
FOREST MANAGEMENTSILVICULTURE

✤Corresponding author: carla.pertille@ufpr.br         Received: May, 24 2022       Accepted: December, 2 2022

Research Article

doi: doi: 10.1590/01047760202329013108

vol(29), 2023

Estimating the commercial volume of a Pinus taeda 
L. plantation using active and passive sensors

Carla Talita Pertille1✤iD, Marcos Felipe Nicoletti2iD, Mario Dobner Jr2iD

1Federal University of Parana, Brazil
2State University of Santa Catarina, Brazil

PERTILLE, C.T.; NICOLETTI, M.F.; DOBNER JR, M. Estimating the commercial volume of a Pinus taeda L. plantation using active and 
passive sensors. CERNE,  v.29,  e-103108,  doi:  10.1590/01047760202329013108.

ABSTRACT

Background: The objective of this study was to estimate the wood volume of a Pinus taeda L. 
plantation using variables extracted from the Sentinel-1 active sensor and the Sentinel-2 passive 
sensor. To do so, data from a forest inventory with rectangular plots of 550 m² were used to 
estimate the stand volume. We derived and adapted average vegetation indices per plot from 
images obtained by Sentinel-1 and Sentinel-2 sensors. The data were then correlated with the 
volume per plot based on the forest inventory. The Modified Radar Forest Degradation Index 
(mRDFI) showed the highest correlation for Sentinel-1 data, while the Difference Vegetation-Index 
(DVI) performed best for Sentinel-2. 

Results: The regression models were built using Stepwise modeling, demonstrating that the 
models fit with only the Sentinel-2 indices performed better than the others (indices adapted for 
Sentinel-1 and a combination of Sentinel-1 and Sentinel-2 data), with an R² adjusted between 0.51 
to 0.40 and a standard error (Syx%) of 3.66 to 8.97. According to the statistical analyses, we found 
no significant differences between the volume estimated by the forest inventory (12.56±1.17) and 
the remote sensing techniques used (Sentinel-2 with 12.56±1.03 and Sentinel-1 with 12.56±0.94). 
However, further tests should be conducted with other active sensors operating in different spectral 
bands and polarization modes for other forest species.

Conclusion: We found no significant differences between the volumetric estimates derived from 
remote sensing data and forest inventory techniques.

Keywords: modeling, Sentinel-1, Sentinel-2, wood stock. 

HIGHLIGHTS

There was no significant difference between the volumetric estimates derived from remote sensing 
data and forest inventory techniques, but the regression model built with Sentinel-2 was the most 
suitable for estimating the volume of Pinus taeda L.
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INTRODUCTION

According to data from the Brazilian Tree Industry 
(Ibá, 2021), there are 1.7 million hectares of Pinus spp. 
plantations across the country. The majority of these are 
concentrated in the South, making up 67% of all planted 
pine forests (43% in Paraná and 24% in Santa Catarina 
State). This fact highlights the significant adaptability of 
the genus, especially in the southern region of Brazil, 
with similar edaphoclimatic characteristics to the origins 
of several pine species (Ferro et al., 2018). Given the 
importance of commercial forest plantations, particularly 
those of the Pinus genus, it is essential to use accurate forest 
inventory methodologies to obtain and evaluate forest 
attributes, such as volume and biomass, to support forest 
management strategies and to implement climate change 
mitigation policies (Mauya et al., 2015). The accuracy of 
wood volume estimates in forest surveys is related to the 
sampling technique, as well as the choice of the method 
used, which can be direct (cubic scaling or weighing of 
the tree) or indirect (volumetric equations, form factor 
applications, and tapering equations) (Leal et al., 2013). 

Forest inventory methods to quantify the volume 
of forest plantations are widely used and highly effective; 
however, some factors make difficult their implementation, 
such as the labor cost, the time required, the availability 
of adequate equipment, and difficulties operating in 
dense forests and those which are difficult to access 
(Berra et al., 2012). Thus, combining such procedures 
with other techniques and data sources, such as remote 
sensing, are necessary. Macedo et al. (2017) note that 
image-derived reflectance information through remote 
sensing is combined with stand data obtained in the field 
to estimate the commercial volume of a forest stand. The 
authors also suggest the use of vegetation indices for 
such correlations by evaluating and analyzing the spectral 
properties of vegetation related to vegetation cover, 
biomass, and leaf area index, particularly in the visible 
and infrared ranges (Ponzoni et al., 2012).

The evolution of remote sensing technologies 
has led to the emergence of techniques, sensors, and 
data acquisition platforms, that enable the integration of 
different data sources, such as the combined use of optical 
sensor images and active Radio Detection and Ranging 
(Radar) sensors, to maximize the potential and complement 
the limitations of different sensors as compared to other 
methods (Shao  and Zang, 2016). Such combinations favor 
applying different types of analyses, as Synthetic Aperture 
Radar (SAR) sensors can produce images independent of 
daylight or atmospheric conditions, unlike optical sensors 
which are influenced by atmospheric conditions and cloud 
coverage (Mauya et al., 2019). In this context, the Sentinel 
mission deployed by the European Space Agency (ESA) 
stands out as it provides optical images from the Sentinel-2 
satellite, as well as Radar images from the Sentinel-1 
satellite. Both satellites have a catalogue of openly 
available images from around the globe. The sensors of 
Sentinel-1 operate in the C-band with dual polarization, 
providing images with 12-day temporal resolution (Torres 

et al., 2012). On the other hand, Sentinel-2 offers images 
with 13 spectral bands at 10 meters (m), 20 m, and 60 m 
of spatial resolution, and a temporal resolution of five to 
10 days (ESA, 2022a). In this scenario, the objective of this 
study was to compare the commercial volume estimates of 
a Pinus taeda L. plantation using Radar images (Sentinel-1) 
and optical images (Sentinel-2) with traditional forest 
inventory methodologies. 

MATERIAL AND METHODS

Description of the study area 

The study was conducted in a rural property 
located in the municipality of Rio Negro, Paraná, 
Brazil (geographical coordinates: 26°11’06” South and 
49°33’11” West) (Figure 1). The study area is located in 
the Segundo Planalto Paranaense, predominantly formed 
by sedimentary units of the Paraná Basin, with Tb allic 
cambisol and allic litholic soils. The area’s climate is Cfa 
with a dry and temperate climate according to the Koppen 
classification. Temperatures range between 9°C and 28°C, 
and the average annual rainfall is 1200 mm (Alvares et al., 
2013). The evaluated stand has an effective planting area of 
27.5 ha, with Pinus taeda L. individuals of 11 and 12 years 
of age, a spacing of 3 x 2.5 m, and 1,333 trees per hectare. 

Data collection

Forest inventory information was used to guide data 
collection from rectangular plots of 550 m² in April 2021, and 
measured the following dendrometric variables: diameter 
at breast height (DBH; cm) using a dendrometric tape 
measure; and height (m) of 20% of all trees in the plot using 
a Vertex hypsometer. The Curtis hypsometric equation was 
later used to obtain the height of all trees in the 48 plots. 
We used the 5-degree tapering function (Schöpfer model) 
and cubic data of 72 trees from different diametric classes 
to determine volume, measuring 0.1 m, 0.5 m, 1.0 m, 1.3 m, 
1.5 m, 2.0 m, and subsequent height intervals of 2.0 m until 
the top of the tree. Table 1 contains the main dendrometric 
characteristics of the evaluated stand.

The sentinel mission

Images from the Sentinel-1 active sensor and 
Sentinel-2 passive sensor were used for remote sensing 
data. The Sentinel-1 image was acquired free of charge 
from the Alaska Satellite Facility (ASF, 2022), dated 
10/04/2021, with a 12-day temporal resolution, in C-band, 
Interferometric Wide Swath Mode (IW), level 1C, Single 
Look Complex (SLC) product, dual polarization VH (vertical 
transmission and horizontal reception) and VV (horizontal 
transmission and reception), and a spatial resolution of 5 to 
20 m (ESA, 2022b). It acquires data with a 250 km swath at 
5 m by 20 m spatial resolution (single look) (ESA, 2022b). 
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The digital processing of the Sentinel-1 image was 
performed in the Sentinel Application Platform (SNAP) 
computer application (ESA, 2022c). The first processing 
step was to extract the area of interest contained in the IW 
strips. Then, the orbit correction was performed from the 
metadata of the image such as the satellite precision and 
speed. After that, the existing thermal noise was removed 
and the images were calibrated with the sigma band. Later, 
the bursts were unified using the Deburst option. The Lee 
filter was used to reduce the Speckle effect, the dimensions 
of the regular pixels were applied, and the GR Square 
Pixel method was used to reduce the size of the pixels. 
Finally, the terrain distortions were adjusted by the Range 
Doppler Terrain Correction function using the Bilinear 
function for the interpolation to obtain the backscatter 

coefficients (VH and VV). These data were then exported to 
a GIS environment (ESRI, 2022), in which vegetation indices 
adapted for Sentinel-1 images were derived (Table 2).  

Figure 1. Location of a Pinus taeda L. stand located in Rio Negro, Paraná, Brazil.

Statistic DBH H G V
Minimum 24.3 15.8 32.0 172.8

Mean 26.3 17.4 39.8 228.5
Maximum 28.6 18.5 45.5 273.3

Range 4.4 2.7 13.5 100.5
Standard deviation 1.1 0.6 2.8 21.5

Coefficient of variation (%) 4 4 7 9
DBH: diameter at breast height (cm); H: height (m); G: basal area per 
hectare (m².ha-1); V: volume per hectare (m³.ha-1).

Table 1. Descriptive statistics of the dendrometric variables of 
a Pinus taeda L. plantation located in Rio Negro, Paraná, Brazil.

Adapted index Formula Reference

mRFDI
VV - VH
VV + VH

Nicholas et al. (2021)

RVI
8 * VH

VV + VV + 2 *VH
Flores-Andersen et al. 

(2019)

RVIad
4 * VH
VV + VH

This study

Ad_1
VV
VH This study

Ad_2
VH
VV

This study

Ad_3
1 1+  
VH VV

This study

Ad_4
1 1/
VH VV

This study

Ad_5 VH - VV This study

VV and VH: backscatter coefficients; mRFDI: Modified Radar Forest 
Degradation Index; RVI: Radar Vegetation Index; RVIad: Radar Vegetation 
Index Adapted; Ad_1, Ad_2, Ad_3, Ad_4, and Ad_5: adaptations 
developed in this study.

Table 2. Extracted variables from the Sentinel-1 image for 
a Pinus taeda L. stand.
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It is important to highlight that the RVIad index was 
derived from the RVI index constructed by Çolak, Chandra 
and Sunar (2021) with the aim of monitoring aboveground 
biomass. The image derived from the Sentinel-2 satellite 
to use remote sensing data was obtained from the USGS 
portal (2022), dated 04/25/2021, in 1C mode, meaning it only 
had radiometric calibrations. As a result, the atmospheric 
correction was performed using the Sen2Cor algorithm in 
SNAP and the image was later submitted to the resampling 
step of the bands to 10 m. Once the image was properly 
processed, 14 vegetation indices (Table 3) and three 
biophysical vegetation parameters were calculated (Leaf 
Area Index – LAI; Fraction of Absorbed Photosynthetically 
Active Radiation – Fapar; and Fraction of Vegetation Cover – 
FVC) with the aid of the PROSAIL model in SNAP (Esa, 2022c). 

After obtaining the variables derived from the 
Sentinel-1 and Sentinel-2 images, the next step was to delimit 
the forest inventory plots in the images. To do so, we created 

Vegetation index Formula Reference

Anthocyanin Reflectance
Index - ARI1

(1) (1)– 
(GREEN) (REDE1) Gitelson et al. (2001)

Anthocyanin Reflectance
Index - ARI2

(NIR) (NIR)– 
(GREEN) (REDE1) Gitelson et al. (2001)

Difference Vegetation-Index - DVI NIR – RED

Green Normalized
Difference Index - GNDVI

(NIR – GREEN)
(NIR + GREEN) Gitelson et al. (1996)

Inverted Red-Edge
Chlorophyll Index - IRECI   (REDE2)REDE3 – RED *

(REDE1) Clevers et al. (2000)

Modified Chlorophyll
Absorption in

Reflectance Index - MCARI

(1 – 0,2 * (REDE1 – GREEN)
(REDE1 – RED) Daughtry (2000)

Modified Soil Adjusted
Vegetation Index - MSAVI

(NIR – RED)  (1 + L)
(NIR + RED + L) Qi et al. (1994)

MERIS Terrestrial
Chlorophyll Index - MTCI

(REDE2 – REDE1)
(REDE1 – RED) Dash and Curran (2007)

Normalized Difference
Index 45 - NDI45

(REDE1 –RED)
(REDE1 + RED) Frampton et al. (2013)

Normalized Difference
Vegetation Index - NDVI

(NIR –RED)
(NIR + RED) Rouse et al. (1973)

Red-edge NDVI
(NIR – REDE2)
(NIR + REDE2)

Fernández-Manso et al.
(2016)

Pigment Specific Simple
Ratio – PSSRa

(NIR)
(RED) Blackburn (1998)

Soil Adjusted Vegetation
Index – SAVI

(NIR – RED)1.5 *
(NIR + RED + 0.5) Huete (1988)

Sentinel-2 Red-Edge
Position - S2REP

(0,5 * (REDE3 + RED) – REDE1)740* 
(REDE2+ REDE1) Guyot and Baret (1988)

GREEN: 560 nm); RED: 665 nm; REDE1: red-edge 1 (705 nm); REDE2: red-edge 2 (740 nm); REDE3: red-edge 3 (783 nm); NIR: 842 nm; L: adjustment 
factor (considered as 0.5).

Table 3. Vegetation indices derived from a Sentinel-2 image for a Pinus taeda L. stand.

areas of influence based on the central coordinates (obtained 
with the help of Tablet devices with Forest Mobile software) 
of the plots with a radius of 13.25 meters, for a total of 
approximately 550 m². Then, the mean values of the variables 
(Sentinel-1 and Sentinel-2) were extracted by plots in the GIS 
environment (Esri, 2022).

Volume modeling

The variables derived from the images to apply 
modeling techniques were treated as independent variables 
and the volume per plot (m³ 0.05 ha-1) as a dependent variable. 
Variables were submitted to Pearson’s correlation coefficient 
analysis to evaluate the degree of association between them. 
Vegetation indices and other adapted indices correlated 
with volume per plot (m³ 0.05 ha-1) were used for modeling 
considering three scenarios: i) vegetation indices obtained 
from the Sentinel-2 image; (ii) adapted indices derived from 
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the Sentinel-1 image; iii) the combination of vegetation indices 
and adapted indices. The construction of regression models 
was based on the stepwise technique considering forward and 
backward modes in the R environment version 4.1.2. software 
program (R Core Team, 2021). To identify the best model, we 
applied the statistical criteria of highest adjusted coefficient 
of determination (R² aj.), the low standard error value of the 
estimate (Syx%), and graphical analysis of the residuals, as 
recommended by Nicoletti et al. (2016), as well as low values 
of Akaike Information Criterion (AIC), Bayesian Information 
Criterion (BIC), and Root Mean Squared Error (RMSE). 

Statistical analysis

First, the data derived from the Sentinel mission and 
estimated using forest inventory techniques were analyzed 
with the Shapiro-Wilk test to verify the basic assumptions 
of data normality. A completely randomized design was 
adopted with four treatments: T1) volume estimated by forest 
inventory techniques; T2) volume estimated by vegetation 
indices for Sentinel-2; T3) volume estimated by the indices 
adapted to Sentinel-1; and T4) volume estimated by the 
combination of Sentinel-1 and Sentinel-2 variables. Analysis 
of variance (ANOVA) was applied to identify the degree of 
significance of the treatments, and the Tukey’s test was used 
to assess whether there were significant differences between 
treatments. All statistical tests were performed in the R 
version 4.1.2. program (R Core Team, 2021). 

RESULTS

The dendrometric characteristics of the evaluated 
stand based on the forest inventory performed in the area 
were: mean DBH: 26.3 cm; mean square diameter: 26.7 cm; 
mean total height: 17.4 meters; basal area per hectare: 39.8 
m².ha-1; total commercial volume per hectare: 228.5 m³.ha-1, 
determined from the 5-degree tapering function (Schöpfer 
model) and cubic data of 72 trees from different diametric 
classes, as described in the methodology. Pearson’s correlation 
(Table 4) showed positive and negative correlations, with values 
ranging from -0.3621 to 0.3424. The vegetation indices and 
biophysical parameters from the Sentinel-2 image presented 
the highest values, while the indices adapted for the Sentinel-1 
image had the lowest values. 

The tested regression models presented different 
fitting metrics according to the variables used (Table 5). The 
models derived from the data extracted from the Sentinel-2 
image were superior to the other models, with R² adj. ranging 
from 0.51 to 0.40 and Syx% between 3.66% to 8.97%. This 
was followed by the combination of the variables Sentinel-2 
and Sentinel-1 (R² adj. less than 0.30 and Syx% above 10%). 
Finally, the models constructed with only Sentinel-1 variables 
presented the lowest fitting statistics.

The graphical analysis of the residuals (Figure 2) 
shows that there were no independent errors or under- 
or overestimates across all tested models. Models 1 and 2 
presented the best metrics (highest R² adj., and low Syx (%), 
AIC, and BIC), with uniform distribution of residuals and no 
outliers, unlike the other models. 

Based on the statistical parameters described in 
Table 6 and the distribution of residuals (Figure 2), model 
1 was chosen as the best regression model to estimate the 
commercial volume of the studied stand. Nevertheless, 
the statistical analyses show that the data have a normal 
distribution and that there are no significant differences 
between the volumes estimated by the treatments (volume 
estimated by the forest inventory; volume estimated by 
vegetation indices for Sentinel-2; volume estimated by the 
indices adapted for Sentinel-1; and volume estimated by the 
combined the variables Sentinel-1 and Sentinel-2; Table 6). 

DISCUSSION

The correlation between the variables indicates that 
the indices formed by bands in the red-edge range for the 
Sentinel-2 image were more sensitive to the response variable 
analyzed. This is directly associated with the forest structure 
and the spectral bands used, as vegetation indices and texture 
variables may differ in their relationships with biomass and 
volume (Lu et al., 2014). The correlation for the variables arising 
from the Sentinel-1 image was lower, which can be explained 
by the characteristics of the sensor, as the backscatter is 
dependent on surface characteristics, bandwidth (in this 
case, the C-band: 3.8 cm - 7.5 cm), and type of polarization 
(Mauya et al., 2019). This can influence the degree of signal 
penetration in the forest, and consequently the degree of 
response obtained; the longer the wavelength, the greater 
the penetration capacity of the signals emitted from the 
vegetation canopy or the ground surface (Sano et al., 2020). 

Sentinel-1 Sentinel-2

Variables Pearson’s
coefficient Variables Pearson’s

coefficient
ARI1 -0.3622* mRDFI 0.3317*
ARI2 -0.3275* RVI -0.2174*
CRI2 -0.3240* RVIad 0.0130*
DVI 0.3425* Ad_1 -0.0131*

FAPAR 0.3074* Ad_2 -0.0132*
FVC 0.3355* Ad_3 0.0008*
IAF -0.3111* Ad_4 0.0511*

IRECI 0.3174* Ad_5 0.1031*
MCARI 0.2382* - -
MSAVI 0.2101* - -
NDI45 -0.0843* - -
NDVI -0.1920* - -

NDVIR -0.2063* - -
PSSRa -0.0466* - -
SAVI -0.2174* - -
SR -0.2346* - -

Table 4. Pearson’s correlation coefficients between 
commercial volume and variables extracted from Sentinel-1 
and Sentinel-2 images for a Pinus taeda L. stand.
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Figure 2. Distribution of residuals for models built with variables extracted from Sentinel-1 and Sentinel-2 images for 
a Pinus taeda L. stand.

Model Variables Sensor R² adj. Syx (%) AIC BIC
1 ARI1, ARI2, CRI2 and FVC Sentinel-2 0.51 3.6 134.8 185.3
2 ARI1, ARI2, CRI2 and IAF Sentinel-2 0.48 3.7 138.0 186.7
3 ARI1, ARI2, CRI2 and SAVI Sentinel-2 0.48 4.1 138.5 181.6
4 ARI1, ARI2, CRI2 and S2REP Sentinel-2 0.47 3.7 138.6 181.6
5 ARI1, ARI2, CRI2 and GNDVI Sentinel-2 0.47 6.9 139.3 184.2
6 ARI1, ARI2, CRI2 and MSAVI Sentinel-2 0.46 8.9 139.6 188.2
7 ARI1, ARI2, CRI2 and FAPAR Sentinel-2 0.45 5.5 140.8 191.4
8 S2REP, PSSRa, IRECI and NDI45 Sentinel-2 0.40 4.2 143.5 177.9
9 Ad_3, Ad_4, RVI and Ad_5 Sentinel-1 0.17 11.0 160.1 214.4
10 ARI2, FVC, mRDFI and Ad_1 Sentinel-1 and 2 0.29 10.5 150.3 178.4
11 ARI2, CRI2, mRDFI and Ad_2 Sentinel-1 and 2 0.26 10.1 155.2 198.3

Table 5. Regression models fitted to estimate the commercial volume of a Pinus taeda L. stand located in Rio Negro, 
Paraná, Brazil.
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Treatments v V
T1 – Inventory 12.56 228,5
T2 – Sentinel-2 12.61 228,5
T3 – Sentinel-1 12.82 228,7

T4 – Sentinel-1 and Sentinel-2 12.71 228,7
v: average volume per plot (m³.0.05 ha-1); V: average volume per hectare 
(m³. ha-1).

Table 6. Estimated volume per plot (0.05 m³.ha-1) obtained 
through the forest inventory and remote data in Pinus 
taeda L. stand.

Another important factor is the structure of the 
canopy of the stand. As Macedo et al. (2017) indicate, 
stands with closed canopies have positive correlations, while 
negative correlations are found in open canopies. In addition, 
the analyzed vegetation indices exploit the spectral bands, 
particularly in the visible and infrared range and in the red-
edge range. According to Watzlawick et al. (2009), the near-
infrared range (0.71 μm to 1.3 μm) presents the highest values 
of vegetation reflectance due to the cellular structures of the 
leaves. It is worth noting that the number of leaves and the 
architecture of the canopy directly influence the reflectance 
of forest stands (Ponzoni et al., 2012). 

The graphical analysis of the residuals (Figure 1) 
shows that there were no independent errors and under- 
or overestimates across all tested models. Models 1 and 2 
presented the best metrics (highest R² adj., and low Syx (%), 
AIC, and BIC), with uniform distribution of residuals and no 
outliers, unlike the other models. The forest stand volume 
is generally directly related to factors such as plant spacing, 
different ages, canopy architecture, and degree of canopy 
opening (Dai et al., 2021), despite the remote sensing data 
sources used. In relation to optical sensors (i.e. Sentinel-2), 
several studies aiming at volumetric estimates have been 
conducted mainly focusing on Eucalyptus spp. plantations. 
For example, Almeida et al. (2021) trained artificial neural 
networks with data on volume, age, bands, vegetation indices, 
and genetic material to estimate the volume of Eucalyptus 
plantations with a residual error of 10.63% to 12.00%.

The use of Sentinel-1 data in this study was not 
satisfactory, since the modeling resulting from these data 
did not present significant parameters. This is due to the 
limited sensitivity of the sensor to the different vegetation 
components, as the energy of the sensor that penetrated the 
vegetation and the amount of backscattering depend on the 
canopy structure (Eisfelder, et al. 2011). In addition to these 
variables, imaging geometry, range and azimuth resolution, 
relief distortion, Speckle noise, and the Doppler effect may 
also have contributed to this result (Meneses; Almeida, 2012).

Similar results were found in a study by Theofanous 
et al. (2021), in which Sentinel mission images were also 
used to estimate above-ground biomass for plantations 
in Greece using random forest models. The data were 
divided into monthly and seasonal time series; however, 
the inclusion of Sentinel-1 variables did not improve the 
estimates. The model with the greatest accuracy was only 
derived from Sentinel-2 spectral indices, with an R² of 

0.52. The authors attribute this fact to the phenophases 
of the evaluated plantations and their relationship with 
the data sources considered in the study. Data from active 
sensors have been used in biomass mapping, especially in 
forest areas (Issa et al., 2020). However, the complexity of 
understanding and processing the information generated 
is still a challenge in such analyses. As such, the possibility 
of developing studies that integrate active and passive 
sensors is an important alternative for estimates of forest 
parameters, such as wood volume. 

This is consistent with the study by Mauya et al. 
(2019), in which the capacities of Alos Palsar-2, Sentinel-1, and 
Sentinel-2 were assessed for volume prediction in small-scale 
forest plantations in Tanzania. Thus, models were constructed 
with the combination of Sentinel-1 and Sentinel-2 data 
through multiple linear regression (R² of 0.52 and RMSEr 
of 46.98%), and only Sentinel-2 data (R² of 0.63 and RMSEr 
of 42.03%) were superior to the models constructed using 
only Sentinel-1 data (R² of 0.18 and RMSEr of 59.48%). These 
results are similar to those found in the present study (R² of 
0.1742), which corroborates the argument that the L-band 
has a longer wavelength that can penetrate deep into the 
forest, while the dominant scattering processes in the X- 
and C-bands (used in this study) occur at the surface of the 
canopy layer (Sano et al., 2020). 

Due to the limitations of optical and SAR spatial 
sensors, Souza et al. (2019) tested data from Alos Avnir-2 
and Alos Palsar to develop regression models using vector 
regression, artificial neural networks, and random forests 
to estimate forest volume for Eucalyptus spp. The most 
accurate model was based on the combination of variables 
of Alos Avnir-2 and Alos Palsar, with a R² of 0.926 and a 
mean square error of 11.007 m³.ha-1. 

In addition to the limitations related to remote 
sensing data, the modeling technique used must also be 
considered. Only stepwise modeling was used in this study; 
however, models derived from machine learning have been 
employed in many studies with similar objectives. Given this 
context, we suggest the use of other modeling techniques in 
addition to stepwise to improve volumetric estimates using 
remote sensing variables and dendrometric characteristics 
of the stand. The study by Astola et al. (2021) shows that 
the combination of Sentinel-2 data with machine learning 
algorithms provided satisfactory estimates for volume 
in four forest districts in Finland. Data in the visible and 
infrared bands combined with the Canopy Height Model 
and topographic features as predictor variables generated 
estimates with a RMSE of 42.6%. The authors suggest 
that the inclusion of topographic and canopy variables 
with Sentinel-2 images is an effective methodology for 
disseminating the use of machine learning. 

CONCLUSION

Based on our results, we found no significant 
differences between the volumetric estimates derived from 
remote sensing data and forest inventory techniques. The 
best model was derived using only Sentinel-2 variables. 
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