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ABSTRACT

Background: Climate change, which has mainly manifested in Iran in the form of intensifying periods 
of drought, can have profound effects on the valuable forest ecosystems of Zagros in the west of 
Iran. In this study, the drought trend in the period from 2000 to 2020 was investigated on the spatio-
temporal dynamics of greenness of Zagros oak forests in Kohgiluyeh and Boyer Ahmad province 
in the west of Iran. SPI, PDSI, NDVI and EVI with modeling their relationship based on GWR was 
used. Also, based on two climate change scenarios RCP2.6 and RCP8.5, the simulation of drought 
conditions and changes in forest greenness until 2050 were studied. 

Results: The results showed that the peak greenness of the oak forests has a significant sensitivity 
to changes in rainfall and drought at the end of the cold period of the year and in the spring season. 
The negative phases of the drought have been completely consistent with the periods of greenness 
loss. Also, both the greenness and the area of   the oak forests have decreased. The EVI index showed 
the highest sensitivity to the PDSI, and the developed model based on these two indices had a 
spatial explanation coefficient between 40 and 70%. 

Conclusion: The implementation of the developed model under two scenarios showed that the 
forest greenness will face a decrease of about 25% in the RCP8.5 scenario and about 15% in the 
RCP2.6 scenario until 2050. The relationship between drought and forest decline was proven in 
this study.
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HIGHLIGHTS

The greenness of the oak forests is sensitive to rainfall and drought at the end of the cold period of 
the year and in the spring season.
The greenness and the area of oak forests has been reduced.
EVI has shown the highest sensitivity to drought.
The greenness of oak forests will decrease in both climate scenario until 2050.
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INTRODUCTION

The forests of Zagros, as the largest vegetation 
area of   Iran, with an area of   about 5 million ha, constitute 
40% of the total forests of Iran (Ghanbari Motlagh et 
al., 2020). This vegetation region is classified as semi-
arid forests (Yaghmaei et al., 2022; Zand et al., 2022; 
Azizi et al., 2015). About 70% of Zagros Forest species 
are Quercus sp.(Imanyfar et al., 2019; Shiranvand and 
Hosseini, 2020b). As the second natural forest ecosystem 
in Iran, these forests play a very valuable role in providing 
water resources, preventing soil erosion, protecting plant 
and animal biodiversity, adjusting climate, economic, 
and social balance in Iran (Hosseni et al., 2017; Alirezaii 
et al., 2019). However, unfortunately they are facing many 
environmental problems. One of the issues that is known 
as the most important environmental threat of Zagros 
forests is the increasing drying of oak trees (Attarod et al., 
2017; Zand et al., 2022; Ghanbari Motlagh et al., 2020). One 
of the most important early symptoms of the oak decline 
crisis is the occurrence of dryness in the tree crown; which 
may cause the complete drying of the tree and its death 
(Touhami et al., 2020; Ghanbari Motlagh et al., 2023).

In the forests of Zagros, although there are many 
factors involved in this situation and they should be 
identified through detailed studies, one of the main factors 
can be considered successive droughts, which reduce 
the greenness, health, and function of the forest canopy. 
Various studies have shown that drought, as one of the 
climatological hazards, has had significant effects on the 
vegetation of Zagros oak forests in western Iran and the 
crown decline of its forests (Imanyfar et al., 2019; Attarod et 
al., 2017; Shiravand and Hosseini, 2020; Alirezaii et al., 2019).

Drought is a continuous and unnatural lack of 
moisture in a certain period of time, which is usually one 
year (Filizzola et al., 2022; Allen et al., 2010; Morid et 
al., 2006). Drought causes a reduction in soil moisture 
through a decrease in rainfall. With the gradual reduction 
of available soil moisture, water loss occurs in plant 
tissues and organs, and its primary result appears as 
wilting and decrement in greenness appears in the crown 
of the tree. Finally, it leads to the gradual weakening and 
decline of trees (Anderegg et al., 2015; Zhou et al., 2018; 
Kloos et al., 2021; Gulácsi and Kovács, 2018; Prăvălie et al., 
2022; Shiravand and Hosseini, 2020). Drought indirectly 
causes a sharp increase in the death of trees through the 
creation of fine dust, the occurrence of new pests and 
diseases, and the destruction of biological diversity in the 
soil. In addition, drought is one of the natural disasters 
that can affect the density and area of   vegetation in any 
region, especially dry regions (Allen et al., 2010; Zhou 
et al., 2018; Enríquez-de-Salamanca 2022; Khosravi et al. 
2016; Prăvălie et al., 2022).

The effects of drought on the vegetation appear 
gradually. Therefore, if the extent of changes in vegetation 
cover is monitored on satellite images, it is possible to 
identify the destructive characteristics of drought on time 
by examining the changes with the gradual reduction of 
the greenness of the vegetation cover (Anderegg et al., 

2015; Filizzola et al., 2022; Guo et al., 2018; Zhang et al., 
2017; Marqués et al., 2022). Also, considering drought 
management, information should be obtained from the 
time period before the occurrence of drought, when it 
occurs and after it. Thus, revealing the spatiotemporal 
dynamics of forest greenness in response to drought is 
very important (Zhao et al., 2022; Rahimzadeh Bajgiran et 
al., 2008; Alirezaii et al., 2019). One of the important and 
basic steps in the studies of drought and wetness in each 
region is to determine the indicators that can be used to 
evaluate the severity and continuity of drought and wet 
years. Most of these indices are based on meteorological 
criteria and examine variables such as soil moisture, 
temperature, and especially precipitation (Kloos et al., 
2021; Morid et al., 2006; Tan et al., 2015). Among the most 
effective and widely used indices are the Palmer Drought 
Severity Index (PDSI) (Palmer, 1965) and the Standard 
Precipitation Index (SPI) (McKee at al., 1993), Normalized 
Difference Vegetation Index (NDVI) and Enhanced 
Vegetation Index (EVI) (Filizzola et al., 2022; Rahimzadeh 
Bajgiran et al., 2008; Prăvălie et al., 2022). 

The relationship between the death as well as 
decline of trees in the forests of the world and climate 
changes related to drought and heat stress has been 
shown in several studies using climate and satellite 
indicators (Allen et al., 2010; Anderegg et al., 2015; 
Filizzola et al., 2022; Enríquez-de-Salamanca 2022; 
Marqués et al., 2022; Scharnweber et al. 2011; Klos et al., 
2009; Moore et al., 2016; Senf et al., 2022; Zhang et al., 
2017; Prăvălie et al., 2022; Samanta et al., 2010; Saleska 
et al., 2007; Ji and Peters, 2003; Gu et al., 2007; Tan et al., 
2015; Zhou et al., 2018). Therefore, it is necessary to test 
the compatibility of the hypothesis of the relationship 
between climate changes plus droughts and the extent 
along with spatiotemporal dynamics of canopy decline 
and greenness reduction of Zagros forests. 

This study was carried out in a part of the 
Zagros oak forests in the west of Iran, in the province 
of Kohgiloyeh and BoyerAhmad. The objectives of this 
study are: - Spatiotemporal monitoring of drought trends 
and greenness indices of forests in the period 2000-
2020 using satellite greenness indices (NDVI/MODIS and 
EVI) and drought indices (SPI and PDSI); -Examining the 
relationship between greenness and drought indices 
through the development of the GWR model and 
determining the appropriate index; -Simulation of future 
drought conditions in the region based on two climate 
change scenarios RCP2.6 and RCP8.5; - Prediction of 
changes in forest cover and greenness until 2050 based 
on this simulation.

MATERIAL AND METHODS

Study area

The study area of   this research is Kohgiloyeh and 
Boyerahmad province in western Iran. Morphologically, 
this province is a part of the Zagros mountain range, and 
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therefore the forests of this province are also part of the 
Zagros oak forests. Due to the variety of altitude from less 
than 150 meters to more than 4200 meters, rainfall and 
suitable temperature, this province has a variety of climate 
and vegetation. About 8740 km2 of Zagros forests in Iran 
are located in this province and in the oak vegetation 
zone of Zagros, it is the fourth province in terms of forest 
area. Iranian oak (Quercus brantii) is the dominant species 
in the forests of the province. Most of the oak habitats of 
the province are in the northern part with a northwest-
southeast trend. (Kohgiluyeh and Boyerahmad Province 
Land use planning, 2015) (Figure 1).

Database of vegetation greenness indices

In this research, the EVI and NDVI indices obtained 
from the time series data (2000-2020) of the MOD13A3 
product of the MODIS sensor were used to determine the 
greenness of the forest cover. (https://modis.gsfc.nasa.
gov). (This index is calculated based on the relationship 
in Table 1). The values of this index are between -1 and 
+1 and tend to be 1 for dense vegetation (Allen et al., 
2002; Gu et al., 2007). Another remote sensing index 
that is more efficient than NDVI in forest environments 
is the EVI (which the formula of this index is presented in 
Table 1)(Filizzola et al., 2022; Zhou et al., 2018; Huete et 
al., 2002; Abdi et al., 2018). This index is between -1 and 
+1. In fact, EVI is a modified NDVI in which the adjustment 
factor of forest cover (L) and two coefficients C1 and C2 are 
considered (Huete et al., 2002).

Determining the experimental threshold of forest cover

To determine the threshold of forest cover based 
on the two mentioned greenness indices, a targeted 

sampling of 20 points of oak forests with high health 
canopy in the province was used. The location of these 
sampling sites was recorded using a GPS device in the 
WGS1984 coordinate system. All samples were selected 
from healthy oaks that did not show signs of decline 
such as yellowing of leaves and brown gum discharge. By 
comparing the location of these field samples with that of 
the same points on the images, the threshold value of the 
indices was considered as the threshold of the presence 
of green and health oak forests. These experimental 
samplings were carried out monthly in 20 sites of the 
province from April to November 2021, where the values   of 
EVI and NDVI indices were changed for these 20 locations 
from the MODIS product (Alirezaei et al., 2019). The 
results of the investigation in this study revealed that the 
month of June coincided with the peak greening period 
of the oak tree in the province. The average greenness 
of this month in these sites was obtained based on EVI 
and NDVI indices (Alirezaei et al., 2019). Next, the spatial 
map of the distribution of the monthly greenness indices 
of the oak forests of the province was created based on 
the threshold values   obtained in June (greenness peak) 
for the study period in the ArcGIS environment, where its 
minimum, maximum, and average values   were obtained 
during the study period.

Drought information database

Drought indices used in this study have been 
Palmer Drought Severity Index (PDSI) and Standard 
Precipitation Index (SPI). The two mentioned indices are 
known as the most important and common indices for 
drought detection and monitoring. These indices are based 
on rainfall data. The monthly rainfall data of 10 synoptic 
stations of Kohgiluyeh and Boyerahmad province for the 
statistical period of 2000 to 2020 were extracted from Iran’s 

Figure 1: Location of the Study area (Kohgiloyeh and Boyerahmad Province of IRAN).

https://modis.gsfc.nasa.gov
https://modis.gsfc.nasa.gov
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meteorological website. (www.irimo.ir). Next, the kriging 
interpolation method was used in the GIS environment to 
generate the precipitation layer (Abdi et al., 2018; Azizi et 
al., 2015; Zand et al., 2022). The SPI is the most widely used 
index for drought monitoring, which is based only on the 
annual or monthly rainfall recorded at the meteorological 
station (McKee et al., 1993). (In this method, the values   
of SPI are extracted using the relationship in Table 1), 
with different severity of drought and wet years classified 
according to Table 1. In this method, the drought period 
starts when the SPI values are continuously negative and 
reaches a value of -1 or less, and ends when the SPI values 
become positive (Table 1) (Abdi et al., 2018; Zhang et al., 
2017; Khosravi et al., 2017).

Detecting the dynamics of forest greenness in response 
to droughts

In order to determine the logical relationship 
between the variables of drought indices and greenness 
indices of the forest zone, Pearson Correlation Coefficient 
analysis was used at the probability level of 0.95 (P-Value 
= 0.05). (Tong et al., 2017; Ji and Peters, 2003). EVI-Jun 
and NDVI-Jun indices were considered as independent 
variables (x) while SPI, PDSI, and precipitation as dependent 
variables (y) in the study period. This correlation model 
not only shows the sensitivity and monthly changes of 
forest greenness to variations in precipitation and drought, 
but also specifies the key months that affect greenness 
(Table 3) (Ji and Peters, 2003). Next, the scatter plot of this 
relationship was prepared in the EXCEL software.

To calculate the SPI index, the monthly rainfall or total 
rainfall in any desired time period (3 months, 6 months, etc.) 
can be fit using an appropriate distribution such as gamma 
distribution or Pearson type three (Edwards and McKee, 
1997). In this study, the SPI was used in the time scale of 3 
months (Khosravi et al., 2017; Morid et al., 2006). For this 
purpose, after ensuring the homogeneity of the rainfall data 
of the stations, the time series of the 3-month data and the 
fitting of the data were done. The results obtained from the 
appropriate fit of the gamma distribution were compared 
to other methods (Morid et al., 2006). g(x) is the probability 
density function of the gamma distribution The relevant 
relationships are presented in Table 3. 

Finally, using the last two relationships, the standard 
normal distribution with zero mean and standard deviation 
of 1 is obtained, with the obtained results being the SPI 
value (Table 3) (Morid et al., 2006). The PDSI index includes 
8 components, whose formulas and calculation methods are 
explained in Table 3 (Palmer, 1965). Palmer uses the two-layer 
soil model and calculates the potential evapotranspiration 
using the Thornthwhite method. (Thornthwaite, 1948). The 
values of these components are closely related to AWC. The 
calculation of AWC depends on the soil texture, whose values 
are obtained for different soils from the table provided by 
the American Soil Protection Organization. These values 
are determined according to the soil texture taken from 
the geological map of the Geological Organization of 
Iran according to the geographical coordinates of the 
meteorological stations. (Klos et al., 2009).

Along with the calculation of potential values   (PR, 
PRO, PL, PET), their actual values   (L, RO, R, ET) are also 
calculated. The rules for determining these four actual values   
are very complex and depend on the relationship between 
precipitation and potential evapotranspiration. The values 
of these components are calculated based on the climate of 
each region and with the help of α, β, γ and δ coefficients, 
which are called water balance coefficients. They are the 
average ratio of each of the actual values   to the potential 
values. The relations are available in Table 3. Palmer drought 
severity index for each specific month (Xi) is obtained from 
the final equation of Table 3 (Alley, 1984; Palmer, 1965). The 
spatial distribution of greenness index (EVI-Jun/NDVI-Jun) of 
the oak forests is presented in Figure 2a and 2b.

ClassIndex Value

Extremely wetMore than 2

Very wet1.5 to 1.99

Moderate wet1 to 1.49

Near normal-0.99 to 0.99

Moderate dry-1 to -1.49

Severely dry-1.49 to -1.99

Extremely dry-2 and less

CodeClassIndex Value

D4Most severe droughtless -4

D3Severe drought-4 to -3

D2Moderate drought-3 to -

D1Mild drought-2 to -1

NNear Normal-1 to +1

W1Mild wet+1 to +2

W2Moderate wet+2 to +3

W3Severe wet+3 to +4

W4Most severe wetMore than +4

Table 1: Classification of drought severity based on SPI 
index.

Another index is PDSI, which was presented 
by Palmer in the early 1960s as a standard method 
for quantifying drought. Palmer formulated a simple 
water balance model using variables of precipitation, 
temperature, and available soil moisture (Klos et al., 2009). 
To calculate it, the parameters related to soil moisture 
should be estimated, including the evapotranspiration 
index, moisture loss, moisture supply, and runoff under 
both actual and potential conditions. 

Based on Palmer’s definition, dry and wet periods 
are classified by this index in the Table 2 (Palmer, 1965).

Table 2: Drought severity classification based on Palmer 
index.
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References Parameters Formula Index number

McKee at al. 
(1993)

SPI: Drought index
Pi: Average rainfall each year

P : Average rainfall during the study period
SD: Standard deviation of precipitation in 

the study period
g(x) probability density function of gamma 

distribution
x is the amount of precipitation, Π(α) 

represents the gamma function, α is the 
shape parameter, β is the scale parameter. 
The parameter values of this formula must 

be greater than 0.
n number of rainfall observations,

x : average rainfall of the desired time period
Since the gamma function for 0 

precipitation cannot be defined and the 
real precipitation data always includes a 
large number of observations with zero 
precipitation, the cumulative probability 

function of precipitation (H(x)) is calculated 
in another way.

q is the probability of zero rainfall and p 
= 1 – q. H(x) is the cumulative probability 

function.
In these relationships, c and d are 

constant values.
d1 = 3.43278
d2 = 0.18929

d3 = 0.003308
c0 = 2.535537
c1 = 0.802853 
c2 = 0.030328

SPI 1

Palmer (1965) 
and Alley 

(1984)

PET: Potential Evapotranspiration
ET: evapotranspiration

PR: Moisture retention potential
R: Moisture retention
PRO: Runoff Potential

RO: Runoff ()
L: moisture loss

PL: Potential moisture loss
AWC: Available water content

Ss: Surface soil moisture content
Su: Subsoil moisture content

Coefficients α, β, γ and δ which are 
coefficients of water balance, i represents 

the month of the year.
P: Actual precipitation each month
P: Hypothetical precipitation

D: changes in humidity
Z: Humidity anomaly index

iD  is the absolute mean values of D for the 
ith month.

Ki is climatic characteristics.
Zi  Humidity anomaly index of each month
Xi: Palmer drought severity index for each 

specific month

PDSI 2

Table 3: Characteristics of the indices used in the study.
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References Parameters Formula Index number

Tucker et al. 
(1979)

PNIR: Reflection in the infrared region
RRED : Reflection in the red region

NDVI 3

Huete et al. 
(2002)

EVI: Enhanced Vegetation Index
PNIR: reflectance in the near infrared region

PRED: Reflection in the red area
RBLUE: reflection in the blue band

L = –1,
C1 = –6

C2 = –7.5 are adjustment factor or soil 
background, atmospheric resistance factor 

or atmospheric correction, respectively.

EVI 4

Ji and Peters 
(2003)

n: number of series observations,
xj  and xk are the data of jm and km series, 

respectively
r: correlation coefficient

(Pearson 
Correlation 
Coefficient)

5

Fotheringham 
et al. (2002)

y: EVI/NDVI in location u
x: SPI/PDSI2050 in location u.
β: model spatial weighted

GWR 
(Geographicaly 

Weigted 
Regression)

6

Table 3: Continuation.
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Development of GWR model in order to simulate 
future conditions and reveal the effect of climate 
change

In this research, to simulate the effect of droughts 
caused by climate change on the on the spatiotemporal 
changes in greenness of the oak forests, 2 scenarios of 
the release of the fifth IPCC report, namely RCP8.5 and 
RCP2.6 scenarios in 2050, were used. Future rainfall and 
temperature data were obtained from the output of 
HADGM2-AO atmospheric general circulation model for 
two scenarios in 2050 (Heydari Alamdarloo et al., 2021). 
Based on the calculation method of drought indices (which 
was explained in section 2), the final values obtained from 
them were entered into ArcGIS software in order to prepare 
Map of drought indices. In this way, the drought prediction 
map was made based on 2 scenarios until 2050.

After the spatial correlation analysis determined 
which months the drought is the main driver of the change 
in the greenness of the forest area (paragraph 3), using 
these main drivers (drought index with a higher correlation 
coefficient in section 3), to developed a spatial GWR model. 
This model was used to simulate the forest area, under the 
predicted drought conditions of 2050, under the mentioned 
two emission scenarios. The values of forest greenness in the 
current period of 2000-2020 was entered as a dependent 
variable and the simulated values of the drought index of 
2050 under two scenarios were entered into the model as 
an independent variable or estimator. (The general form of 
the developed GWR model is presented in Table 1). A map 
of greenness index values based on drought index in 2020, 
two maps of greenness index prediction values based on 
predicted values of drought index under two scenarios until 
2050 were made in ArcGIS.

RESULTS

1) The spatio-tempotal trend of droughts and greenness 
in oak forests

By investigating the annual changes in the extent of 
greenness of the forest cover in Kohgiloyeh and Boyerahmad 
province during the 20-year study period, using two 
vegetation indices (EVI and NDVI) on a monthly basis, 
indicated that the highest spatial average of greenness in the 
forest cover of the province was in the period of 3 months, 
namely May, June and July, reaching its peak in June. In this 
month, the spatial average of greenness in the forest cover of 
the province reached 0.3 based on the NDVI and 0.26 based 
on the EVI (Figure 3). Also, the greenness index values of 
oak trees in the peak month of greenness, i.e. June, were on 
average >0.2 for EVI and >0.25 for NDVI.

The results of this periodic survey revealed that 
during the 20-year period, both the greenness index of 
the oak forests and the area of   the oak forests have had 
a declining trend with fluctuations. In 2000, the spatial 
average of the greenness index based on the NDVI was 
equal to 0.28 and based on the EVI was equal to 0.25. 
The NDVI index first dropped in 2002 and after 2006 
experienced a downward trend until 2016. It has shown 
the lowest values   in 2007, 2009, and 2016 and the highest 
values   in 2001, 2019, and 2005. After 2016, it revealed an 
upward trend until 2019, but at the end of the studied 
period, i.e. 2020, a reduction was seen again. The lowest 
value of EVI has been reported in 2006, 2007, 2009, and 
2016 and the highest value in 2001, 2005, and 2019. This 
index has shown changes similar to NDVI. It had a first 
decline in 2002, an ascending trend until 2006 and then a 
descending trend until 2016 (Figure 4). 
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(a)

(b)

Figure 2: The variation of oak forest areas using threshold EVI (EVI>0.2) -a, and variation of oak forest areas using 
threshold NDVI (NDVI>0.25) -b.
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Analysis of the SPI index trend indicated that the 
most severe wet years occurred in 2018, 2001, and 2005, 
and severe droughts in 2009, 2007, 2006, 2016, 2014, and 
2010. Two major drought periods were evident from 2006 
to 2010, except for 2008 and from 2013 to 2017. Regarding 
the Palmer index, 2018, 2001, and 2005 have been the 
rainiest years, while 2009, 2007, 2006, 2002, 2010, and 
2014 have been the driest years. The two periods of 
drought listed in the case of the SPI index have also been 
clearly observed in this index (Figure 4).

The results of this research showed that the area 
of   the forest zone based on the NDVI in 2000 was equal 
to 6125 km2 and based on the EVI, it was equal to 5102 
km2. However, in 2010, this area reached 4710 km2 based 
on the NDVI and 3520 based on the EVI with a significant 
reduction of 24%. km2 (30% reduction). In 2020, this 
downward trend compared to 2010 has been adjusted 
for both indices, but again the area of   the forest zone 
with greenness threshold is lower than in 2000 (Figure 
5). Thus, despite the annual and seasonal fluctuations 
in the amount of greenness and the area of   the forest 
area of   the province, in general, the amount of greenness 
and the area of   the area with forest greenness has been 
decreasing over the 20-year period. This decline in 
greenness and area has been observed in all parts, but it 
is more evident in the northern and central parts.

Figure 3: 20 years average of inter-annual MODIS 
Vegetation Indices Fluctuation.

Figure 4: 20 Years trend of spatial average of NDVI/EVI-
Jun and MAM-PDSI&SPI.

2) Spatial correlation analysis of forest greenness in 
response to changes in droughts

The results of the spatial correlation analysis 
between the amount of greenness in June related to both 
forest greenness indices and the annual spatial distribution 
of monthly precipitation values   have indicated that, the 
greenness of the forests, with the rainfall of a period of 
three months before at the beginning of the growing 
season, the months of March, April, and May (MAM period) 
have shown significant spatial correlation. Thus, the peak 
greenness of the forest area of   the province in June has 
a significant sensitivity to the rainfall of the MAM period. 
Based on this, the precipitation of MAM period is actually 
the main determinant of changes in the greenness of the 
oak forests of the province in June. The highest correlation 
values were observed between EVI and monthly rainfall 
(This spatial correlation matrix is   shown in Table 4).

Also, 20-year 4-variable trend (Figure 4) related to 
this section shows that the greenness of the forest is affected 
by the rainfall anomaly in late winter and early spring (MAM). 
The drought period that prevailed from 2006 to 2010, as well 
as the period from 2013 to 2017, has significantly reduced 
the greenness of oak forests. While in the periods that were 
relatively wet especially in 2005 and 2001, the greenness of 
the forest area has increased significantly. 2018 has been 
particularly wet, but due to the transition from a drought 
period, the results in the greenness of the forest area only 
seem to have shown themselves in 2019 (Figure 4).

In the scatterplots of Figure 6, it was observed that the 
greenness of the oak forests, based on two indices, showed a 
direct significant correlation with the two drought indices MAM-
SPI and PDSI of period (average period 2000-2020). Palmer 
drought severity index in the MAM period has been able to 
explain 0.59 of the spatial changes of the NDVI index, while the 
EVI index in the MAM period has explained 0.74 of the spatial 
changes in the greenness of the forest area (Figure 6a). However 
the SPI index, which is based solely on precipitation anomalies, 
has less power than Palmer’s index to explain the spatial 
changes in the greenness of oak forests. The R2 coefficient of 
this drought index is equal to 0.68 for explaining the EVI index 
in June and 0.5 for NDVI index (Figure 6b).

Figure 5: Variation of oak forest area using experimental 
threshold NDVI/EVI greenness.
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Jun NDVI/ 
monthly rainfall 
Correlation(R)

Jun EVI/ 
monthly rainfall 
Correlation(R)

Jun NDVI/ 
monthly SPI 

Correlation(R)

Jun EVI/ 
monthly PDSI 
Correlation(R)

Jun NDVI/ 
monthly PDSI 
Correlation(R)

Jun EVI/ 
monthly SPI 

Correlation(R)
Jan 0.17 0.12 0.17 0.19 0.2 0.16
Feb 0.21* 0.26* 0.20 0.27* 0.23 0.21
Mar 0.41* 0.44* 0.37* 0.41* 0.36* 0.37*
Apr 0.42* 0.43* 0.35* 0.38* 0.39* 0.35*
May 0.40** 0.42* 0.35* 0.35* 0.34* 0.31*
Jun 0.17 0.12 0.17 0.20 0.19 0.11
Jul 0.012 0.15 0.00 00.00 0.0 0.0
Aug 0.01 0.07 0.01 00.00 0.0 0.0
Sep 0.00 0.05 0.04 00.00 0.09 0.0
Oct 0.00 0.09 0.12 0.09 0.18 0.11
Nov 0.052 0.11 0.12 0.08 0.08 0.05
Dec 0.095 0.14 0.15 0.17 0.11 0.15

Table 4: The Spatio-temporal correlation among NDVI/EVI-JUN threshold and 20 years average monthly rainfall, SPI 
and PDSI (*P-value= 0.05, ** P-value= 0.01).

Figure 6: The temporal relationship between spatial average NDVI/EVI- Jun and MAM-PDSI & SPI.
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Drought episodes in the MAM period, in addition 
to the greenness of the forest area, have also affected the 
forest areas with less intensity. During the period of 2000-
2020, the changes in the area of forest areas have had a 
direct correlation with the drought index, so that years 
with normal rainfall are associated with the expansion of 
areas with peak forest greenness, while years with drought 
or negative rainfall anomaly have been associated with a 
decrease in forest area (Figure 6c). 

3) Detecting the effect of climate change based on 
the development of GWR model

Next, the drought prediction map was simulated 
based on the spatial distribution of the MAM-PDSI index 
(2000-2020), for the period of climate change until 2050, 
based on the output of precipitation and humidity of the 
general circulation model HADCM3, the fifth IPCC climate 
change report, under two emission scenario RCP 8.5 and 
RCP2.6 (Figure 7).

The results revealed that in 2050, in the RCP2.6 
scenario, the simulated MAM-PDSI index for the 
province is different from the current period (2000-2020) 
and parts of the northeast of the province will be under 
moderate drought. The forest area is generally affected 
by mild and close to normal drought. However, in the 
RCP8.5 scenario, in 2050, relatively larger parts in the 
eastern and northern parts of the oak forests are under 
severe drought (MAM-PDSI<-3). Moderate and mild 
drought, especially in the central and northern parts of 
the province, completely covers the forests. In general, 
the degree of drought in the province has increased from 
west to east. However, in the study period (2000-2020) 
there is no severe drought (Figure 7).

Regarding forest greenness (EVI-Jun) in 2050, 
using the simulated MAM-PDSI index of 2050, under 
the RCP8.5 scenario, a GWR model was developed. 
The coefficient of determination of this model (R2), at 

the forest area of the region, varied between 0.45 and 
0.75. This high explanatory coefficient indicates that the 
MAM-PDSI index has been able to model the greenness 
of oak forests (Figure 8a). The re-implementation of the 
GWR model based on MAM-PDSI related to the RCP2.6 
scenario also led to the simulation of the EVI index of 
2050. The explanation coefficient of this developed 
model has varied between 0.47 and 0.85 at the oak 
forests (Figure 8b).

The extent of simulated forest greenness (EVI-Jun) 
in the climate change conditions of 2050 under the RCP8.5 
scenario, varied between 0.14 and 0.31 in the forests. The 
average spatial distribution in the oak forests was equal 
to 0.2, while the same index was relatively higher for the 
oak forests under the RCP2.6 scenario, which indicates less 
severe drought conditions. Also, the EVI values   under this 
scenario in the forests of the province were between 0.15 
and 0.34 with an average value of 0.22. 

Reduction has been observed both in the spatial 
average of the EVI as well as in the minimum and 
maximum greenness values   of the forest area of   the 
province. While the spatial average of this index in 2050, 
under the RCP2.6 scenario, was 0.22; compared to the 
base period, it has shown a reduction of about 0.03. 
This decrease in the spatial average of the EVI-Jun index 
in the RCP8.5 scenario has been 0.06, which is almost 
twice as large in the RCP2.6 scenario. In the maximum 
greenness (Max EVI-June), the reduction rate in 2050 has 
been higher in both scenarios (Figure 9). At the same 
time, as the greenness of the forest zone of the province 
drops under the climate change conditions of 2050, the 
spatial changes of the EVI-Jun index in 2050 at the forest 
zone will grow compared to the base period. In the base 
period, the coefficient of spatial variability (CV%) of the 
EVI-Jun index in the forest area was equal to 8%, while in 
2050, it will reach 14-16% in both scenarios. This growth 
in the spatial variability coefficient of the EVI-Jun index 
indicates the loss of the integrity of the forest cover and 
decline of the oak forest area of   the province (Figure 10).

Figure 7: Spatial Distribution of MAM-PDSI in 2000-2020 period and 2050 under 2 scenarios RCP2.6 and RCP8.5.
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Figure 8: Developed RCP2.6 PDSI-based GWR model for predicting Oak Forest EVI- Jun 2050 -a, and Developed RCP8.5 
PDSI-based GWR model for predicting Oak Forest EVI- Jun 2050 – b.

(b)

(a)

Figure 9: Developed RCP8.5 and RCP2.6 PDSI-based GWR model for predicting Oak Forest EVI-Jun 2050 under 2 
scenarios.
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DISCUSSION AND CONCLUSION

Examining changes in the extent of greenness of the 
forest cover in Kohgiloyeh and Boyerahmad province during 
the 20-year period of the study, using two vegetation indices 
EVI and NDVI, revealed that the highest spatial average of 
greenness in the forest cover occurred in the period of three 
months of May, June, and July. The greenness of the forest 
peaked. Threshold values   of greenness index in the peak 
month of greenness, i.e. June, were >0.2 for EVI and >0.25 
for NDVI. In the study of Azizi et al. (2015), on the oak forests 
of Ilam province in the west of Iran, the peak of greenness 
(NDVI/MODIS) was reported in May, and Alirezaii et al. 
(2019) reported EVI threshold > 0.4 as forest cover threshold 
in Lorestan province. The 20-year spatial distribution of two 
greenness indices in June showed that both the values of 
greenness and the area of oak forests have diminished with 
fluctuations (15%). This decrease in greenness values and the 
area of forests is more evident in all parts of the province, 
especially in the northern and central parts. The changes 
in the values of the 2 greenness indices are almost similar 
and the decrease of greenness in 2006 to 2017 is clearly 
observed. Decrease in greenness (NDVI) in the study of Azizi 
et al. (2015), was reported in the forests of Ilam province 
in the west of Iran during the period from 2000 to 2013. 
Investigating the time series of NDVI values of oak forests in 
Lorestan province in the period from 1980 to 2017 by Zand 
et al. (2022), showed that the first noticeable decrease in 
NDVI occurred in 2004 and continued with greater intensity 
in 2008, and the decrease was also significant in 2013-2011.

Examining the trend of drought indices has shown 
two distinct and major periods of drought from 2006 to 
2010, except for 2008 and the period from 2013 to 2017. The 
negative phases of these indices, which mean drought years, 
are completely consistent with the periods of greenness 
decline, while the positive phases of these indices, which 
indicate wet years, are in exact accordance with periods 
of increased greenness. On the other hand, in wet years 
2001 and 2005, the peak greenness of the oak forest area 
has increased significantly. In 2018, due to a long period of 

Figure 10: Spatial variation (CV%) of greenness of oak 
forests during the study period and 2 climate change 
scenarios.

drought, the results have been manifested in the greenness 
of the forests in 2019. Changes in the area of   forest areas 
have a direct correlation with the drought index, such that 
years with normal or positive rainfall are associated with 
the expansion of areas with peak forest greenness. While 
years with drought or negative rainfall anomaly, have been 
associated with the reduction of area in forest areas. Also, 
the minimum of the forest area was in 2010, which is in the 
middle of the drought period.

The results of the spatial correlation analysis 
between the extent of greenness (related to both 
greenness indices) and the spatial distribution of rainfall 
plus drought indices showed that the rainfall anomaly of 
the MAM period (3-month period at the beginning of the 
growing season, i.e. the months of March, April, and May), 
is actually the main determinant of green changes in oak 
forests. In the same period of time (late winter and early 
spring), drought indicators have clearly and significantly 
affected the greenness of the forest area. In this research, 
it has been seen that the decline in rainfall and drought 
in late winter (the beginning of the growth period) and its 
continuation in the spring (the decrease in precipitation 
during the growth period of forest) causes moisture stress 
and increases temperature stress, and ultimately causes a 
reduction in greenness. Forests of the province fall in the 
warm months of the year. This is because the occurrence of 
drought at the beginning of the growing season prevents 
the sprouting of plants and reduces the yield. (Attarod et 
al., 2015; Zhou et al., 2018; Zand et al., 2022). Vegetation 
usually responds more to the rainfall parameter in the early 
growing season; especially in arid and semi-arid climates, 
rainfall is very rare in summer (like as this reserch). This 
leads to a high dependence of summer vegetation on 
spring precipitation. (Rahimzadeh Bajgiran et al., 2008). 
This has also been seen in the study of Enríquez-de-
Salamanca (2022) in Mediterranean oak forests in Spain, 
the study of Zhou et al. (2018) in China, and Gu et al. (2007) 
study in America. In the research of Zand et al. (2020), in 
the oak forests of Lorestan province, as with the present 
study, the highest correlation was found between the SPI 
and the greenness of the oak forests (NDVI) in the early 
spring. In other words, with the beginning of the forest 
growth period from March is reported. The maximum 
effect of drought on the reduction of the greenness of 
the oak forests of this province was at the end of the cold 
period of the year and in the spring season, as with the 
present study. In the oak forests of Ilam, the negative trend 
of rainfall in March is reported as one of the main factors 
of the reduction of greenness in the forests, on an annual 
scale and especially in the growing season (Azizi et al., 
2015). Gu et al. (2007) reported a strong spatial correlation 
between NDVI and NDWI anomalies and the 2001–2006 
drought conditions in the central US grasslands. The 
studies of Touhami et al. (2022) as well as Gentilesca et 
al. (2017) reported the decline of cork oak (Quercus suber 
L.) forests in the Mediterranean basin under the influence 
of severe drought conditions. Unlike the present study in 
the plains of America, the highest correlation of SPI and 
NDVI was observed in the middle of the growing season 
and lower values of correlation were observed at the 
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stated that drought is the main cause of oak decline in the 
Mediterranean basin and other factors such as temperature 
increase, pests and diseases, etc. can aggravate this decline. 
In the research of Scharnweber et al. (2011) in northeastern 
Germany, Quercus robur a drought-resistant species 
introduced, has a better position in competition with Fagus 
sylvatica under predicted climate changes. The findings of 
Klos et al. (2009) in America have shown that no significant 
change in the growth or mortality rate of oaks (Quercus prinus 
and Quercus coccinea) has been observed with the increase 
of drought intensity, which indicates the greater tolerance of 
oaks to drought. The results of the study of Prăvălie et al. 
(2022) showed that the forests of the Carpathians in Romania 
have been increasingly affected by climate change in recent 
decades. In these forests, unlike the oak forests of western 
Iran, climate warming may be an important driving force for 
more forest greening, especially in mountainous areas.

Finally, it is necessary to mention that numerous 
and diverse factors in the Zagros forests area are driving 
the decline of oak forests, which include natural and 
human factors. On the one hand, human activities such 
as agriculture in the forest, livestock grazing, and natural 
factors such as rainfall and temperature anomalies caused 
by climate change, hazards such as dust, pests and 
diseases, with fires are all major drivers of the process of 
decline of Zagros forests. In this research, only the effect 
of drought events was investigated while the impact of 
other factors was not considered.

The increase in temperature and lack of rainfall 
have caused the aggravation of droughts and can lead 
to the physiological weakening of trees. Create favorable 
conditions for the invasion of insects, fires and intensifying 
the process of reducing the health and greenness of the 
forest, which has been clearly observed in the oak forests 
of western Iran. The trend obtained in this research showed 
that if the current situation continues, droughts caused by 
climate change in 2050 can not only reduce the oak forest 
area, but also compromise its freshness and greenness. If 
the management and protection operations in the forest 
areas of the province improves, the damages caused by 
drought in the forests could be reduced. Considering that 
these forests will not only be affected by climate change, 
but also from other possible related causes such as insects 
and pests, fire and other human interventions. In addition, 
in arid and semi-arid areas such as Zagros oak forests, 
drought can easily lead to dust and sandstorms and soil 
salinity. But this research emphasizes that connecting the 
decline and reduction of the health and greenness of 
the forest with drought needs more study and it is not 
possible to prove the real relationship between these two 
phenomena with just one or two calculation indices. 

However, forest management can be used as a 
tool to reduce the effects of drought. If the process of 
management and protection operations in the forest 
areas improves, it can be said that perhaps the damages 
caused by drought and climate change in the forest 
areas will be reduced to some extent. This operation can 
include various forestry operations such as conservation, 
pruning and thinning of extensive crowns in order to 

beginning and end of the growing season (Ji and Peters, 
2003). Samantha et al. (2010), found no relationship 
between drought severity and EVI values of Amazonian 
vegetation in the 2005 drought.

While PDSI index showed a higher explanatory 
coefficient with greenness indices in the MAM period, SPI 
index, which is solely based on precipitation anomalies, 
had less power than Palmer’s index to explain the spatial 
changes of greenness of oak forests. In addition to 
considering rainfall anomalies, the PDSI index also captures 
changes in soil moisture, which can improve the efficiency 
of this index in explaining changes in forest greenness. 
Zhao et al. (2022) stated that using the PDSI as a reference, 
one can effectively validate the efficiency of any other 
drought index. Tan et al. (2015) in China report that SPEI 
is more suitable than SPI because it considers both rainfall 
and evapotranspiration data. Gulácsi and Kovács (2018) 
state that no single index can fully reflect the multiscale and 
multiple nature of drought. On the other hand, among the 
two greenness indices that were examined in this research, 
EVI had a higher sensitivity and correlation with the Palmer 
drought severity index (MAM-PDSI). Considering that the 
background effects of the canopy have been removed in 
this index and some atmospheric corrections have been 
applied to it. Therefore, for areas with forest vegetation, 
this index has better reflected the sensitivity of vegetation 
dynamics to rainfall anomalies and drought indicators.

Another point is that the R2 value of the model for 
the relationship between 2 greenness indices and PDSI 
was 0.74 - 0.68. This indicates that drought explains 0.74 to 
0.68 of the changes in greenness in the forest area, and the 
rest is related to other parameters affecting the reduction 
of greenness and decline in these forests. These factors 
include a set of natural and human factors that can fluctuate 
depending on the region and habitat conditions (Attarod 
et al., 2017). Studies have shown that the parts of the forest 
that are involved with these problems are more evident in 
the decline of the forest and the reduction of greenness 
(Hosseini et al., 2017; Ghanbari Motlagh et al., 2020).

Further, the results revealed that in 2050, in both 
climate change scenarios, the MAM-PDSI simulated index is 
generally affected by different severities of drought. However, 
in the RCP8.5 scenario, relatively larger parts of the forest 
area in the north of the province will be subjected to drought. 
What is different is the expansion of the medium and mild 
drought areas in other parts of the forests. In both climate 
change scenarios, the amount of forest greenness and the 
area of   oak forests in the province will diminish significantly 
compared to the base period. This indicates the loss of the 
integrity of the forest cover as well as the weakening and 
decline of the forests in the future. This is because the winter 
and spring drought shortens the length of the growing 
season. The reports of various studies have shown the 
extensive loss of forests and their growth reduction due to 
the increase in temperature and drought around the world 
(Marqués et al., 2022). In Europe, drought has been shown 
to be an important driver of tree mortality on a continental 
scale. (Senf et al., 2020). In examining the decline of oaks 
(Quercus spp.) in relation to droughts, Gentilesca et al. (2017) 
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reduce competition, reforestation and management of 
the composition of the stands by planting and breeding 
species with greater adaptation to drought. Other 
suggested operations in order to reduce the effects 
of other factors affecting the decline of oaks, such as 
conservation these areas to prevent or limit any type of 
exploitation and land use changes to agricultural lands, 
prevent livestock grazing, control fires, and cut and cutting 
infected and diseased trees. 
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