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ABSTRACT

Background: Estimating forest productivity is critical for effective management and site assessment. 
The dominant height is used to calculate the Site Index (SI), which is commonly used to assess forest 
productivity. In this study, an algebraic difference approach was used to develop a dominant height 
model incorporating the rainfall effect for Eucalyptus grandis x Eucalyptus urophylla (E. grandis x E. 
urophylla). The dataset consists of 75 permanent sample plots ranging in age from 0.5 to 11 years, as well 
as 7 rainfall stations spread across plantations in Coastal Zululand, South Africa. Using fixed and mixed-
effects in the predictor function, twelve candidate models were derived from the Bertalanffy-Richards, 
Lundqvist-Korf, McDill-Amateis, and Hossfeld growth functions. A continuous-time autoregressive error 
structure was used to account for serial autocorrelation in the longitudinal unbalanced data. Model fit 
statistics and graphical methods were used to evaluate the candidate models.

Results: The addition of the rainfall effect increased model precision by 37%. The mixed-effects formulation 
produced 18% more precision when compared to similar models with all parameters fixed. Due to their 
compatibility with expected biological behaviour and good performance on validation data, mixed-effects 
models based on Lundqvist-Korf and McDill-Amateis functions were chosen as the final models. 

Conclusion: Unlike similar models that do not take rainfall into account, these models can capture the 
effects of severe rainfall conditions such as drought and can thus be used in short-rotation pulp forests 
with fluctuating rainfall.

Keywords: Site index, algebraic difference approach, polymorphism, fixed-effects, mixed-effects, climatic effects.

HIGHLIGHTS
The nonlinear mixed-effects technique was used to forecast dominant height over time for Eucalyptus 
grandis x Eucalyptus urophylla in Coastal Zululand, South Africa, taking into account changes in rainfall. 
We looked into and contrasted nonlinear fixed and mixed-effects modeling methodologies. In comparison 
to the strictly fixed effects model, the final nonlinear mixed-effects models were 18% more precise. 
The addition of the rainfall effect increased model precision by 37%.
The models developed in this study can be utilized in short-rotation pulp forests with varying rainfall to 
capture the effects of extreme rainfall conditions such as drought.
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INTRODUCTION

The E. grandis x E. urophylla hybrid species is widely 
planted across plantations in Coastal Zululand, South Africa, 
primarily for pulpwood production. This hybrid species is not 
only productive, but also combines the characteristics of the 
parent species, E. grandis and E. urophylla, for good survival 
and disease tolerance as reported in Stanger et al. (2011).

Accurate estimation of forest productivity is 
important for efficient management and site assessment, 
thus a variety of methods for estimating productivity have 
been developed (Burkhart and Tomé, 2012; Clutter et al., 
1983; Goelz and Burk, 1992; Sharma et al., 2015). Ideally, 
forest productivity should be measured directly in terms 
of stand volume yield, as is done with other agricultural 
crops. However, stand volume can be influenced by effects 
of management such as planting density and stand history, 
as well as the length of stand rotation (Anta and Diéguez-
Aranda, 2005; Davis et al., 2001). Based on the hypothesis 
that height correlates well with stand volume growth, stand 
height has been used as indicator of site productivity (Baur, 
1877). In particular, site index defined as the average height 
of a specific number of thickest trees in a given unit area 
(also referred to as dominant height) at reference age is 
commonly used to evaluate forest productivity because 
is not influenced by density (Carmean and Lenthall, 1989; 
Clutter et al., 1983; Skovsgaard and Vanclay, 2008).

The dominant height modelling can take two 
forms: static and dynamic site index equations. Static site 
equations have the general form y = f (t,S,β ), where y  is 
the height at age t,  β is a vector of parameters, and S is a 
site index at fixed base age (Cieszewski, 2011). Even though 
static models can be useful for prediction they cannot 
directly solve for the dominant height given a reference 
measurement. While iterative methods can be used to solve 
this problem, convergence cannot be guaranteed (Parresol 
and Vissage, 1998). 

Dynamic site index equations have the general 
form y2=f (t2,t1,y1,β ), where y2 and y1 are the function values 
at  t2 and t1, respectively, and, β is as previously defined. 
Bailey and Clutter (1974) presented a technique for dynamic 
equation derivation that is known in forestry as the algebraic 
difference approach (ADA). This method was referred to by 
Clutter et al. (1983) as “difference equations” approach and 
then as “algebraic difference equations (ADE)” by Borders et 
al. (1984). The ADA technique consists of solving one of the 
base model parameters with its initial conditional solution. 
Depending on which parameter is substituted, models 
derived with ADA are either anamorphic (proportional 
curves) with multiple asymptotes or polymorphic with a 
single asymptote (Cieszewski, 2001; Cieszewski, 2002). It 
is believed that anamorphic curves do not adequately 
represent the dominant height-age relationship and thus 
the use of polymorphic models is preferred (Goelz and 
Burk, 1992; Monserud, 1984; Parresol and Vissage, 1998). 
Another desirable attribute in site index models is multiple 
asymptotes (Cieszewski, 2002; Cieszewski and Bailey, 2000). 
Cieszewski and Bailey (2000) introduced a generalization 
of the ADA, the generalized algebraic difference approach 
(GADA). The main advantage of GADA is that it allows more 
than one parameter to be site-specific (Cieszewski, 2001; 

Cieszewski and Bailey, 2000) and includes the ability to 
simulate polymorphism and multiple asymptotes (Cieszewski, 
2002; Cieszewski and Bailey, 2000; Cieszewski et al., 2007).

These models only account for projection age (t2), 
previous age (t1), and the previous dominant height (y1) 
measurement in their current form. While these models 
typically guarantee simplicity and robustness, they do not 
consider the influence of other variables that are important 
in determining dominant height growth. A change in these 
unaccounted-for variables could impair the explanatory 
power of these models. In this sense, in order to achieve 
adequate accuracy in site quality estimation, site productivity 
variables such as dominant height must consider as many 
factors affecting dominant height as possible. When 
assessing productivity, a variety of site-specific climatic, 
physiographic, and soil characteristics are frequently 
considered, and this consideration has been shown to 
improve growth and yield projections (Weiskittel et al., 2011). 

Numerous efforts have been explored to 
incorporate these characteristics in growth equations: 
Hunter and Gibson (1984) presented an effort to use 
multiple regression to link site index to environmental 
variables like soil and climate, and their model revealed that 
rainfall has a significant impact on site index. Woollons et al. 
(1997) used ADA to investigate the effect of meteorological 
factors and soil type on dominant height and basal area. 
They found no significant improvement in dominant 
height growth. Snowdon et al. (1998) explored introducing 
climatic-based indices into projection models and found an 
improvement in fit for dominant height and other growth 
features. yılmaz et al. (2015) conducted analysis of variance 
to evaluate site productivity and relationships between site 
index and ecological parameters, and they found significant 
associations between site index and average sand, silt, clay, 
and field capacity in physiological and absolute soil depth. 
Despite the fact that this study found that incorporating 
environmental factors into models had little effect, Wang et 
al. (2007) used the algebraic difference equation approach 
to develop a non-linear mixed model for Eucalyptus 
globulus. Bravo-Oviedo et al. (2008) reported improvement 
in applicability of an inter-regional model by integrating 
climate and soil variables with GADA and reported that 
height/site index models that directly incorporate climatic 
variables using a mixed-effects technique and found that 
integrating climatic variables enhanced the fit statistics for 
the stand height model. 

A study by González-García et al. (2015) revealed 
that by incorporating the site variability into growth model 
analysis, the model becomes more responsive to changes 
in the environment, improving model accuracy. 

According to Scolforo et al. (2017), the treatment 
of soil water availability as a covariate in dominant height 
growth models, enhanced the ability to explain site quality 
for clonal eucalypt stands in Brazil. A recent study by 
Koirala et al. (2020) evaluated the effect of water balance 
components to dominant height using a GADA and found 
that accounting for these effects improves the precision in 
dominant height estimates. 

Despite significant reductions in growth of this 
hybrid species as a result of emerging drought events 
in South Africa, no known efforts have been made to 
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assess the climatic effect on growth. Although applying 
the findings of these and other recognized studies may 
be appealing, differences in variables and measurement 
methods may mean that those studies do not directly 
apply to South Africa. As a result, a study that investigates 
the effect of climate on growth models in South Africa is 
required. It should be noted, however, that rainfall is the 
only climatic variable available in this study.

The objective of this study is to develop a dominant 
height-age model that adequately explains the growth 
pattern of E. grandis x E. urophylla across its distribution area 
in Coastal Zululand, South Africa using ADA. Subsequently, 
test whether or not the performance of the model can be 
improved under different rainfall conditions by incorporating 
the rainfall effect in the model. Individual random variation 
can be explained reasonably by mixed effects commonly 
associated with repeated measurement data (Adame et al., 
2008). Other established studies that employ the nonlinear 
mixed effects modeling approach include (Bailey and Clutter, 
1974; Huang et al., 2009; Ni and Zhang, 2007; Nothdurft 
et al., 2006; Ou et al., 2016; Sharma and Parton, 2007; 
Sharma et al., 2018; Temesgen et al., 2008). Cieszewski 
and Strub (2018), Socha et al. (2021), and Sprengel et al. 
(2022) compared nonlinear fixed-effects and nonlinear 
mixed-effects modeling approaches and highlighted the 
behaviour of the two approaches. This study investigates 
both fixed and mixed-effects models. Key references on the 
construction and application of the nonlinear mixed-effects 
model include (Bates and Pinheiro, 1994; Crecente-Campo 
et al., 2010; Cudeck and Harring, 2007; Dorado et al., 2006; 
Harring and Liu, 2016; Huang et al., 2009; Huang et al., 2011; 
Lindstrom and Bates, 1990; Luwanda and Mwambi, 2016). 

MATERIAL AND METHODS

Study area and data

The work presented in this paper uses data from 
Mondi plantations in Coastal Zululand (South Africa, Figure 
1), with an altitude range of 12-107m. Data for developing the 
dominant height models were obtained from 75 permanent 
sample plots (PSPs), representing the variability of the stand 
age and site quality of E. grandis x E. urophylla in this study 
area. The PSPs are rectangular in shape, consist of around 
400 m2 of plot area. There are two spacings represented 
(3 x 2 m and 3 x 2.5 m), resulting in 1667 and 1333 trees 
per hectare respectively. In this study, PSPs were established 
between 1994 and 2015 and the first measurements were 
taken 0.5-11 years after planting. The dominant height of 
a PSP is defined as the average height of the 20% thickest 
trees in a PSP. Figure 2 illustrates the longitudinal profiles 
for the repeated measurements for PSPs. The profiles plot 
shows that, dominant height increases nonlinearly over 
time, with wide ranges among PSPs suggesting evidence 
of PSP-to-PSP heterogeneity. Site index of Eucalypts in 
Mondi is defined as dominant height at reference age (8 
years). Clear-felling usually occurs between 7 and 12 years 
after the PSPs are planted. According to the consensus, 
a dominant height is measured as long as a PSP remains 
standing during the measurement season, so some PSPs 
in Figure 2 exceed the reference age. As a measure 
of the rainfall effect, the mean monthly precipitation 
(mmp) between measurements was used. In total, 1024 
measurements were obtained for this study.

Figure 1.    Map showing the studied area of E. grandis x E. urophylla and rainfall stations in Coastal Zululand.
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The summary of each PSP also includes other 
(not used in this study) important stand measures, such 
as trees per hectare (TPH), quadratic mean DBH (DBHQ, 
cm), basal area (BA, m2/ha), minimum diameter (Dmin, 
cm), site index (SI, m), and mean annual increment (MAI, 

m3/ha/yr).  Additionally, 652 repeat forest inventory 
plots within the same study area were used for model 
validation. Summary statistics for model variables and 
other important variables are presented in Table 1. 

Climate data and rainfall station allocation to PSPs

The study area is classified as a subtropical climatic 
zone, with a mean annual temperature of approximately 
22°C (Gardner et al., 2007) and a wide range of mean 
annual precipitation (MAP) (from 800 mm on dry sites to 
more than 1300 mm on wet sites).

Data on rainfall was collected from seven rainfall 
stations in the study area. PSPs were assigned to the rainfall 
stations closest to them. As seen in Table 2, the number 
of PSPs differed among the rainfall stations. The long term 
(1989-2020) annual rainfall patterns are presented in Figure 
3. The drought line in the South African context is defined 
as 75% of the long-term mean annual precipitation (LTM) 
(Baudoin et al., 2017). Mean annual precipitation below 
75% of the LTM is classified as drought.

Figure 2.  E. grandis x E. urophylla PSP dominant height 
profiles over time in Coastal Zululand.

Variable 
(units)

Fitting data Validation data

Mean Minimum Maximum CV* (%) Mean Minimum Maximum CV* (%)

Plant year - 1994 2015 - - 1996 2017 -

Measurement 
year - 1995 2019 - - 2004 2020 -

Model stand 
variables

Age (years) 4.5 0.5 11.0 48.4 6.0 3.0 12.8 24.0

Hd (m) 18.1 1.3 35.1 37.7 21.8 8.4 34.2 21.7

Other stand 
variables
Trees per 
hectare 1206 534 1568 15.9 1297 934 1773 11.9

DBHQ (cm) 13.3 2.0 24.4 29.1 15.1 8.0 23.6 16.7

Basal area 
(m2/ha) 29.0 7.4 51.5 28.9 23.1 6.4 51.5 30.5

Dmin (cm) 6.6 2.2 15.1 34.5 4.3 3.0 11.0 30.4

Site index (m) 25.7 15.2 34.0 15.0 25.1 12.2 33.6 16.7

MAI (m3/ha/
yr) 28.8 3.3 64.9 47.8 29.0 1.3 70.6 45.0

Rainfall effect

Mmp (mm) 93 49 135 33 90 41 132 24

Notes: Hd=dominant height, Min=minimum, Max=maximum, and CV=coefficient of determination.

Table 1.   Descriptive statistics for the dominant height data used for model fitting and validation.
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Rainfall Station Annual Rainfall (mm) Number of 
PSPsName mmp (mm) Mean Min Max CV (%)

mmp (mm) 954 473 1492 25 14
Gingindlovu - SASRI 76 917 513 1398 23 7
Mtubatuba - Dangu 71 854 469 1518 27 3

Zululand - Dukuduku, M 75 903 529 1431 25 11
Zululand - Kwambo Nursery, M 110 1314 660 2356 29 21

Zululand - Nyalazi, M 82 983 419 1688 28 7
Zululand - Port Dunford, M 110 1320 573 1909 23 12

Table 2.   Descriptive statistics for the 7 rainfall stations in Coastal Zululand for the period (1989 – 2020).

Figure 3.  Annual rainfall patterns for the seven rainfall stations in Coastal Zululand.
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Stand dominant height base models 

When deciding on a modeling approach, we 
considered its applicability to temporal series data, regardless 
of interval length and thus a projection form. The following 
base growth functions were used to generate candidate 
models for describing dominant height: Bertalanffy-Richards 
(Richards, 1959), Lundqvist-Korf (Korf, 1939), McDill-Amateis 
(McDill and Amateis, 1992), and Hossfeld I (Kiviste et al., 
2002). These functions are widely used in forest research and 
they are reported to be flexible in modelling stand growth 
attributes, including dominant height (Rojo Alboreca et 
al., 2017; Sánchez-González et al., 2005; Tahar et al., 2012). 
The ADA technique was used in this study to demonstrate 
the concept of incorporating rainfall into the model in 
the context of South Africa. As previously stated, the ADA 
method requires the selection of one parameter to isolate, 
while the rest are estimated statistically. When deciding which 
parameter to isolate, the desire for polymorphic site index 
curves and the strength of the rainfall-parameter relationship 
were considered. That is, among the parameters that 
produce polymorphic site index curves when isolated, the 
one with the weakest relationship to rainfall was considered 
site specific. In summary, an ADA technique, in which only 
one parameter isolated to achieve polymorphic site index 
with common asymptote, was selected.  

The effect of rainfall on dominant height projections

Each parameter was expressed as a function of 
rainfall in order to determine the mathematical structure 
appropriate to incorporate rainfall. Parameter estimates 
were plotted against the mean monthly precipitation for 
each PSP to elucidate this dependence. Based on these 
plots, a linear function was found to be adequate to describe 
the relationship between the parameters and rainfall. Table 
3 presents the base growth functions and ADA candidate 
models derived from them. 

Model Parameterization

In general, the fixed-effects candidate (M1-M8) 
models can be expressed as [1].

yij=f (vij,β )+eij        [1]
where yij is the jth dominant height of the i th PSP, f is a 
nonlinear function, β=[β0, β1, β2]`  are the parameters 
to be estimated, vij = (yi1,xij,xi1)  and vij=(yi1,xij,xi1,mmp) 
are explanatory variables for models M1-M4 and M5-
M8, respectively; yi1 and xi1 are the dominant height 
measured and the age of the measurement for the 
i th PSP, respectively; eij are error terms assumed to be 
independent and identically distributed with mean 0.

On the other hand, the nonlinear mixed-effects 
models (M9-M12) can be defined as a hierarchical model 
as follows [2].

yij=f(ϕij,vij)+eij     [2]

where f is a general nonlinear function of an individual 
specific parameter vector ϕij, a predictor vector vij, and εij is a 
normally distributed within- PSP error term. The parameter 
vector ϕij is modelled as [3].

ϕij=Aijβ+Bijui, ui~N(0,D)     [3]
where β is a (p×1) vector of fixed parameters common to 
all PSPs, ui is a (q×1) vector of random-effects specific to 
PSP i, D is the variance-covariance matrix of the random 
effects, Aij and Bij are design matrices for the fixed and 
random effects, respectively. It is assumed that the within-
group errors eij are independent and normally distributed 
with mean zero and variance σ 2. 

The longitudinal data from PSPs were transformed 
to generate a structure that considers all possible forward 
growth intervals among dominant height-age pairs 
for each PSP. There has been a recommendation from 
previous studies Goelz and Burk (1992), Huang (1999), 
and Rojo Alboreca et al. (2017) for data structures that 
consider all possible growth intervals to ensure the most 
consistent and stable results. Regardless of the method 
used, the dominant height growth must not be assumed 
to be immune to autocorrelation between measurements. 
Inferences on parameter estimates are unreliable if the error 
terms are correlated (cov(eij,eij-1)≠0) and this correlation 
is not accounted for. This may affect the standard error, 
resulting in inflated or deflated (depending on the sign of 
the correlation) t statistics. This enhances the risk of making 
Type I or Type II errors. Thus, to obtain more efficient 
estimates of errors, the autocorrelation must be accounted 
for (Goelz and Burk, 1992).

The error terms may be expanded to allow for the 
first-order autocorrelation as follows [4].

eij=ρeij-1+εij                   [4]
where ρ represents the autocorrelation between the 
residuals from estimating  yij  and  yij-1, εij~i.i.d.N(0,σ 2).

The Durbin-Watson test by Durbin and Watson (1971) 
is generally employed to detect autocorrelation in error 
terms. The Durbin-Watson test statistic is defined as [5].

                               
[5]

According to Holt and Refenes (1998), as ρ ̂  takes values 
in the range [-1,1], the Durbin-Watson can be interpreted as 
follows: d≃4: ρ ̂ =-1, strong negative autocorrelation; d≃2: ρ ̂ =0, 
no autocorrelation; d≃0: ρ  ̂=1, strong positive autocorrelation.

This implies that d values close to 2 are evidence 
of the absence of autocorrelation. Values away from d=2 
indicate the presence of the first-order autocorrelation. 
The model fitting was performed in SAS, Version 9.4 (SAS 
Institute Inc, 2013). Accordingly, the ETS MODEL procedure, 
which includes the Durbin-Watson test in its current 
edition, was used to fit the fixed-effects models (M1-M8). 
The NLMIXED procedure, on the other hand, was utilized 
for fitting the mixed-effects models (M9-M12). Unlike the 
MODEL procedure, the NLMIXED procedure does not 
incorporate the Durbin-Watson test. The test can be done 
by including zlag1 (residual.y) in the model formulation.
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Base function
Free 

parameter 
(F)

Solution for F with initial 
values (xi1,yi1)

ADA Model Model 
type

Bertalanffy-Richards
β2= F M1

Lundqvist-Korf
β1= F M2

McDill-Amateis

β2= F M3
Fixed-

effects with 
no rainfall 

effect

Hossfeld I

β1= F M4

Bertalanffy-Richards
β2= F M5

Lundqvist-Korf
β1= F M6

McDill-Amateis

β2= F M7
Fixed-

effects with 
rainfall 
effect

Hossfeld I

β1= F M8

Bertalanffy-Richards
β2= F M9

Lundqvist-Korf
β1= F M10

McDill-Amateis

β2= F M11
Mixed-

effects with 
rainfall 
effect

Hossfeld I

β1= F M12

yij and yi1 are dominant height observations of the i th PSP at age xij and age xi1, respectively; β0, β1, and β2 are model 
parameters, common to all PSPs; βp

*=βp+τp mmp (p=0,1,2) are expansions of the fixed-effects parameters with a linear 
rainfall effect (τp); βp

u=βp+up+τp mmp (p=0,1,2) are PSP-specific parameters with rainfall effect; eij is an error term; Models 
M1-M4 are fixed-effects models  without the rainfall effect; models M5-M8 are fixed-effects with the rainfall effect 
included;  and models M9-M12 are mixed-effects with rainfall effect included.

Table 3.   Candidate equations tested for modelling dominant height.



Chauke et al.

8 CERNE (2022) 28: e-103112

Model Evaluation

The candidate models were evaluated graphically 
and using quantitative statistical measures. The graphical 
analysis consisted of visually inspecting 1) dominant height/
site index curves for biological plausibility, and 2) plots of 
residuals against predicted values for possible systematic 
discrepancies. The quantitative statistical measures 
consisted of three statistical criteria: root mean square 
error (RMSE), the adjusted coefficient of determination 
(Radj

2 ), and Akaike’s information criterion (AIC). These criteria 
are defined as follows [6], [7], and [8].

                                                                            [6]             

                                                                                                                               
 

                                                                               [7]             
                                                             

AIC=2p-2log(L),                                                      [8]
                                                                                                  

where yij and y ̂ij are observed and predicted values of 
dominant height for PSP i with ni observations, y ̅  is the 
mean of all yij, n , p is the number of model parameters, 
L is the value of the likelihood function for a model. Fitted 
models with the largest value of Radj

2 and the smallest values 
of AIC, and RMSE are preferred.

In order to assess the prediction quality of the 
models, the models were applied to an independent 
dataset. Studies by Huang (1999) and Krisnawati et al. (2009) 
also emphasize that the data used to estimate the model 
parameters may not be used to evaluate prediction quality. 
The statistical criteria (RMSE, Radj

2  , AIC) were also employed as 
validation statistics calculated from an independent dataset 
(validation data) to help assess the quality of the prediction. 
The following statistical criteria were also considered over 
and above the stated criteria: the mean residual (MRES), 
measuring systematic deviation from predictions, the 
absolute mean residual (AMRES), which ignores the sign 
of error in prediction, the mean absolute percentage error 
(MAPE), and the Schwarz Bayesian information criterion 
(BIC). These validation statistics were defined as follows [9], 
[10], [11], and [12]. 

MRES                                                                    [9]
              

AMRES                                                                 [10]
          

MAPE                                                                  [11]
        
BIC=p log(n)-2log(L),                                             [12]
In general, smaller values of MRES, AMRES, MAPE, 

and BIC indicate better performance. 

RESULTS AND DISCUSSION

The Nonlinear least-squares approach

In Figure 4, residual plots are shown for Models M1-
M8. Based on the plot of residuals against predicted values, 
it appears that residuals are not randomly distributed above 
and below the reference line of zero at both tail ends of the 
models without the rainfall effect (M1-M4). This indicates 
that the assumption of constant variance may not been 
adhered to completely. Similarly, the Q-Q plots for models 
M1-M4 indicate departure from the normality assumption 
at both tail ends. The residuals against predicted values are 
evenly spread over and below zero in fixed-effects models 
which include the rainfall effect (M5-M8), in accordance 
with the constant variance assumption. Furthermore, the 
Q-Q plots indicate no significant departures from normality, 
except for a few observations at the lower tail. In general, 
there was no substantial departure from model assumptions 
for the models that included rainfall as a covariate.

In order to determine whether or not the correlated 
error term was required for each candidate function, the 
ADA models (M1 - M4) were fitted without including the 
correlated error first. The fit statistics are presented in Table 
4. As can be seen from the R2

adj, all fitted models explain a 
significant amount of variability in the data. However, the 
Durbin-Watson statistics were low [0.48, 0.51], suggesting a 
positive autocorrelation for the residual terms. 

The Durbin-Watson statistics are close to 2 [2.09, 
2.10] after including autocorrelation. According to Table 5, 
by using first-order autocorrelation in the error terms, we 
were not only able to eliminate the autocorrelation issue, 
but also improved the fit statistics substantially.

 

Model MSE Root 
MSE R2

adj AIC Durbin 
Watson

M1 3.0617 1.7498 0.9176 4642.44 2.0884

M2 2.6087 1.6151 0.9298 4454.76 2.1016

M3 2.7347 1.6537 0.9264 4510.04 2.0995

M4 2.6784 1.6366 0.9279 4485.66 2.109

Model MSE Root 
MSE R2

adj AIC Durbin 
Watson

M1 7.3735 2.7154 0.8015 5671.52 0.4806

M2 6.317 2.5134 0.83 5490.28 0.4911

M3 6.7167 2.5917 0.8192 5562.18 0.4872

M4 6.4917 2.5479 0.8253 5522.24 0.5059

Table 5.   Fit statistics for models M1-M4 with correlated 
error structure accounted for.

Table 4.   Fit statistics for models M1-M4 without accounting 
for correlated error structure.
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Figure 4.  Scatter plot of residuals vs predicted values (left) and Q-Q normality plots (right) for Models M1-M8.
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Figure 4 continuation.  Scatter plot of residuals vs predicted values (left) and Q-Q normality plots (right) for Models M1-M8.
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The parameter estimates and fit statistics for the 
fixed-effects models with and without the rainfall effect 
are summarized in Table 6. All parameter estimates are 
statistically significant at the 5% level for the fixed-effects 
models without the rainfall effect (M1-M4).  Models M5-
M8 are fixed-effects that incorporate rainfall effect in both 
model parameters, the results show that the rainfall effect 
is only significant in one of the two model parameters. The 
rainfall effect can be positive or negative and it is different 
for each model. RMSE values for models (M5-M8) are 
smaller than those of models (M1-M4), suggesting that 
the inclusion of rainfall effect generally improves model 
precision. By averaging the values in Table 6 for models M1-
M4 and then for models M5-M8, it can be shown that the 
improvement in precision by the inclusion of rainfall effect 
is approximately 37% ((1.66-1.04)/1.66). Despite the small 
differences, Lundqvist-Korf functions produced smaller 

RMSE values than the other three functions. The R2
adj values 

are at least 0.9 for all eight models, indicating that each 
model explains at least 90% of the total variability in the 
data. Generally, the R2

adj values for models (M5-M8) are 
better than those for models (M1-M4), indicating that the 
rainfall effect improves the percentage of total variability 
explained. In comparison to the other three functions, the 
Lundqvist-Korf function produced marginally higher values 
of R2

adj. In models (M5-M8), AIC values are lower than those 
in models M1-M4, which indicates a better goodness of 
fit through the inclusion of rainfall. Similar to what was 
seen with R2

adj , slightly lower values of AIC were obtained 
with the Lindqvist-Korf function than with the other two 
functions. According to the fit statistics presented thus far, 
the fixed-effects formulation of the Lundqvist-Korf function 
that incorporates the rainfall effect (model M6) is the best 
fit among the eight fixed-effects candidate models.

Model Parameter Estimate Std Err P-value RMSE R2adj AIC
M1 b0 52.7344 2.2230 <.0001 1.740 0.918 4642.4

b1 -0.0447 0.0040 <.0001
ρ 0.7686 0.0093 <.0001

M2 b0 78.0573 3.7305 <.0001 1.615 0.930 4454.8
b2 0.3803 0.0114 <.0001
ρ 0.7762 0.0091 <.0001

M3 b0 42.1776 0.7371 <.0001 1.654 0.926 4510.0
b1 1.0218 0.0117 <.0001
ρ 0.7809 0.0090 <.0001

M4 b0 0.0261 0.0030 <.0001 1.637 0.928 4485.7
b2 0.0248 0.0003 <.0001
ρ 0.7815 0.0091 <.0001

M5 b0 36.9920 3.9101 <.0001 1.075 0.965 2440.6
b1 0.0410 0.0145 0.0048
b3 -0.0015 0.0002 <.0001
b4 0.0481 0.0374 0.1994
ρ 1.1234 0.0192 <.0001

M6 b0 110.5158 17.3146 <.0001 1.009 0.969 2337.5
b2 0.0760 0.0269 0.0048
b3 -0.2067 0.1464 0.1585
b4 0.0031 0.0004 <.0001
ρ 1.1049 0.0180 <.0001

M7 b0 48.7329 5.1480 <.0001 1.023 0.968 2359.4
b1 0.2447 0.0510 <.0001
b3 0.0085 0.0006 <.0001
b4 -0.0379 0.0485 0.4356
ρ 1.1031 0.0176 <.0001

M8 b0 0.0096 0.0038 <.0001 1.063 0.966 2422.9
b2 0.0427 0.0016 <.0001
b3 -0.0001 0.0000 <.0001
b4 -0.0002 0.0000 0.7416
ρ 1.0960 0.0182 <.0001

Table 6.    Parameter estimates and fit statistics for the dominant height growth models M1-M8.
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The nonlinear mixed-effects approach

The plots of residuals for the nonlinear mixed-effects 
candidate models M9-M12 are presented in Figure 5. It can 
be seen that the residuals for model M10 are not randomly 
distributed above and below zero, and thus not adhering 

to the assumption of constant variance while the rest of 
the candidate models appear to adhere to this assumption. 
Looking at the Q-Q plots, again model M10 appears to not 
adhere to the assumption of normality, while the rest of the 
models satisfactorily adhere to this assumption. 

Figure 5.  Scatter plot of residuals vs predicted values (left) and Q-Q normality plots (right) for Models M9-M12.
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The parameter estimates and fit statistics for 
the mixed-effects models (M9-M12) are presented in 
Table 7. All fitted models (M9-M12) explain a significant 
amount of variability in the data. For all four models, the 
variances (σ i

2,i=0,1,2) associated with the random effects 
were significant (p-values < 0.05), indicating that model 
parameters varied between PSPs.  It can be seen that 
nonlinear mixed-effects with the rainfall effect included 
have approximately 18 % better precision in terms of RMSE 
((1.04-0.86)/1.04) than similar models that consider all 

parameters as fixed by averaging the RMSE values for fixed-
effects models (M5-M8) and mixed-effects models (M9-
M12). The R2

adj values are are at least 0.89, indicating that 
each model explains at least 89% of the variability in the 
data.  The Bertalanffy-Richards formulation (M9) produced 
the lowest value of RMSE, indicating better precision 
than the other three mixed-effects models. Additionally, 
Hossfeld model formulation (M12) had the lowest value of 
AIC, making it a contender for consideration as the best fit 
among the candidate models.

Model Parameter Estimate Standard Pr > |t| 95% Confidence Limits RMSE R2 adj AIC
b0 30.951 1.352 <.0001 28.250 33.652 0.787 0.984 2276.9
b1 0.108 0.013 <.0001 0.082 0.133
b3 -0.003 0.000 <.0001 -0.004 -0.003
b4 0.017 0.013 0.2043 -0.009 0.043

M9 σ0
2 51.202 14.507 0.0008 22.230 80.175

σ01 0.242 0.152 0.1169 -0.062 0.546
σ1

2 0.007 0.002 0.0021 0.003 0.012
σε

2 0.620 0.033 <.0001 0.553 0.686
ρ 0.012 0.005 0.0159 0.002 0.022
b0 5.097 3.301 0.1274 -1.496 11.689 0.870 0.896 2402.4
b2 0.549 0.040 <.0001 0.469 0.630
b3 0.566 0.045 <.0001 0.477 0.655
b4 0.000 0.000 0.3209 -0.001 0.000

M10 σ0
2 651.070 247.690 0.0107 156.400 1145.740

σ02 -2.833 1.097 0.0121 -5.024 -0.642
σ2

2 0.021 0.008 0.0066 0.006 0.036
σε

2 0.757 0.041 <.0001 0.676 0.839
ρ 0.025 0.005 <.0001 0.015 0.035
b0 37.977 3.431 <.0001 31.124 44.830 0.908 0.970 2471.5
b1 0.038 0.077 0.6244 -0.116 0.192
b3 0.011 0.001 <.0001 0.010 0.013
b4 0.014 0.031 0.6576 -0.049 0.077

M9 σ0
2 168.330 66.297 0.0135 35.927 300.730

σ01 -2.196 1.103 0.0507 -4.399 0.007
σ1

2 0.093 0.028 0.0015 0.037 0.149
σε

2 0.825 0.045 <.0001 0.736 0.914
ρ 0.033 0.005 <.0001 0.023 0.044
b0 -0.0436 0.0237 0.0704 -0.0909 0.0037 0.871 0.978 2222.7
b2 0.0503 0.0025 <.0001 0.0453 0.0553
b3 -0.0003 0.0000 <.0001 -0.0003 -0.0002
b4 0.0003 0.0002 0.2008 -0.0002 0.0007

M12 σ0
2 0.0128 0.0040 0.002 0.0048 0.0207

σ02 0.0004 0.0002 0.0849 -0.0001 0.0008
σ2

2 0.0001 0.0000 <.0001 0.0000 0.0001
σε

2 0.7583 0.0430 <.0001 0.6725 0.8442
ρ 0.0179 0.0054 0.0015 0.0071 0.0287

Table 7.    Parameter estimates and fit statistics for the dominant height growth models M9-M12.
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To evaluate the biological behaviour of the candidate 
models, the growth curves of each candidate model were 
examined. Growth curves were derived from the site index 
classes 15, 25, and 35 m, covering the site index range 
observed in Table 1. For models M5 – M12, mmp values of 49, 
90, and 135 mm were used for site index values of 15, 25, and 
35 m respectively. These predictions were derived by setting 
y0 and x0 in each candidate model to be the site index and 
reference age, where the reference age for determining the 
site index of a stand was based on the age range with the 
lowest error, an approach used in similar previous studies by 
González-García et al. (2015) and Tahar et al. (2012), and based 
on the results, the reference age was at 8 years (also in line with 
current practice at Mondi Forests), respectively.  The results are 
presented in Figure 6.  To interpret the results in Figure 6, one 
must remember that each column represents the same class of 
models (i.e., models M1-M4 are fixed-effects derived from the 
four mathematical functions without the rainfall effect, models 
M5-M8 are fixed-effects of the four mathematical functions 
with the rainfall effect accounted for in the parameters, and 
models M9-M12 are mixed-effects derived from the four 
mathematical functions with the rainfall effect accounted for). 
The rows in Figure 6 show the three different model forms 
derived from the same function. Models M1, M5, and M9, 
for example, are fixed-effects without rainfall, fixed-effects 
with rainfall, and mixed-effects with rainfall, respectively, and 
are based on the Bertalanffy-Richards Richards. The results 
indicate that the models without the rainfall effect produced 
unrealistically high values of dominant height at early stages 
for all four mathematical functions. Incorporating the rainfall 
effect into the fixed-effects models improved the model fit 
significantly, and particularly corrected the unrealistic dominant 
height estimates at an early stage. However, the Bertalanffy-
Richards formulation still produced unrealistically high values 
early on. Including the rainfall effect in mixed-effects models 
worked even better, except for Bertalanffy-Richards which 
failed to produce sensible values for high site indices at an 
early stage. At an early age, the Hossfeld formulation (M12) 
fails to distinguish between the average and high site index. 
There are indications in Figure 6 that models with rainfall are 
more accurate. Specifically, mixed-effects models appear to 

perform better than those with all parameters fixed. At this 
stage of the analysis, there is not enough evidence to declare 
one of the twelve candidate models as the best, but it appears 
from Figure 6 that mixed-effects derived from the Bertalanffy-
Richards is the worst candidate. Additionally, model M10, 
which is a mixed-effects formulation with rainfall included 
from the Lundqvist-Korf function, produced polymorphic site 
index curves that were desirable, despite incompatibility with 
distributional assumptions on residuals, making it a viable 
candidate for the best fit among the twelve models considered.  

Model validation

In this study, each model was used to predict dominant 
heights based on the validation data (repeat forest inventory). 
The validation statistics are presented in Table 8. It can be 
observed that the prediction errors of the candidate models 
are minimal, with the largest values of MRES, AMRES, and 
MAPE within 0.65 m, 1.39 m, and 6.6%, respectively. At least 
93% of the variability in the validation data was explained by 
all candidate models (R2

adj  values of at least 0.93). The AIC and 
BIC values indicate that models without rainfall effects are not 
as good at predicting dominant height values, particularly at 
an early stage. Although this does not necessarily imply that all 
models that accounted for rainfall effect worked better, as seen 
in Model M9, which accounts for rainfall effect in Bertalanffy-
Richards parameters, which exhibited a strange behaviour in 
Figure 6. This model (M9) performed the lowest on validation 
data based on the selection criteria. According to the selection 
criteria, model M11, a mixed-effects model derived from the 
McDill and Amateis functions and including rainfall effects in 
its parameters, produced the best results, followed by model 
M10, a model derived from the Lundqvist-Korf function, which 
produced the best overall results in Figure 6.

According to the statistics provided thus far, Model 11 
and Model 10, mixed-effects formulations of McDill-Amateis 
and Lundqvist-Korf functions, respectively, consistently 
outperformed the other models. It is acknowledged that 
the distributional assumptions on residuals were not 
compatible with model M10, however this model showed 
good behaviour on observation data and performance on 
validation data cannot be overlooked.

Model Equation MRES (m) AMRES (m) MAPE (%) RMSE (m) R2 adj AIC BIC
M1 CR -0.453 1.353 6.255 1.752 0.931 1234.2 1254.2
M2 LK -0.104 1.242 5.617 1.617 0.942 1059.1 1079.1
M3 MA -0.113 1.262 5.739 1.643 0.94 1093.2 1113.2
M4 HF -0.003 1.256 5.68 1.645 0.94 1095.5 1115.4
M5 CR -0.639 1.343 6.249 1.763 0.93 1251.5 1281.5
M6 LK -0.294 1.153 5.233 1.528 0.948 938.1 968.1
M7 MA -0.299 1.164 5.315 1.535 0.947 948.5 978.5
M8 HF -0.368 1.185 5.425 1.557 0.946 979.7 1009.6
M9 CR -0.396 1.388 6.5 1.809 0.927 1313.6 1358.6
M10 LK -0.122 1.139 5.188 1.498 0.95 901.9 946.9
M11 MA 0.006 1.128 5.07 1.491 0.95 891.3 936.2
M12 HF 0.006 1.159 5.149 1.537 0.947 957.3 1002.3

Table 8.    Validation statistics of the twelve candidate dominant height models.
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Summary and model application

In this study, an ADA by Bailey and Clutter (1974) 
was used to model the dominant height for E. grandis 
x E. urophylla plantations in Coastal Zululand, South 
Africa. The rainfall effect was subsequently incorporated 
using methods from existing studies to examine whether 
improved model performance is possible under different 
rainfall conditions. A total of twelve candidate models 
were studied and fitted to the data obtained from 
permanent sample plots in this area. The candidate 
models were based on Bertalanffy-Richards, Lundqvist-
Korf, McDill-Amateis, and Hossfeld I growth functions. 
All models accounted for serial correlation by using the 
autoregressive error term. The twelve candidate models 
were fitted sequentially as: fixed-effects without a rainfall 

effect (M1-M4), fixed-effects with a rainfall effect (M5-
M8), and mixed-effects with a rainfall effect (M9-M12). 

A linear addition of the rainfall effect was made to 
the model parameters to account for height growth changes 
caused by rainfall variability. Including rainfall effect improved 
the fit statistics, and this was expected, since rainfall is 
one of the primary drivers of growth. In this study, we had 
information on rainfall and no other climatic variable(s).

Based on the results, the inclusion of the rainfall effect 
improved the dominant height models by approximately 
37%. The nonlinear mixed-effects with the rainfall effect 
included have on average 18% better precision than similar 
models that consider all parameters to be fixed. This is 
consistent with the findings from a study by Wang et al. 
(2007) that including the random effects improved the 

Figure 6.    Dominant height curves for site index classes 15, 25, and 35 m at reference age of 8 years for models M1-M12.
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dominant height model when compared to a similar model 
with all parameters considered as fixed. Cieszewski and 
Strub (2018), Socha et al. (2021), and Sprengel et al. (2022) 
compared nonlinear fixed-effects and nonlinear mixed-
effects modeling approaches found better behaviour with 
nonlinear effects with GADA. The distributional assumptions 
on residuals were not compatible with the nonlinear mixed-
effects formulation of Lundqvist-Korf function. On the other 
hand, the nonlinear mixed-effects of Bertalanffy-Richards 
function produced the best fit statistics and adhered to 
the model assumptions. However, a visual inspection of 
site index trajectories revealed uncharacteristic behaviour 
for model M9, particularly at early ages of high site index 
class, suggesting that this model should not be used. The 
rest of the models without the rainfall effect (M2-M4) 
also produced unrealistic values at young ages for a high 
site class, a behaviour that was significantly improved by 
incorporating the rainfall effect. 

Although the mixed-effects model M10 violated the 
model assumptions, it produced desirable site index curves 
for the site index range, showing good behaviour. 

Validation was done using repeat forest inventory 
data for all candidates. In interpreting the validation statistics, 
it should be acknowledged that repeat forest inventories 
utilize the same stands, but not necessarily the same 
trees, unlike PSPs. Validation statistics were comparable 
for the models, but the mixed-effects of McDill-Amateis 
formulation (Model M11) produced the best statistics 
overall. Including the rainfall effect in the models resulted 
in differences in growth trajectories, showing that growth 
trajectory is affected by rainfall. This result is consistent with 
a study by Bravo-Oviedo et al. (2008), who reported that 
differences in growth trajectory depend partially on climate 
and soil conditions at specific sites. 

The evidence produced in model behaviour and 
performance on validation data leads to two final models M10 
and M11, the mixed-effects formulations of Lundqvist-Korf and 
McDill Amateis, respectively. Without loss of generality we 
consider the case final conditional models M10 and M11 with 
PSP specific random effects assumed to be at the expected 
value of zero. Then the two fitted models are respectively 

                                                                              [10]
                                                

and
 
                                                                              [11]

                                                                        

In order to demonstrate the application of the 
selected models, recall that Figure 3 shows rainfall 
patterns for various rainfall stations. When looking at the 
patterns closely, it can be observed that a pronounced 
drought was experienced in the 2014-2015 period. By 
comparing the forest inventories before drought (2014-
2016) and after drought (2016), we can demonstrate the 
behaviour of the selected models. For this comparison, 
40 repeat inventories were available. We will compare 
these two models to their counterparts without the rainfall 
effect in order to highlight the effects of rainfall (i.e. M2 
vs. M10, M3 vs. M11). The results are presented in Table 
9. It can be seen that prediction errors of the two final 
models (M10, M11) are minimal (over-prediction within 
0.2 m using the MRES). When comparing these models 
to their counterparts without the rainfall effect (M2, M3), 
all statistics presented indicate that including the rainfall 
effect increases projection accuracy significantly (at least 
80 percent improvement in terms of observed mean error).

Additionally, the utility of the case model can 
be proved by projecting the behaviour of a PSP. Figure 
7 depicts a comparison of Models M3 and M11 in their 
projection accuracy on the PSP measurements from 
2013 to 2021. The interval between the measurements is 
approximately one year. The 2013 measurement was used 
as (x0 ,y0) for projection in 2014 to 2021 using the model 
without the rainfall effect (M3). Projections were also done 
using model M11, which accounts for the mmp between 
measurement intervals. To account for the mmp between 
measurements, the recent previous measurement was 
used as reference, for example, the 2014 measurement 
was used as (x0 ,y0) for the 2015 projection. 

In this example, the coefficient of variation in 
mmp is 26.4%, which is representative of the variability 
in this area (Table 2). The results show that projecting 
from the first observations without taking the rainfall 
effect into account can result in overly optimistic 
values. A projection that account for rainfall between 
measurements, on the other hand, are generally 
accurate and reflect the PSP’s behavior. The observed 
final (2021) dominant height measurement is 22.3 m; 
however, using the final model without rainfall effect 
(M3), the projected final dominant height measurement 
is 29.8 m, a 33.4% overestimation. The projection that 
includes the rainfall effect, on the other hand, is 22.4 m, 
a 0.5% overestimation. This shows that, despite the high 
variability in the rainfall data, accounting for rainfall 
effects produces estimates that are closer to reality. 

Model Equation MRES (m) AMRES (m) MAPE (%) RMSE (m) R2 adj AIC BIC

Lundqvist-Korf without and with rainfall

M2 LK -1.05 1.282 5.799 1.518 0.946 41.4 48.2

M10 LK -0.201 0.963 4.202 1.179 0.962 31.1 46.3

McDill-Amateis without and with rainfall

M3 MA -0.968 1.22 5.674 1.46 0.95 38.3 45

M11 MA -0.101 0.858 3.743 1.039 0.971 21.1 36.3

Table 9.    Statistics for a selected models applied to inventory data projected from 2013-2014 to 2016.
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CONCLUSION
In this study, polymorphic ADA models for projecting 

the dominant height of E. grandis x E. urophylla in Coastal 
Zululand, South Africa, were developed. The data consists 
of PSPs from different sites, and high correlations were 
observed for measurements from the same PSP as well as 
differences between PSPs, indicating that nonlinear mixed-
effects models were more appropriate. The final models 
chosen were nonlinear mixed-effects models derived from 
Lundqvist-Korf and McDill-Amateis base functions because 
they represent expected biological behaviour and performed 
well on validation data.

Rainfall is variable in this study area (weighted 
CV =26.9%). The reported improvement in precision 
due to incorporating the rainfall effect in the model is 
approximately 37%. Despite the high variability in rainfall, the 
model application (Figure 7) demonstrates that the rainfall 
incorporation in the model produces estimates that are close 
to reality. Similar models that do not account for the effect of 
rainfall, on the other hand, can produce unrealistic estimates. 
The models that incorporate rainfall are therefore desirable as 
they can be used for estimates, particularly in short-rotation 
pulp forests where rainfall fluctuates. These models were fitted 
and tested on a single hybrid species on a zone of climate 
characterized by hot and humid summers, and cool to mild 
winters. These models may not be directly transferable to 
other species or regions. Therefore, extrapolation to another 
domain should be done with caution. There are some 
limitations in this study: Other factors such as temperature, 
soil water deficit, soil fertility, etc. may become available in 
the future and could be incorporated in the model using 
the methodology presented. The explanatory variables are 
assumed to be measured without error in this study. Future 
research should include extending the models to account for 
measurement error in explanatory variables. Finally, South 
Africa would benefit from a polymorphic model with multiple 
asymptotes as this hybrid species continues to expand to 

different areas and sites. Therefore, areas for future research 
extending the current polymorphic ADA model to represent 
multiple asymptotes, that is GADA. 
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