small number of observations can 
drastically influence overall statistical properties.

One criticism from Taleb (2007) concerns the improper 
use of the Gaussian distribution in Extremistan environments, 
as this distribution fails to predict rare extreme events that 
exceed two or three standard deviations. These rare yet highly 
impactful events are defined as Black Swans. The Gaussian 
distribution is appropriate for what Taleb (2007) defines as 
Mediocristan; an environment free of Black Swans and inhabited 
by White Swans (regular events). Taleb (2007) classifies various 
human-induced phenomena in the real world, such as the 
frequency of words used daily, the number of book sales, and 
stock market fluctuations, as belonging to the Extremistan 
environment, where Black Swans are somewhat concealed. 
This paper demonstrates that the Extremistan environment 
extends beyond human-induced domains, reaching natural 
phenomena such as tree communities in humid tropical 
forests due to the presence of large trees.

Large trees differ from Black Swans for two main 
reasons. First, although rare, large trees are visible in the 
forest; second, the size of a tree is inherently limited by 
nature, as it cannot grow indefinitely due to biological 
constraints and external factors such as the environment. 
This implies that the impact of a large tree is restricted to its 
own size. In contrast, Black Swans are “invisible,” rare, and 
possess scalable impacts because they can be as impactful 
as possible. Therefore, it is reasonable to associate large 
trees in an Extremistan forest with neither Black Swans nor 
White Swans (regular events). Fortunately, Taleb (2007) 
recognized that Extremistan environments might be 
inhabited by Gray Swans, which fall between the categories 
of White and Black Swans. As this study presents a novel 
way of visualizing tropical forests, two important definitions 
arise: Extremistan forest—a humid tropical forest where 
Gray Swans reside visibly (not “hidden,” like Black Swans)—
and tree-Gray Swan—a rare yet probable large tree that 
has a significant impact on a sample. The remaining issue is 
determining the size of a tree-Gray Swan.

To understand the narrative of this paper, consider 
the following process for quantifying forest carbon stock: (i) 
felling trees to directly obtain their weights (i.e., biomass), 
(ii) applying biomass models, (iii) using a factor to convert 
biomass into carbon, (iv) predicting the carbon (~50% of 
the dry biomass) stored in each sample unit (SU), and finally 
(v) estimating the mean and total forest carbon stock. Two 
remarks related to (ii) and (iv) are highlighted.

First, it is well known that individual-tree biomass 
models typically yield model residuals greater than ±100%, 
and sometimes ±500%, as shown in Trautenmüller et al. (2023) 
and Romero et al. (2022) (approximate percentages calculated 
in this study). Frequently, biomass models are calibrated with 
datasets containing numerous small trees and only a few 
large ones (when available), often with a sample size of fewer 
than 100 trees (Nogueira et al., 2008; Chambers et al., 2001; 
Brown, 1997; Overman et al., 1994; Brown and Iverson, 1992; 
Brown et al., 1989). However, the significant issue is not only 
the calibration dataset itself. Another core matter lies in the 
nature of the variable tree biomass being modeled at the 
individual tree level. As tree biomass becomes more variable 
with increasing diameter, biomass data generally exhibit 
heteroscedasticity (Parresol, 1999), and biomass models 
cannot be as accurate and precise for large trees as they can 
be for smaller trees. This means that most tree-level models 
carry a high level of uncertainty when predicting the biomass 
of large trees (i.e., those that hold most of the forest biomass).

Secondly, the variance of the mean biomass per unit 
area can be significantly inflated by the improper practice 
of installing sample units (SUs) smaller than necessary. For 
instance, consider a SU of 10,000 m² containing trees that 
collectively weigh 280 Mg, and another SU of 100 m² where 
the weight is 2.8 Mg. If — and this scenario is highly likely in 
any humid tropical forest — a large tree of 20 Mg is found 
in these SUs, its representativeness would be approximately 
7% (=20/300) for the larger SU and 88% (=20/22.8) for the 
smaller one. That is, the same large tree might or might 
not pose an issue when calculating biomass variance 
among and within the SUs. The relationship between tree 
size and SU size drives the scalability of the error in carbon 
quantification. The larger the tree size in a SU, the greater 
the scalability of the error. Likewise, the smaller the SU size 
with a large tree, the larger the scalability of the error.

This paper explores the subject of biomass 
quantification under the hypothesis that large trees are 
responsible for transforming humid tropical forests into 
Extremistan forests, thereby impacting biomass quantification. 
The aim was threefold: (i) to verify whether tropical forests 
portray an Extremistan environment, (ii) to demonstrate the 
impact of large trees on tree-level models and mean biomass 
estimation, and (iii) to recommend better practices aimed at 
mitigating the impact of large trees.

MATERIAL AND METHODS

Data and study area

This study utilizes two data sources. The first is 
the pantropical biomass database of Chave et al. (2015) 
(hereafter referred to as the “pantropical database”), which 
is applied in the biomass modeling process described in 
Section 2.1.1. These authors compiled data from 4,004 
trees collected across 26 tropical countries in Africa, Asia, 
Australia, and Central and South America, available at http://
chave.ups-tlse.fr/pantropical_allometry.htm. The database 
comprises variables such as dry aboveground biomass 



3

David

CERNE (2024) 30: e-103381

(AGB), diameter at breast height (Dbh), total height (H), and 
wood specific gravity (ρ) of the trees. Additional information 
regarding the database can be found in Chave et al. (2015). 
Figure 1 illustrates the relationship between tree AGB and 
Dbh, as well as the histogram of Dbh for the trees.

The pantropical database was selected primarily for 
three reasons. First, it is the world’s largest tree biomass 
database compiled to date. Second, it has been extensively 
utilized for biomass quantification purposes in forests across 
tropical regions (the study has been cited more than 2000 
times as of 2022). Third, and perhaps most significantly, the 
database encompasses large trees.

The second data source utilized in this study 
pertains to stand-level information from forest sites 
located in the Brazilian Amazon (Higuchi et al., 1994) and 
the Atlantic Forest (Souza et al., 2011), which are necessary 
for the forest simulation described in Section 2.2.2. As the 
forest quantification and statistical analysis stem from these 
simulated forests, this study shares the same study area as 
Higuchi et al. (1994) and Souza et al. (2011).

Analytical procedure

This study focuses on the hypothesis that large trees 
cause humid tropical forests to behave as an Extremistan 
environment, thereby impacting biomass quantification. 
The analytical procedure delineated to verify that hypothesis 
and quantify the impact of large trees was divided into four 
sections: forest simulation, biomass modeling, impact of 
large trees on the biomass estimation and impact of large 
trees on sample units.

Forest simulation

Five 1-ha forests were simulated following a three-
phase process: (1) characterization of tropical forests based 
on surveys, (2) utilization of the Tropical Biomass & Carbon 
application (TB&C App), and (3) selection of trees from the 
pantropical database. The phases are explained as follows.

Phase 1 – Characterization of tropical forests based 
on surveys. Surveys conducted on Brazilian tropical forests 

were consulted and selected when criteria were met, being 
availability of forest attributes such as basal area (BA), density 
of trees (N), minimum and maximum Dbhs, besides having 
satisfactory sample size and existence of large trees in the 
su’s. Two surveys were selected. The first is Higuchi et al. 
(1994), where n=114 su’s were installed in two remnants of 
Ombrophilous Forest (OF) in the biome Amazon (OF is also 
known as Rainforest). The second survey is Souza et al. (2011), 
where n=22 su’s were installed in two remnants of Seasonal 
Forest (SF) in the biome Atlantic Forest. In addition, the Brazilian 
National Forest Inventory (NFI) database was consulted to 
obtain forest attributes in another remnant of OF, also located 
in the Amazon. This consultation comprised a set of n=212 su’s 
(each su is a 0.8-ha cluster) installed in the southeast region 
of the State of Amazonas. These NFI data have not yet been 
published; however, they can be made available to the public 
upon request (data identification: AM-08). Details about the 
Brazilian NFI methodology can be seen in David et al. (2019b). 
The three remnants of OF are subsequently referred to as 
sites OF1, OF2 and OF3, while the two remnants of SF are 
designated as sites SF1 and SF2. Table 1 provides the values for 
the forest attributes BA, N, minimum and maximum Dbhs and 
sample size for each site. Further information about these sites 
(except OF3) can be accessed in the original articles (Higuchi 
et al., 1994; Souza et al., 2011).

Phase 2 – Utilization of the Tropical Biomass & Carbon 
application (TB&C App). The forest attributes BA, N, minimum 
and maximum Dbhs presented in Table 1 were utilized to 
simulate tree Dbhs in the TB&C App (David et al., 2022). To 
simulate tree Dbhs in this application, users need to follow 
these steps (i) selection of the vegetation class (in this study, 
OF and SF); (ii) input of N, minimum and maximum Dbhs as 
presented in Table 1; and (iii) input of parameters (α and β) of 
the beta distribution to ensure that the Dbh distribution of the 
forest sites reproduces a reverse J-curve naturally observed 
in tropical forests (David et al., 2019a). In the TB&C App, the 
reverse J-curve can be reproduced by setting   0.5 and 
  2.0. However, to achieve the exact BA observed in each 
forest site of Table 1, α and β were slightly altered until reaching 
the exact BA. After executing the three-step procedure 
described above, the TB&C App generates a list of trees with 
their Dbh. The procedure was repeated for the five forest sites 
in Table 1, resulting in five sets of tree Dbhs.

Figure 1: Allometric relationship (a) and histogram of tree Dbhs (b) of the pantropical database. n = 4004 trees.
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Phase 3 – Selection of trees from the pantropical 
database. The sets of simulated tree Dbhs from the previous 
phase were used to create the five 1-ha forests evaluated in this 
study. The simulated forests were composed of trees randomly 
selected with repetition from the pantropical database, 
adhering to the number of trees per 10-cm Dbh class. Since 
the trees were sourced from the pantropical database, the 
real biomass of the ith trees (AGBi) of the simulated forests 
is known. The Dbh distribution of the five simulated forests is 
illustrated in Figure 1S (supplementary file).

Biomass modeling 

Six biomass models (Equation 1, 4–8) were applied 
to predict biomass of each tree belonging to the five 
simulated forests. These models were applied under four 
contexts, as follows.

Context 1 – Pantropical biomass model of Chave 
et al. (2015). The widely recognized pantropical biomass 
model      

2 0 ,9760.0063 ( )i i iDbh H
iAGB e  (Equation 4 from Chave et 

al., 2015) was applied in its original form. Chave et al. (2015) 
calibrated their model with a tree database encompassing 
25 countries, including Brazil. One consideration is that, 
in biomass modeling, log-log models are preferred 
because the logarithmic form solves problems with data 
heteroscedasticity (Parresol, 1999). In this paper, tree 
biomass is analyzed in its untransformed original unit 
(i.e., in kg), and as such, the tree biomass predicted using 
Equation (4) of Chave et al. (2015) should be added to 
the correction factor σ2/2 (Smith, 1993), resulting in the 
expression            

2 2/2 ( )i i iIn Dbh H
iAGB e . However, the effect of 

σ2/2 was neglected here because the authors reported that 
it has a minimal impact on the model predictions.

Context 2 – Pantropical biomass model of Chave et 
al. (2015) calibrated with reduced datasets. In this context, 
Equation (1) was fitted using seven calibration sub-datasets 
derived from the pantropical database (n=4004 trees). 
These sub-datasets were created by successively removing 
the heaviest trees from the original database. In the first 
sub-dataset, the 0.1% heaviest trees were excluded from 
the original database, remaining ncalib=4000 trees; in the 
second sub-dataset, the 0.5% heaviest trees were excluded, 
remaining with ncalib=3984 trees; in the third, the 1% 
heaviest trees were excluded, and ncalib=3964 trees; in the 

fourth, the 2% heaviest trees were excluded, and ncalib=3924 
trees; in the fifth, the 5% heaviest trees were excluded, and 
ncalib=3804 trees; in the sixth, the 10% heaviest trees were 
excluded, and ncalib=3602 trees; in the seventh, the 50% 
heaviest trees were excluded, and ncalib=2002 trees; the 
complete dataset comprising ncalib=4004 trees was also 
added to the graphs for comparison purposes.

Literature
consulted

Forest
Site BA (m² ha-1) N (trees ha-1) Sample size(2)

Tree Dbh (cm)
Minimum Maximum

Higuchi et al. (1994)
OF1 23.92 1,158 57 5.0 117.2(3)

OF2 32.02 1,264 57 5.0 113.5(3)

Unpublished data(1) OF3 32.93 1,135 212 5.0 212.0

Souza et al. (2011)
SF1 16.80 1,459 16 5.0 76.1(3)

SF2 25.70 1,897 6 5.0 76.0(3)

OF: Ombrophilous Forest. SF: Seasonal Forest. (1) Data sourced from the Brazilian National Forest Inventory database. (2) Sample size refers to the 
number of sample units. (3) An approximated value was assumed because authors indicated only midpoint of the diameter class.

Table 1: Characterization of inventoried forests of studies from literature.

        2( ) ( )i i i iIn AGB In Dbh H

Where, 
iAGB : predicted dry aboveground biomass of the ith 

tree, in kg; ρi: wood specific gravity of the ith tree, in g cm-3; 
Dbhi: diameter at breast height of the ith tree, in cm; Hi: total 
height of the ith tree, in m;   and  : model coefficients to 
be estimated; and εi: model residual.

As this context involves sub-datasets composed of 
increasingly fewer large trees, it was possible to quantify the 
impact of large trees on the biomass model. The impact was 
quantified through the mean error (Equation 2) and the root 
mean square error (Equation 3) of the model predictions. 
The first goodness-of-fit statistic measures model accuracy, 
whereas the second is a measure of model precision.

(1)




  1
( ) /calibn

i i calibiME AGB AGB n (2)




  
2

1
( ) /calibn

i i calibiRMSE AGB AGB n p (3)

Where, AGBi: observed AGB of the ith tree, in kg; 
iAGB : 

predicted AGB of the ith tree, in kg; ncalib: number of trees in 
the calibration dataset; and p: number of model coefficients.

Context 3 – The ‘perfect’ models. Equation 1 was 
refitted using the trees selected to simulate the forests 
described in phase 3 of section 2.1.1 as the calibration 
dataset. This context, therefore, involves applying site-
specific models, representing a utopian situation of 
maximum correlation, as the tree datasets used to calibrate 
the model are the same as those applied in the forest 
simulation. As a perfect situation, it is reasonable to expect 
that the models in this context will perform better than any 
other model.
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Context 4 – Biomass models from literature. Five 
biomass models (Equations 4, 5, 6, 7 and 8) from the 
literature were tested. Based on the dataset calibration and 
following the authors’ findings, Equations (4 and 5) can be 
generically applied to both forest types examined in this 
study; Ombrophilous Forest (OF) and Seasonal Forest (SF). 
In contrast, Equations (6, 7 and 8) are locally specific to 
the Amazonian region, where OF is abundant. Although 
Equations (6, 7 and 8) may not be entirely appropriate 
for SF, the idea was to determine whether the impact of 
large trees is substantial enough to negate the differences 
between forest type-specific and non-specific models. Key 
information about the authors’ model calibration dataset 
is presented in Table 2, and further details regarding these 
models can be found in the original articles.

Impact of large trees on biomass estimation 

Recall that the tree biomass of every simulated forest 
is known, allowing for the derivation of population estimates. 
Thus, the sum of real biomass of the ith trees (AGBi) in a site 
corresponds to the total biomass, 


  1

( )N
site iiTAGB AGB , 

where N is defined in Table 1. The estimate of the total biomass 
is accordingly given by  


  1

( )N
site iiT AGB AGB , in which 

iAGB  is 
obtained as in contexts 1–4 from the previous section.  siteT AGB  
was estimated for the four contexts and forest sites presented 
in Table 1. Note that, since the forests were simulated to have a 
1-ha area size, the total biomass (in Mg) and the mean biomass 
(in Mg ha-1) are equivalent, i.e.,  site siteT AGB AGB .

The impact of large trees was quantified by assessing 
the errors in mean biomass estimation resulting from the 
removal of the top x% heaviest trees from the simulated 
forests. The value of x% ranged from 0.1% to 50% of removal. 
This procedure required reducing the tree density of the 
simulated forests from N (see Table 1) to N’, where N’ is N 
minus the top 0.1% to 50% heaviest trees). The estimated 

Where, 
iAGB  and AGBi were defined in Equation (1); N’: N 

minus the 0.1–50% heaviest trees.

Impact of large trees on sample units

Finally, the representativeness of the heaviest trees 
(the top one) belonging to each site was examined as if 
they were observed in a sampling process with varying su 
sizes. The area sizes of 5000 m², 2500 m², 1250 m², and 
125 m² were considered, from which the proportionalities 
p are respectively derived as follows: .5 (=5000/10000), .25 
(=2500/10000), .125 (=1250/10000), and .0125 (=125/10000). 
If the same large tree is observed in su’s of different area 
sizes, its impact will be greater as the area size of the su 
decreases. In biomass quantification, this impact refers to 
the representativeness of the heaviest tree (RHTsite), which 
can be calculated for each forest site using Equation (11).

Source
Calibration dataset

ModelDbh range
(sample size) Data collection site

Brown (1997)
5–148 cm
(170 trees)

Tropical region    ln( ) 2.134 2.530ln( )i iAGB Dbh    (4)

Brown and Iverson (1992)
4–112 cm
(169 trees)

Tropical region      221.297 6.953( ) 0.740( )i i iAGB Dbh Dbh     (5)

Chambers et al. (2001)
5–100 cm
(315 trees)

Brazilian Amazon Forest

   





2

3

ln( ) 0.370 0.333ln( )
              0.933( )
              0.122ln( )

i i

i

i

AGB Dbh
Dbh
Dbh

    (6)

Nogueira et al. (2008)
5–124 cm
(262 trees)

Brazilian Amazon Forest    ln( ) 1.716 2.413ln( )i iAGB Dbh     (7)

Overman et al. (1994)
8–100 cm
(54 trees)

Colombian Amazon Forest    ln( ) 1.966 1.242ln( )i iAGB Dbh     (8)

Variables were defined in Equation (1).

Table 2: Models from the literature applied for tree biomass prediction.

(9)

(10)


  '

1
( )N

site site siteiTE T AGB TAGB




  '

1
( ) / 'N

site site siteiMET T AGB TAGB N

Where, AGB+: observed AGB of the heaviest tree, in kg; 

iAGB : observed AGB of the ith non-heaviest tree, in kg; p 

was defined. n is the number of trees in the site (see Table 
1), subtracted 1 due to the heaviest tree.



 



  1

1

100
( )site n

ii

AGBRHT
AGB p AGB (11)

mean error in kg tree-1 is expressed in Equation (9) and the 
estimated total error in Mg ha-1 is provided in Equation (10).
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RESULTS

How much biomass is retained in large trees?

Table 3 presents the biomass retained by the 
heaviest trees in relation to the total biomass of the forest. 
More than half of the total biomass is retained in the 5% 
heaviest trees, which have a Dbh greater than 26 cm in 
the OF and greater than 16 cm in the SF. Generally, the 1% 
heaviest trees account for 23–38% of the total biomass, 
while the 50% heaviest trees retain 87–95% of the total 
forest biomass. The 0.1% heaviest trees (approximately 1–2 
trees ha-1) contribute 3–14% of the total AGB.

As additional information, Table 2S (supplementary 
file) presents the exponents related to the fractal 
phenomena of biomass stored in the forests simulated 
in this study. These values were proposed based on the 
exponents tabulated in Taleb (2007).

Expected impact of large trees on sample units 
according to area size 

The resulting values of RHTsite are illustrated in Figure 
2 and presented in Table 1S (supplementary file). In the 
smallest su’s of 125 m², RHTsite exceeded 90% of the total 
biomass of the su, which means a retention over 90% (of 
the total biomass in the su) in a single tree – the heaviest 
one. That extreme retention occurred at site OF3.

Figure 2 shows that the impact of the top one 
heaviest trees increases sharply in su’s < 2500 m², and more 
abruptly in su’s < 1250 m². The heaviest tress at sites OF1, 
OF2 and OF3 had the largest impact due to their larger size, 
while sites SF1 and SF2 exhibited less impact. Nonetheless, 
representativeness in the SF remained notable (>60%) 
for the 125 m² su. The maximum representativeness was 
observed in site OF3, where the heaviest tree (with a Dbh of 
212 cm) accounted for 13.9% of the total biomass of the site. 
Conversely, the smallest representativeness was recorded 
at site SF2, where the heaviest tree (with a Dbh of 58.9 cm) 
retained only 4.4% of the total biomass.

Impact of the large trees on model performance

This section focuses on the pantropical biomass 
model developed by Chave et al. (2015) and does not 
involve the simulated sites presented in Table 1. The impact 
of the heaviest trees on the model’s performance was 
assessed by calibrating Equation (1) with progressively 
reduced datasets. Initially, the model was calibrated using 
the complete pantropical database, which includes 4004 
trees. Subsequently, the 0.1% to 50% heaviest trees were 
successively removed from the dataset. Table 4 presents the 
estimated model coefficients and their standard errors for 
each reduced dataset. Notably, the coefficients and model 
specifications are reported in their original scale, rather 
than the log-log scale used in Equation (1) as described by 
Chave et al. (2015).

x% heaviest
trees

Number of 
trees

% of the 
population 
biomass

Tree Dbh (cm)

Minimum Maximum

Site: OF1 – Ombrophilous Forest 1

x 
=

0.1 1 6.2 79.1 79.1
0.5 6 21.7 58.9 117.8
1.0 12 31.3 56.0 117.8
2.0 23 44.6 44.0 117.8
5.0 58 66.9 27.6 117.8

10.0 116 75.6 14.9 117.8
50.0 579 92.9 7.3 117.8
100.0 1,158 100.0 5.1 117.8

Site: OF2 – Ombrophilous Forest 2

x 
=

0.1 1 4.0 79.1 79.1
0.5 6 20.3 75.1 116.0
1.0 13 34.4 74.8 116.0
2.0 25 50.2 57.3 116.0
5.0 63 73.7 36.0 116.0

10.0 126 83.1 15.9 116.0
50.0 632 95.4 6.9 116.0
100.0 1,264 100.0 5.1 116.0

Site: OF3 – Ombrophilous Forest 3

x 
=

0.1 1 13.9 212.0 212.0
0.5 6 28.7 74.8 212.0
1.0 11 38.2 58.9 212.0
2.0 23 50.8 44.0 212.0
5.0 57 67.5 26.0 212.0

10.0 114 76.3 15.9 212.0
50.0 568 94.2 9.0 212.0
100.0 1,135 100.0 5.1 212.0

Site: SF1 – Seasonal Forest 1

x 
=

0.1 1 3.4 59.7 59.7
0.5 7 16.2 44.0 76.0
1.0 15 25.8 36.0 76.0
2.0 29 37.0 26.0 76.0
5.0 73 50.9 15.9 76.0

10.0 146 58.8 13.0 76.0
50.0 730 87.6 6.9 76.0
100.0 1,459 100.0 5.1 76.0

Site: SF2 – Seasonal Forest 2

x 
=

0.1 2 4.4 58.9 59.7
0.5 9 14.1 45.3 79.9
1.0 19 23.1 36.0 79.9
2.0 38 35.8 26.0 79.9
5.0 95 52.7 19.7 79.9

10.0 190 62.0 14.0 79.9
50.0 948 89.0 6.9 79.9
100.0 1,897 100.0 5.1 79.9

Table 3: Representativeness of the heaviest trees across 
the studied forest sites.
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The greatest variations in the model coefficients 
and standard errors were observed among the models 
calibrated when the 50% heaviest trees were excluded. The 
results suggest that the exclusion of up to the 10% heaviest 
trees from the dataset exerts little impact on the model 
coefficients when compared with the complete dataset that 
includes all 4004 trees. The goodness-of-fit statistics for the 
models listed in Table 4 are presented in Table 5.

The statistics ME (Equation 2) and RMSE (Equation 3) 
in Table 5 were calculated by considering the trees belonging 
to the reduced datasets, whereas ME10  and RMSE10 were 
computed using only the 10 heaviest trees. Both ME and RMSE 

successively decreased as much as the heaviest trees were 
excluded from the database. This might sound contradictory 
at first sight, having in mind that larger-size datasets should 
produce better statistics. But this result makes sense if we 
consider that the heaviest trees are those ones capable to 
inflate ME and RMSE, since they retain the most biomass and 
variability, as Table 3 shows. An expected result in Table 5 is 
that ME10 and RMSE10 (not ME and RMSE) increased as the 
heaviest trees were excluded from the calibration dataset. 
This is an intuitive result because, if heavier trees are excluded 
from the calibration dataset, the biomass model would lose 
accuracy in the biomass prediction of the heaviest trees. For 
the 10 heaviest trees – which is 0.25% (=10/4004×100) of the 
trees in the pantropical database –, the largest differences 
in accuracy (ME10) and precision (RMSE10) were noted when 
the 50% heaviest trees were excluded. The ME10 and RMSE10 
estimated when the 50% heaviest trees were excluded were 
about twice worse than the other ones. For all % of removal, 
ME and RMSE were much more sensible to the reduction of 
the calibration dataset than ME10 and RMSE10.

Impact of the large trees on the total biomass estimation

This section presents the variation of METsite 
(Equation 9) and TEsite (Equation 10) when the heaviest 
trees are excluded from the simulated population. The 
idea was to examine the impact of the large trees on the 
mean biomass estimation using those models of Table 4 
and those available in the literature. In all figures of this 
section, on the x-axis, 0% means that 0% of the N trees (see 
N in Table 1) was excluded, x-axis=1% means that the 1% 
heaviest trees were excluded from the N trees, and so on.

The first model was produced following Context 1 – 
Pantropical biomass model of Chave et al. (2015) calibrated 
with the full dataset comprising 4004 trees. Figure 3 shows 
a notable impact of the 5% heaviest trees on the mean 
biomass error, reaching a maximum underestimation of -35 
kg tree-1 or -40 Mg ha-1.

Figure 2: Representativeness in the plot-level biomass of 
the heaviest tree (RHTsite) in sample units (su) with different 
sizes and sites (The Dbh of the heaviest tree is shown in 
the top line of each site in Table 3).

x% heaviest trees excluded Number of trees Model 





x 
=

50.0 2,002     2 0,9020.093 ( )i i iAGBi Dbh H ± 0.050 ± 0.008

10.0 3,602     2 0,9710.065 ( )i i iAGBi Dbh H ± 0.026 ± 0.003

5.0 3,804     2 0,9700.066 ( )i i iAGBi Dbh H ± 0.024 ± 0.003

2.0 3,924     2 0,9700.066 ( )i i iAGBi Dbh H ± 0.022 ± 0.003

1.0 3,964     2 0,9720.065 ( )i i iAGBi Dbh H ± 0.022 ± 0.003

0.5 3,984     2 0,9740.064 ( )i i iAGBi Dbh H ± 0.021 ± 0.003

0.1 4,000     2 0,9750.063 ( )i i iAGBi Dbh H ± 0.021 ± 0.003

0.0 4,004     2 0,9760.063 ( )i i iAGBi Dbh H ± 0.021 ± 0.003

σ: standard error of the model coefficient.

Table 4: Variation in model coefficients calibrated with datasets in which x% heaviest trees are excluded. Goodness-of-
fit statistics are shown in Table 5. The resulting model when x = 0.0% corresponds to Equation (4) of Chave et al. (2015).
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The next analysis stems from Context 2 – Pantropical 
biomass model of Chave et al. (2015) calibrated with reduced 
datasets. Results are shown in Figure 4. The main difference 
between contexts 1 and 2 is that this time, the models 
shown in Table 4 were used rather than the original model 
calibrated with the full database with n = 4004 trees. Each 
graph in Figure 4 is specific to every forest site presented 
in Table 1. Figure 4 reveals an expressive underestimation of 
the mean biomass due to the presence of the 5% heaviest 
trees. Results suggest that, in general, the mean biomass 
error is relatively similar when 0–10% of the heaviest trees 
are removed from the pantropical biomass.

Notably, the model calibrated with the dataset 
reduced by the removal of the 50% heaviest trees (pink lines, 
Figure 4) produced sharper underestimations of the mean 
biomass than the other models. This result was expected 
because of the expressive differences in the coefficients 
(shown in Table 4) among such models. Graphs showing 
the relationship of observed and predicted tree biomass 
through the models of Table 4 are provided in Figure 2S 
(supplementary file).

The next results are from Context 3 – The ‘perfect’ 
models, where the same trees belonging to the simulated 
sites were used to calibrate Equation (1). Surprising results 
were seen because these models produced mean biomass 
errors slightly larger than the pantropical biomass model. 

Results regarding Context 4 – Biomass models from 
literature show that, excepting Brown and Iverson (1992)’s 
model (Equation 5), the performance of the models yielded 
smaller errors when compared to the pantropical biomass 
model. Illustrative results are given in Figure 6. 

DISCUSSION

The tyranny of the 5%

The select group of the 1% heaviest trees retained, 
on average, 35% (31–38%) of the total biomass in the 
sites of OF, and 25% (23–26%) in the sites of SF. These 
results suggest that the biomass concentration in humid 
tropical forests is comparable to the wealth concentration 
in developed countries. For example, in 2010, European 
wealthiest 1% held ~25% of the total wealth. In the United 
States of America, the wealthiest 1% held ~35% (Piketty, 
2014). Results align to studies as Bastin et al. (2018), Sist 
et al. (2014) and Slik et al. (2013). These authors also noted 
that large trees explain much of the total AGB of tropical 
forests. The existence of a “tyranny of the large trees” is 
here revealed and notable, pushing humid tropical forests 
into the concept of Extremistan environment – this confirms 
the hypothesis initially raised. However, it is not only the 1% 
that compromises the biomass estimates.

Figure 3: Error variation caused when the x% heaviest trees 
are excluded from the forest. The mean biomass (Mg ha-1) is 
estimated using the tree biomass predicted from Equation 
(4) of Chave et al. (2015): (      

2 0 ,9760.0063 ( )i i iDbh H
iAGB e ). OF1, 

OF2, OF3, SF1 and SF2 are tropical forest sites (see Table 
1). Colored lines indicate error in kg tree-1. Colored circles 
indicate error in Mg ha-1. Dashed black line indicates x=5%.

x% heaviest trees
excluded Number of trees

ME (kg) RMSE (kg) ME10 (kg) RMSE10 (kg)
For the x% heaviest trees For the ten heaviest trees

x 
=

50.0 2,002 -1 14 -30,024 38,142
10.0 3,602 -5 157 -15,783 21,718
5.0 3,804 3 346 -15,871 21,812
2.0 3,924 7 555 -15,815 21,753
1.0 3,964 -11 701 -15,310 21,219
0.5 3,984 -25 807 -15,048 20,944
0.1 4,000 -55 1,046 -14,645 20,525
0.0 4,004 -74 1,273 -14,521 20,397

ME: mean error, Equation (2). RMSE: root mean square error, Equation (3). Biomass estimates.

Table 5: Goodness-of-fit statistics of Equation (1) when calibrated with datasets in which x% heaviest trees are 
excluded. Model coefficients are shown in Table 4. The resulting model performance when x = 0.0% corresponds to the 
performance of Equation (4) of Chave et al. (2015).



9

David

CERNE (2024) 30: e-103381

The tyranny of the 5% heaviest trees is evident. These 
trees exert such a substantial impact that, regardless of the 
model used, they generally induce a systematic negative 
error in the mean biomass estimation. The impact of the 5% 
heaviest trees makes sense when considered that they retain 
50–74% of the total biomass (Table 3). In several cases, the 
mean biomass per unit area would not be underestimated 
if the 5% heaviest trees did not exist, in which the mean 
biomass errors would get close to 0 kg tree-1. Table 5 reveals 
that the tree-level biomass models tested can predict 
biomass of the small trees with reasonable accuracy, but 
they severely fail for the larger ones. For example, for the 10 
heaviest trees of the pantropical database, the pantropical 
model of Chave et al. (2015) predicts tree biomass with an 
average error of 14.5 Mg/tree (last row of Table 5), which is 
equivalent to ~30%, corresponding to studies as Romero 
et al. (2022). The error on the biomass predictions of large 
trees is potentialized at the plot level if small su’s are used. 
Results of Figure 2 and Table 1S (supplementary file) reveal 
that a single large tree may represent up to 90% of the plot 
biomass of a small su. 

The tyranny of the 5% was somehow observed in 
other studies such as Sist et al. (2014), in which biomass in 
18 Amazonian forests was assessed and reported that trees 
with Dbh ≥ 60cm retain >50% of the total biomass, i.e., a 
retention rate even higher than the one found in this study. 
In another study, Silk et al. (2013) found that the density of 
trees with Dbh ≥ 70cm explain ~70% of the pan-tropical 
AGB, and that these trees retained 25% (America), 39% 
(Asia) and 44% (Africa) of the total AGB. Note in Table 3 
that when the Dbh ≥ 60cm and 70cm, the highest biomass 
retention was respectively 30% and 19%, suggesting that 
the results of this study may be conservative. 

The general learning with this tyranny is that 
finding the most suitable tree-level model for an 
Extremistan forest seems to be a “waste of time”. Note that 
models from the literature (Figure 6) in general performed 
similarly or better than the ‘perfect’ models (Figure 5) 
and the pantropical biomass model (Figure 3), this last 
fitted with the current largest calibration dataset for the 
tropical zone. Recall that the ‘perfect’ models did not help 
the biomass estimation to be more accurate. I.e., the best 

Figure 4: Error variation caused when the x% heaviest trees are excluded from the forest. The mean biomass (Mg ha-1) 
is estimated through tree biomass predicted from Equation (1) calibrated with datasets reduced by the exclusion of the 
heaviest trees (see Table 3). OF1, OF2, OF3, SF1 and SF2 are tropical forest sites (see Table 1). Colored lines indicate error 
in kg tree-1. Colored circles indicate error in Mg ha-1. Dashed black line indicates x=5%.
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tree-level biomass model will probably not mitigate the 
impact of the tyranny of the 5%. One reason for this result 
is that tree biomass varies so much for the large trees 
that no tree-level model could capture well their biomass 
variability based on only allometric relationship. As the 
large trees are those responsible for the most biomass 
retained (Table 3), a model fitted with and without the 10% 
heaviest trees would produce, in general, similar outputs 
for the tree population. Figure 4 shows that the calibration 
datasets with removal of 0.1–10% of the heaviest trees 
worked similarly from each other but worked greatly 
better than that removal of the 50% heaviest trees. It 
means that the original pan-tropical biomass model by 
Chave et al. (2015) works very similar to if it was calibrated 
without the 10% heaviest trees. On the other hand, if the 
model was calibrated without the 50% heaviest trees, then 
the effect of this exclusion would become significant, both 
on the model coefficients (Table 4), biomass prediction of 
the heaviest trees (Table 5), and mean biomass estimation 
(Figure 4). The findings clearly indicate that the lack of 
those 50% makes the model predict the biomass of large 
trees with less accuracy and precision. Another remark is 
that the biomass underestimation provoked by the 5% 
heaviest trees (Figures 3–5) seemed to be inherent to 
Equation (1). Results confirm that Equation (1) does not 
always underestimate biomass of those heaviest trees after 
redoing several times the simulation process described in 
section 2.2.1 and redrawing Figures 3–5. Figures 3–5. were 
chosen from several because they faithfully portray the 
overall performance of Equation (1).

Forest modelers typically assess their tree-level 
models using goodness-of-fit statistics such as RMSE and 
R², along with an analysis of model residuals. A low RMSE 
may create a misleading perception of “statistical security.” 
For instance, if a model is calibrated with a dataset featuring 
many small trees and few large ones, the RMSE is likely to 
be lower than if calibrated with a dataset containing few 
small trees and many large ones. This discrepancy arises 
because RMSE is proportional to the magnitude of the 
data. While the relative form of RMSE can mitigate this 
issue, a high RMSE does not necessarily indicate a poor 
model for forest applications. Neither the absolute nor 
relative RMSE accurately reflects the error in stand-level or 
large-area estimations. For instance, the biomass models in 
Table 4 yielded RMSE values ranging from 14 to 1273 kg, as 
shown in Table 5. When these models were used to predict 
tree biomass and estimate the biomass error per hectare 
(illustrated in Figure 5), the model with the lowest RMSE 
resulted in the highest stand-level error. This outcome was 
due to the exclusion of the heaviest 50% of trees in the 
calibration dataset, leading to a low magnitude. Surprisingly, 
the other models produced similar stand-level errors 
despite a RMSE variation of 157 to 1273 kg. This indicates 
that the magnitude of the stand is more critical, and the 
presence of numerous trees can complicate analysis.

How large should a tree be to play the role of a Gray 
Swan? 

Surprisingly, the tree-Gray Swan is smaller than 
one may expect. Though determining Gray Swans may 
be a bit subjective task, this study strongly indicates that 
the 5% heaviest trees are the Gray Swans. Results indicate 
that trees-Gray Swan were those with a Dbh >31 cm 
(Dbhs of 26–36 cm, see Table 3) for the OF, and with Dbh 
>18 cm (Dbhs of 16–20 cm) for the SF. The next section 
describes how to mitigate the impact of the Gray Swans in 
Extremistan forests.

Dealing with Extremistan forests

Quantifying biomass in general requires that a 
forest inventory be conducted. This study indicates that 
using large size su’s in tropical forest inventories mitigates 
troubles related to the tyranny of the 5% heaviest trees. 
Findings suggest that su’s ≥4000m² are safe for mature 
humid tropical forest, and 10000m² as the ideal size. The 
point is that large size su’s mitigate the impact of large 
trees when they are observed in a su. The larger the su’s, 
the more homogeneous their stocks, and this leads the 
sample towards a normal distribution. Small su’s (e.g., 
<1000 m²) would inflate the sample variance. Figure 2 
illustrates the plot-level impact of the largest tree (here 
treated as tree-Gray Swan) found in the forest. The five 
trees-Gray Swan (one per site) of Figure 2 had Dbh 
ranging from 59 to 212 cm. Although the difference in 
Dbh, their impacts followed a similar trend in relation to 
the decreasing of the su size.

Figure 5: Error variation caused when the x% heaviest trees 
are excluded from the forest. The mean biomass (Mg ha-1) 
is estimated through tree biomass predicted from Equation 
(1) calibrated with the own trees used to simulate the forest 
sites OF1, OF2, OF3, SF1 and SF2. Colored lines indicate 
error in kg tree-1. Colored circles indicate error in Mg ha-1. 
Dashed black line indicates x=5%.
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Another practice that possibly potentialize an 
Extremistan forest is the way that tree biomass is modeled. 
Considering tropical tree species, the allometric relationship 
(biomass as a function of Dbh and h) works relatively 
well for small trees (Dbh <20 cm). The reason is because 
these trees, in general, present smaller stem volumes and 
crowns, and their branches tend to be less thick. Stems 
of small trees also tend to be more regular so that the 
tree variables Dbh and h capture well the stem volume. 
Based on empirical observations, this author indicates the 
crown (branches+foliage) as the main source of biomass 
variability in adult trees. Unfortunately, few forest scientists 
have published surveys about the biomass variability in 
compartments of tropical tree species. In Brazilian forests, 
biomass in the tree compartments was recently studied in 
Trautenmüller et al. (2021; 2023). Trautenmüller et al. (2023) 
tested models with and without stratification, in which strata 
corresponded to groups of Dbh size. For models fitted with 
a non-stratified calibration dataset, the biomass in branches 
and leaves was predicted with residuals of ±1000%, whereas 
the residuals for the trunks ranged between ±500%. While 
stratifying the calibration dataset, the authors obtained 
smaller residuals, but biomass errors in the branches and 
leaves remained higher than in the trunks. I.e, biomass 

in the crown is much more variable than in the trunks. 
Trautenmüller et al. (2021; 2023) also showed that biomass 
variation increases with the tree growth. Another expressive 
biomass variability in the large trees can be seen in Romero 
et al. (2022), while modeling biomass in only trees with Dbh 
≥50cm. The trees with Dbh of 100 cm that composed their 
calibration dataset varied approximately between 2–13 MgC 
(this is carbon, not biomass); a 550% difference in weight for 
the same Dbh (see Romero et al. 2022’s Figure 5). All these 
studies demonstrate to us that the biomass in the large trees 
(our Gray Swans) is inaccurately predicted at the tree level. 
Taking this study as example, if the 5% heaviest trees have 
their biomass inaccurately predicted, then 50–74% of the 
total biomass (Table 3) would consequently be inaccurately 
predicted. Lack of agreement between tree-level models was 
also examined in David et al. (2022). These authors simulated 
sites of Brazilian tropical forests and applied six tree biomass 
models for humid tropical forests (see David et al. 2022’s 
Table 5), five of them are presented in Figure 6. In their first 
site, the six models produced estimates ranging from 262–
469 Mg ha-1 (difference of 207 Mg ha-1); in the second site, it 
was from 383–696 Mg ha-1 (difference of 313 Mg ha-1); third 
site, 484–860 Mg ha-1 (difference of 376 Mg ha-1); and in the 
fourth site, 488–851 Mg ha-1 (difference of 363 Mg ha-1). 

Figure 6: Error variation caused when the x% heaviest trees are excluded from the forest. The mean biomass (Mg ha-1) is 
estimated through tree biomass predicted from Eqs. 4–8. OF1, OF2, OF3, SF1 and SF2 are tropical forest sites (see Table 
1). Colored lines indicate error in kg tree-1. Colored circles indicate error in Mg ha-1. Dashed black line indicates x=5%.
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It is evident in the literature that tree-level models are 
much more commonly used than the stand-level models. 
Especially due to the large trees, this study suggests that, in 
tropical forests, the tree-level approach is likely impotent to 
reduce the mean biomass error. Further research exploring 
stand-level modeling is needed to verify if such an approach 
can mitigate the effects of the tyranny of the 5% heaviest trees.

CONCLUSION

Extremistan environments are exhibited in humid 
tropical forests, where large trees (referred to as tree-Gray 
Swans) are sheltered. In the Ombropilous Forest, tree-Gray 
Swans typically have a Dbh >31 cm, while in the Seasonal 
Forest, they have a Dbh >18 cm. The 1% heaviest trees, on 
average, retain 25–35% of the total biomass in Extremistan 
forests. There is a ‘hidden tyranny’ among the 5% heaviest 
trees, which has a significant impact on biomass modeling 
and estimation. In biomass and carbon inventories, 
installing sample units of 10,000 m² is effective in mitigating 
the effects of this tyranny, although a minimum area size of 
4,000 m² can also help reduce these effects.
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Figure 1S. Histogram of tree diameters of simulated populations based on the pantropical database. OF1, OF2, OF3, 
SF1 and SF2 are tropical forest sites (see Table 1).

Figure 2S. Observed vs. predicted biomass through models calibrated with datasets reduced by the exclusion of the 
heaviest trees (see Table 3).
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Forest site
% population biomass retained by the: Range of the 

exponent (θ)*heaviest 1% trees heaviest 20% trees
OF1 – Ombrophilous Forest 1 29% 83% 1.1–1.4 
OF2 – Ombrophilous Forest 2 31% 86% 1.1–1.4 
OF3 – Ombrophilous Forest 3 40% 84% 1.1–1.3 

SF1 – Seasonal Forest 1 26% 69% 1.3–1.5 
SF2 – Seasonal Forest 2 23% 71% 1.3–1.5 

* Approximation of exponents tabulated in Taleb (2007).

Table 2S. Taleb’s exponent of the fractal phenomena biomass stored in tropical forests.

Site AGB+
 -1

1
-( )i

n
i AGB  

su size (m²)
10,000 5,000 2,500 1,250 125

OF1 24.4 224.7 9.8% 17.8% 30.3% 46.5% 89.7%
OF2 20.8 357.0 5.5% 10.4% 18.9% 31.8% 82.3%
OF3 43.6 253.6 14.7% 25.6% 40.8% 57.9% 93.2%
SF1 9.2 151.1 5.7% 10.8% 19.5% 32.7% 82.9%
SF2 6.1 232.1 2.6% 5.0% 9.5% 17.3% 67.7%

AGB+ and AGBi
– are defined in Eq. (8).

Table 1S. Representativeness in the plot-level biomass of the heaviest tree () in sample units (su) with different sizes and 
sites (The Dbh of the heaviest tree is shown in the top line of each site in Table 2).

Exponents  in Table 2S should vary within and 
among the forests. Within, because tree population is 
dynamic over time and is susceptible to natural and 
external interventions. The main natural intervention is 
tree mortality, mainly of big trees. When a big tree dies, 
a considerable portion of the population biomass ends 

up migrating to the subsequent lower class of trees. In 
addition, the fall of a big tree drops many trees that is along 
the line of the fall, besides those ones pulled by entwined 
lianas. External interventions, as selective harvest, thinning 
and forest fires also alter the tree population, consequently 
affect the exponent.


