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ABSTRACT

Background: The wood heat treatment results in the partial degradation of its chemical constituents, 
mainly cellulose and hemicellulose, reducing the hygroscopicity of the material. This process 
improves the dimensional stability and resistance to biodeterioration and worsens the mechanical 
resistance. This work aimed to evaluate the effect of heat treatment on the physical, anatomical, 
chemical, and mechanical properties of Fraxinus excelsior wood. In untreated and heat-treated wood, 
the pH, buffering capacity, basic density, equilibrium moisture content, shrinkage, wood anatomy, 
thermogravimetric behavior, and chemistry by conventional and FTIR methods were determined.

Results: Heat treated wood had lower pH (5.50), equilibrium moisture content (6.26%), shrinkage 
(7,29%), holocellulose contents (55,96%) and higher buffering capacity (0,479 mmol/L), extractives 
(8,25%), and lignin contents (35,78%). Heat treatment reduced the pH and increased the buffering 
capacity of the wood, reduced the holocellulose content, and increased the lignin content, leaving 
the wood less hygroscopic and reducing its volumetric and linear variation. The process did not 
change the basic density and fiber length, but it reduced their width, lumen diameter, and wall 
thickness. The FTIR analysis confirmed the degradation of holocellulose and division of aliphatic side 
chains in lignin. The maximum dredging range of untreated and heat-treated wood occurred at 350 
ºC, and the heat-treated wood had a higher residual mass when subjected to 500 ºC. 

Conclusion: Heat-treated wood can be indicated for products used in external environments, such 
as floors, fences, coatings, door and window structures.

Keywords: Wood properties; thermogravimetric analysis, wood contraction.

HIGHLIGHTS

Heat treated wood (HTw) can be indicated for products for external environments.
HTw had lower pH, equilibrium moisture content, shrinkage, and holocellulose contents.
HTw was less hygroscopic and its volumetric and linear variation was lower.
HTw and untreated wood maximum degradation temperature occurred at approximately 350 °C. 
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INTRODUCTION

The world is looking for alternatives to reduce the use 
of raw materials from non-renewable sources, such as plastic 
and metals. Wood emerges as a viable alternative, as it has 
a high ratio between strength and specific mass, thermal 
and acoustic insulation capacity, aesthetic value, low energy 
expenditure in processing, and ease of handling (Balasbaneh; 
Sher, 2021). However, this material presents limitations for its 
use, such as high dimensional instability, hygroscopicity (Hou 
et al., 2022), and vulnerability against xylophagous agents 
(Paes et al., 2021; Madeiros Neto et al., 2022).

Heat treatment is a viable option to mitigate the 
undesirable wood characteristics, allowing its access to 
different markets (Rajković; Miklečić, 2019). This technique 
consists of heating the wood between 160 and 260ºC, 
combined with variables such as time (Paula et al., 2023), 
atmosphere (Bal, 2018; Sivrikaya et al., 2020), and pressure 
(Chung et al., 2017). The heat treatment consists of the 
partial degradation of its chemical constituents, mainly the 
hemicelluloses, reducing the hydrophilic sites and the water 
adsorption capacity (Senneca et al., 2020; Kubovský et al., 
2020). The increase in dimensional stability and resistance 
to biodeterioration are the main benefits of heat treatment 
(Candelier et al., 2016; Brito et al., 2019; Zanuncio et al., 2022).

Heat-treated wood is mainly used in outdoor 
applications, such as garden furniture, fences, floors, 
cladding, door and window frames, and structural elements 
in the construction industry. Fraxinus excelsior wood is 
widely used in the United States and Europe, which are 
large consumers of wood for construction and furniture. 
This wood has high density (0.65 – 0.69 g/cm³), easy to 
work with, straight grain, and little differentiation between 
heartwood and sapwood, good dimensional stability, and 
desirable characteristics of elasticity, hardness, and shock 
resistance, high mechanical strength (1289 MPa) and 
durability (Beck et al., 2016; Moliński et al., 2016; Vastern 
Timber, 2018; Roszyk et al., 2020; Aytin et al., 2022).

Changes in wood due to heat treatment are known. 
However, the intensity of these changes varies according to 
the treatment and quality of the wood, making specific studies 
necessary for each species and treatment. This work aimed to 
analyze changes in the Fraxinus excelsior wood properties by 
heat treatment and evaluate the effect of thermal modification 
on the thermal degradation of Fraxinus excelsior wood, 
considering the increasing use of heat-treated wood.

MATERIAL AND METHODS

Biological material

This study used commercial batches of Fraxinus 
excelsior wood, untreated and heat-treated at 215°C, for 
35 hours, harvested in France. The material was prepared 
for physical, chemical, and anatomical characterization, 
and analyzes of thermal degradation and chemical groups 
through FTIR spectroscopy. The physical analysis of the wood 
used 2x2x5 samples (radial, tangential and longitudinal), 

totaling 25 samples taken from different radial positions 
along the sample. The samples for anatomical analysis (2 
x 2 x 2 cm) were taken on the border between heartwood 
and sapwood. Samples for chemical analysis were taken 
from different radial positions to be subsequently crushed.

Wood characterization

PH and buffering capacity of wood

The pH of the wood was determined according to 
TAPPI 252 om-02 (2002) standard. The Fraxinus excelsior 
wood samples, untreated and heat treated, were ground in a 
Wiley-type knife-mill (Fortinox, STAR FT-50) to obtain sawdust, 
the fraction retained between the 40/60 mesh sieves was used 
in the tests. The analyzes were carried out in triplicate, 2 g 
of absolutely dry sawdust were weighed for each repetition, 
which was transferred to a beaker, and then 100 mL of distilled 
water at a temperature of ± 99 ºC was added. The material 
was boiled in a water bath (QUIMIS, Q334M-28) for 1 hour, 
and then filtered to obtain the extracts. After cooling to room 
temperature, pH measurements were made with a pH meter 
(Digimed, DM-22) calibrated for 4 and 7 using standardized 
buffer solutions. To determine the basic buffering capacity 
in mmol/L, 50 mL of the extracts were titrated with a 0.025N 
H2SO4 solution to pH 3, using methyl orange as an indicator.

Physical, anatomical, and chemical characterization 
of wood

Basic density was determined by the ratio between 
the dry mass and saturated volume of the wood, as 
described in the ABNT NBR 11941 (2003) standard, with 
six replicates per treatment. Equilibrium moisture content 
(EMC), tangential, radial, axial, and volumetric shrinkage 
were determined according to ABNT NBR 7190 (1997). 
Six specimens per treatment were stored in a climatic 
chamber at 20 °C temperature and 65% relative humidity, 
weighed after reaching equilibrium with the environment, 
and subsequently dried in an air circulation oven (FANEM, 
320-SE) at 103 ± 2°C to determine the equilibrium moisture 
content. For shrinkage determination, the linear dimensions 
of six specimens were measured after saturation in water 
and after drying in the oven (103 ± 2 °C).

For anatomical characterization, the tangential 
diameter (μm) and frequency (mm-²) of vessels; length (μm), 
width (μm), lumen diameter (μm), and fiber wall thickness (μm) 
were measured according to the criteria established by the 
Pan-American Commission of Technical Standards (COPANT, 
1974). Histological sections with nominal thickness ranging 
from 18 to 20 μm of the transverse surface were obtained using 
a sliding microtome (LEICA, SM 2000R), and subsequently 
mounted on semi-permanent slides for later visualization and 
measurement of vessels under an optical microscope (IAWA, 
1989; Pereira et al., 2016; Costa et al., 2017).

The preparation of the fiber macerate for dissociation 
of the anatomical elements and their respective measurements 
was performed according to the method described by 
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Ramalho (1987). Thirty vessels and fibers were measured for 
each treatment using an optical microscope (Zeiss, Axiostar 
plus) with an image capture system (Pixelink, PL-A662) with 
the help of Axio-Vision software.

For chemical characterization, the samples were 
transformed into sticks and subsequently ground into sawdust 
to obtain the fraction of sawdust classified in the 40/60 mesh 
sieves, according to TAPPI T 257 om-92 (1992) standard. 
Chemical analyses were carried out on the sawdust fraction 
using two replicates per treatment. The material was stored in 
glass jars and conditioned in climate-controlled chamber at 50 
± 2% relative humidity and 23 ± 1 °C temperature.

The total extractive contents (TAPPI T 204 cm-97, 
1997) and the insoluble lignin contents were determined by 
the Klason method modified according to the procedure 
proposed by Gomide; Demuner (1986). The soluble lignin 
was determined by spectrometry according to Goldschimid 
(1971), from the dilution of the filtrate from the procedure to 
obtain insoluble lignin. The total lignin content was obtained 
by adding the values of soluble and insoluble lignin. The 
holecellulose content was calculated by subtracting the 
total lignin and extractives content from 100.

Infrared Spectroscopy of Wood

In the analysis of wood by infrared spectroscopy, 
ground wood, classified in the 40/60 mesh sieves, was 
directly placed on the crystal (Diamond/ZnSe) of the infrared 
spectrometer (Varian, Cary 5000), in the range of 175 to 3300 
nm in units of absorbance, reflectance, and/or transmittance, 
for spectrum acquisition. The contact between the crystal 
and the sample was ensured by applying a force (150 N) 
using a screwing device that presses the sample under the 
crystal. For each spectrum, 16 scans were performed with a 
resolution of 2 cm-1 in the range of 4000 to 600 cm-1. Origin 
Pro 8 software was used for data analysis.

Thermogravimetric analysis

For the wood thermogravimetric analysis, the DTG-
60H Shimadzu apparatus was used. The analyses were 
performed under a nitrogen atmosphere with a constant 
flow rate of 50 ml.min-1, using approximately 2 mg of ground 
wood in the sawdust fraction classified in the 40/60 mesh 
sieves. The thermogravimetric curves were obtained from 30 
°C up to a maximum temperature of 500 °C, with a heating 
rate of 10 °C.min-1. The thermogravimetric (TG) curve was 
used to evaluate the mass loss as a function of temperature, 
and the first derivative of the mass loss (DTG) curve was also 
obtained. From the TG curves, the mass loss was calculated 
in the following temperature intervals: 100-150 °C, 150-200 
°C, 200-250 °C, 250-300 °C, 300-350 °C, 350-400 °C, and 
400-450 °C. The residual mass at 450°C was also calculated, 
considering the wet mass of the sample at room temperature 
and the absolutely dry mass at 100 °C. The thermogravimetric 
(TG) curves represent the percentage mass loss as a function 
of temperature, while the DTG curves correspond to the first 
derivative of the TG curves and show the variation of mass as 
a function of temperature.

Experimental design

 The experiment was set up according to a 
completely randomized design (CRD) with 2 treatments 
(raw wood and heat-treated wood). The data were subjected 
to Lilliefors for normality and Cochran for homogeneity of 
variances. To evaluate the effect of the heat treatment on 
the wood properties, the t-Student test was applied with a 
confidence level of 95%. Statistical analyses were conducted 
using STATISTICA 8.0 software (STATSOFT, 2007).

RESULTS

Physical and chemical characterization of the material

The heat treatment changed the wood characteristics, 
except for basic density and axial contraction. The main 
modifications observed in the wood characteristics were the 
decrease in pH, equilibrium moisture content, holocellulose 
contents, and shrinkage. Furthermore, it was observed 
higher buffering capacity, lignin content and extractives 
content. (Table 1).

Wood Anatomical characterization 

The structure of Fraxinus excelsior wood was slightly 
altered by heat treatment, with small deformations and 
an increase in vessel diameter observed in the transverse 
plane (Figure 1). The growth rings of Fraxinus excelsior 
wood are distinct and stand out due to ring porosity, where 
there is a higher concentration of larger diameter vessels 
at the beginning of the growing season. The vessels are 
predominantly solitary with rare occurrence of paired vessels, 
unobstructed and with circular to oval shapes. The fibers are 
libriform, non-septate, with simple pits. The predominant 
axial parenchyma is of the scanty paratracheal type. The 
rays are biseriate with rare occurrence of uniseriate and 
multiseriate rays (Figure 1).

The length of the fibers was not influenced by the 
heat treatment, but there was a significant reduction in their 
width, lumen diameter, and wall thickness (Table 2).

FTIR spectroscopy of wood

The FTIR spectroscopy was effective in detecting 
wood chemical alterations due to heat treatment (Figure 
2). The interpretation of these modifications is complex 
because several reactions occur simultaneously (Esteves et 
al., 2013). The changes in the absorption bands are related 
to the functional groups and the aromatic system of lignin.

Wood thermogravimetric analysis of wood

Untreated and heat-treated Fraxinus excelsior 
wood exhibited similar behavior, with small differences in 
the temperatures corresponding to the maximum peaks of 
degradation related to hemicelluloses and cellulose (Figure 3).
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The mass loss values (%) during the thermogravimetric 
analysis were different according to the temperature range 
(Table 3).

DISCUSSION

Physical and chemical characterization of the material

The heat treatment reduced the holocellulose 
content, which is formed by the sum of cellulose and 
hemicellulose, with the latter being less resistant when 
subjected to the temperatures used in this study (Carvalho 
et al., 2020; Wang et al., 2020), resulting in a decrease from 
67.2 to 55.96%. Heat treatment volatilizes some classes of 

compounds, mainly phenolics, but the depolymerization 
of hemicelluloses generates compounds that remain 
connected to the fibers through weak bonds. These 
compounds can be removed with solvents used to quantify 
extractives (Zanuncio et al., 2015; Mecca et al., 2019; Esteves 
et al., 2022), resulting in an increase in extractives content 
from 6.59% to 8.25%. Finally, lignins have a high carbon 
content and strong bonds between their monomers, 
which makes them highly resistant to thermal degradation 
(Zanuncio et al., 2018; Börcsök; Pásztory, 2021). Thus, heat 
treatment increased the total lignin content from 26.21 to 
35.78%. Carvalho et al. (2020) reported values of 1.36%, 
25.7%, 72.96%, and 2,86%, 26,9% e 70,28% for extractive 
content, lignin, and holocellulose in untreated and heat 
treated Mimosa scabrella wood at 220 °C.

Figure 1: Photomicrographs of cross-sectional (A), tangential (B), and radial (C) sections of untreated wood, and cross-
sectional (D), tangential (E), and radial (F) sections of heat-treated Fraxinus excelsior wood.

Treatment pH Buffer capacity 
(mmol/L)

Basic Density
(g.cm3)

Equilibrium moisture 
content (%)

Volumetric 
contraction (%)

Untreated 6.31* 0.1 0.292* 0.1 0.54ns 0.03 12.41* 0.1 14.46*2.1

Heat treated 5.50  0.1 0.479 0.2 0.53 0.01 6.26 0,2 7.29 0.9

Treatment Radial 
contraction (%)

Tangencial
contraction (%)

Axial
contraction (%)

Anisotropy
coefficient

Untreated 5.91*0.2 7.83*2.0 0.22ns 0.1 1.32* 0.1

Heat treated 2.64 0.5 4.32 0.4 0.19 0.1 1.63*0.1

Treatment Total
extratives (%) Holocelulose (%) Insoluble

Lignin (%)
Soluble

Lignin (%)
Total

Lignin (%)
Untreated 6.59* 0,1 67.20* 0.4 24.74* 0.39 1.47* 0.07 26.21* 0.3

Heat treated 8.25 0,1 55.96 1.2 35.23 1.51 0.55 0.01 35.78 0.1

*: significant (t-test t, α = 5%). The values in superscript correspond to the standard deviation.

Table 1: Physical and chemical characterization of untreated and heat-treated wood of Fraxinus excelsior.
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Treatment Vessel diameter (μm) Vessel frequencies (mm2) Fiber length (μm)
In natura 103.32* (24.0) 10.8* (1.6) 1336.26ns (225.7)

Heat treatment 164.37 (62.7) 9.5 (1.3) 1417.16 (182.5)
Treatment fiber width (μm) fiber diameter (μm) fiber thickness (μm)
In natura 25.41* (4.0) 14.53* (3.8) 5.44* (0.7)

Heat treatment 21.81 (2.7) 11.98 (2.9) 4.86 (0.5)

Values in parentheses represent the standard deviation.

Figure 2: FTIR spectrum of Fraxinus excelsior wood, untreated and heat treated. Wavenumber (cm-1) with their respective 
assignments: 3340 - O-H stretching of hydroxyl groups; 2894 - C-H stretching of CH2-CH3 groups; 1734 - C = O in 
xylans (hemicelluloses); 1600 - Aromatic skeleton (lignin); 1510 - Aromatic skeleton (lignin); 1315 - C-O (syringyl); 1245 
- C-O (hemicelluloses); 1105 - Aromatic skeleton (lignin); 1024 - C-O-C; 897 - C1, carbon in hemicelluloses and cellulose 
(pyranoid ring).

Table 2: Anatomical characterization of Fraxinus excelsior wood, untreated and heat treated.

Figure 3: TG/DTG curves of Fraxinus excelsior wood, untreated and heat treated.
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Heat treatment reduces the pH of the wood, as 
the increased temperature and consequent degradation 
of hemicelluloses release organic acids that remain in the 
wood (Gurleyen et al., 2019). Changes in the pH values of 
wood can affect adhesion, as the acidic or alkaline nature 
of the wood surface can interfere with the curing process 
of the adhesive. The reduction of pH in heat-treated wood 
makes the use of alkaline adhesives, such as resorcinol-
phenol-formaldehyde, unfeasible. On the other hand, low 
pH on the wood surface can accelerate acid-catalyzed 
chemical reactions of adhesives, such as urea-formaldehyde 
and melamine-formaldehyde.

Buffer capacity represents the ability of wood to resist 
pH variations in the environment. There was a 64% increase 
in its value in heat-treated wood. This means that extracts 
from heat-treated wood may be less available, less soluble in 
water, and/or degraded, and therefore less reactive (Pereira, 
2013). Thus, wood becomes more resistant to pH variations 
in the environment, requiring a more acidic titrant solution to 
lower the extract’s pH to 3. The heat treatment reduced the 
pH and increased de buffer capacity of pine and eucalyptus 
woods treated at 220°C (Souza et al., 2017).

The chemical changes in wood have influenced 
its hygroscopicity and, consequently, its dimensional and 
volumetric variation. The reduction in holocellulose content 
and degradation of the amorphous regions of cellulose 
reduces the number of hydrophilic sites present in wood, 
resulting in a lower equilibrium moisture content. The 
reduction in the wood’s adsorption capacity reduces its 
volumetric, radial, and tangential shrinkage. Radial and 
tangential shrinkage occur in the same proportion, and 
therefore, the coefficient of anisotropy was not affected by 
heat treatment. The lower variation in wood dimensions 
due to heat treatment enhances its use in environments 
with high moisture variation. The radial and tangential 
shrinkage of untreated Fraxinus excelsior wood was 6.96% 
and 9.00%, respectively, in contrast, heat-treated wood 
(200 ºC for 48 hours) exhibited lower shrinkage values, 
with radial and tangential shrinkage of 3.45% and 2.15%, 
respectively (Sinković et al. 2012).

Wood Anatomical characterization 

The significant reduction in the fibers width, lumen 
diameter, and wall thickness is related to the degradation 
of the chemical components of the cell wall, mainly 
holocellulose. Cellulose is the primary component of wood 
and serves a structural function; its degradation resulted in 
fiber contraction and reduced its dimensions. The changes 
in wood anatomy by thermal modification were similar to 

those found for the carbonization of Eucalyptus urophylla 
and Corymbia citriodora wood, with an increase in vessel 
diameter (Abreu Neto et al., 2021).

FTIR spectroscopy of wood

In heat-treated wood, there is a reduction in the 
most significant absorption peak of the carbonyl group (C 
= O) at 1734 cm-1 and (C-O) at 1245 cm-1. These changes are 
associated with the breakage and alteration of carboxylic 
groups that are linked to hemicelluloses, mainly the acetate 
groups in hardwoods. The reduction of these bands 
confirms the deacetylation of hemicelluloses and their 
partial degradation due to the heat treatment. The same 
behavior was observed for heat-treated Fagus silvatica 
wood, which was subjected to heat treatment at 185 °C, 
resulting in the complete disappearance of the band related 
to acetate groups (Tjeerdsma and Militz, 2005).

The degradation of polysaccharides during heat 
treatment was also observed by the decrease in absorption 
at 895 cm-1, which corresponds to the opening of the 
pyranoside rings of cellulose and hemicelluloses (González-
Peña et al., 2009; Hoseinzadeh et al., 2019). Piernik et al 
(2022) reported decrease in the strength of the band at 3550 
cm-1 for heat treatment of pine wood, this band associated 
with hydroxyl groups when compared to untreated wood, 
highlighting the degradation of holocellulose.

The absorption band of lignin is stronger in heat-
treated wood due to the increase in its proportion with 
the loss of some hemicelluloses. In the spectrum, lignin is 
represented by the bands at 1600, 1510, and 1105 cm-1, which 
correspond to vibrations in the aromatic ring of lignin. The 
greater intensity of these vibrations in thermally modified 
wood can be seen as a consequence of the splitting of 
aliphatic side chains in lignin and/or condensation reactions 
(Hader et al., 2019; Li et al., 2020).

Wood thermogravimetric analysis of wood

The TG/DTG curves exhibit three thermal degradation 
ranges (Figure 3). The first range is attributed to wood drying, 
which involves moisture loss and occurs at temperatures 
below 110 ºC, with the maximum mass loss occurring at 
approximately 50 ºC for both treatments. The other two 
ranges correspond to the thermal degradation of the main 
chemical components of wood. It is worth noting that each 
component degrades differently and at different temperature 
ranges. Lignin degradation occurs over a wide temperature 
range, and its final degradation temperature is higher than 
that of holocellulose (Yang et al., 2007; Grycova et al., 2021).

Treatments
Temperature range (°C) Residual 

Mass (%)100 - 150 150 - 200 200 - 250 250 - 300 300 - 350 350 - 400 400 - 450
Untreated 10.6 0.2 1.4 7.9 21.7 31.4 9.0 17.8

Heat treated 6.9 0.3 1.1 4.1 17.3 34.7 8.5 27.1

Table 3: Mass loss (%) based on dry mass of untreated and heat-treated wood according to temperature ranges.
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The second temperature range, which corresponds 
to the thermal degradation mainly of hemicelluloses and 
cellulose and smaller proportions of lignin, began at 183 
and 170 ºC for untreated and thermally modified wood, 
respectively. In this range, it was observed that for untreated 
wood, a peak was formed at a temperature of approximately 
285 ºC, which is associated with more intense degradation 
of hemicelluloses (Diez et al., 2020). Thus, in thermally 
modified wood, this peak does not appear since it has 
already undergone partial degradation of this constituent 
during the thermal treatment. This second temperature 
range ends at 352 and 350 ºC for untreated and thermally 
modified wood, respectively, with a peak formation at this 
point, which corresponds to maximum mass loss, and which 
was shorter for heat-treated wood.

The third stage of thermal degradation began 
immediately after and extended up to 400°C for untreated 
and heat-treated wood. This temperature range corresponds 
mainly to the degradation of cellulose. Grześkowiak; 
Bartkowiak (2015) evaluated Fraxinus excelsior wood and 
found higher levels of thermal degradation in the range of 
195 to 372°C, with a mass loss of 64.8% in this range and a 
temperature of maximum degradation at 343°C. In the same 
study, for heat-treated wood thermally at 205°C for 3 hours, 
similar results were obtained, with higher levels of degradation 
occurring between 191 to 375°C (mass loss of 60.6%) and a 
temperature of maximum degradation at 340°C.

The mass loss at temperatures up to 150 ºC represents 
the drying phase and was 8.36% and 5.99% for raw and heat-
treated wood, respectively. This means that the raw wood had 
a higher equilibrium moisture content (EMC) and experienced 
greater mass loss in this temperature range. Mass loss up to 
150 ºC was similar for Eucalyptus sp. clones, ranging from 
6.47% to 7.25% (Santos et al., 2012; Pereira et al., 2013).

The smallest mass losses occurred between 150 
and 200°C, indicating the stability of the wood’s chemical 
components at these temperatures. In this range, the mass 
loss is caused by drying and the volatilization of polar 
extractives. In the temperature range of 200 to 250°C, it 
corresponds mainly to the beginning of hemicellulose 
degradation, which intensifies in the temperature range 
of 250 to 300°C, with mass losses of 7.9% and 4.1% for 
natural and thermally treated wood, respectively. Higher 
mass losses were reported for Eucalyptus sp. wood in the 
same temperature range of 250 to 300°C, ranging between 
17.0 and 19.73% (Santos et al., 2012; Pereira et al., 2013). 
The highest mass losses were observed in the temperature 
ranges of 300-350°C and 350-400°C, mainly corresponding 
to the degradation of cellulose, which occurs completely 
at temperatures between 300 and 500°C, but intensifies at 
temperatures between 325 and 375°C (Santos et al., 2012).

The heat-treated wood presented a higher mass loss 
only between 350 and 400 °c compared to untreated wood, with 
a difference of 3.3%. This result is due to the higher crystalline 
fraction of cellulose in heat-treated wood, which is the fraction 
most resistant to heat and therefore its degradation occurred 
more intensely in the higher temperature range (between 350 
and 400 °c), while in untreated wood, the greater degradation 
occurred between 300-350°C.

The untreated wood showed lower residual mass 
because a large part of the wood constituents in the 
heat-treated wood were degraded during the production 
process, resulting in less mass loss during thermogravimetric 
analysis and, consequently, higher residual masses. Based 
on the results, future research should test other heat-
setting temperatures and how other process variables, such 
as residence time, temperature, atmosphere and pressure, 
can affect the quality of heat-set wood.

CONCLUSIONS

The heat-treated Fraxinus excelsior wood showed 
lower pH, higher buffering capacity, higher lignin and 
extractives content, and lower holocellulose content. The 
equilibrium moisture content and shrinkage of the wood 
were reduced by the heat treatment. The basic density 
was not altered. The heat treatment increased the vessel 
diameter and reduced the width, lumen diameter, and 
fiber wall thickness. The fiber length was not altered. The 
maximum degradation temperature of the wood’s chemical 
constituents occurred at approximately 350°C, both for 
untreated and heat-treated wood.
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