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ABSTRACT

Background: Multiple challenges are faced by industry and certification agencies when commercializing 
tropical species. Anatomical similarities of tropical hardwoods impair identification. Deep learning 
models can facilitate microscopic identification of wood by using sophisticated techniques such as deep 
convolutional networks (DCNN). Our objective was to microscopically identify 23 commercially available 
Brazilian wood species using a custom DCNN model.

Results: Photographs from microscopic slides of each wood species were processed, and the final 
data set contained 2,448 images. We applied stratified k-fold cross-validation technique during training 
to increase model’s robustness and trustworthiness. Thus, the dataset was divided into approximately 
80% training (1,958 images) and 20% validation (490 images) for each fold. A series of augmentations 
were performed only on training data to include variations in rotation, zoom, and perspective. Image 
augmentation was performed on-the-fly. The network consisted of convolutions, max pooling, global 
average pooling, and fully connected layers. We tested the performance of the DCNN against accuracy, 
precision, recall, and F1-score on the validation set for each fold. 

Conclusion: The custom machine learned model accuracy was higher than 0.90. The model’s worst 
performance was identified in distinguishing between Toona ciliata and Khaya ivorensis, which was 
due more to wood variability than to a machine learning deficiency. Future studies should focus on 
integration, verification/monitoring, and updating of current models for end user manipulation, trust, 
ethics, and security.

                             Keywords: convolutional neural networks (CNN); deep learning; tropical species; 
wood anatomy; wood identification.

HIGHLIGHTS
Novel, robust, and fast methods to accurately identify wood are needed. 
Machine-learning can be applied to help anatomists’ judgment in forensic wood identification.
The custom machine-learned model achieved accuracy higher than 0.90.
Sequential convolutional layers offered the best performance to identify Brazilian commercial wood species.
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INTRODUCTION

The Brazilian flora shows one of the most diverse 
collections of wood species in the world (Amaral et al. 
1998). This carries deep consequences to local, national, 
and global markets due to the unique wood properties 
found in tropical species that are desirable and valued 
by multiple industries, namely high durability against 
decaying organisms; remarkable stiffness and strength; 
high density and hardness; acoustic properties, and 
adequate dimensional stability (Almeida et al. 2017; 
Longui et al. 2010). For this reason, tropical species are 
often illegally harvested or traded, resulting in major 
local, state, and international concerns such as fraud, 
misrepresentation, and misclassification (FMM). FMM 
can be intentional with the aim of deceiving the buyer 
and legal authorities, or unintentional due to a lack of 
knowledge about wood anatomical elements that are 
crucial to correct identification. Either way, FMM violates 
Brazilian and international laws, creates unbalanced 
environments, and economically affects Brazilian states 
and federal government (Grant and Chen, 2021). 

To expand the level of wood identification, 
researchers across the globe have developed manuals, 
atlases, and identification keys for several species. A few 
examples are the Tropical Woods Series, developed by The 
School of Forestry at Yale University from 1925 through 
1960, which described tropical species from Colombia, 
Venezuela, Guianas, and Brazil (Wilson 1960). In Brazil, 
the most extensive work in wood identification was 
made by the Brazilian Forest Service (LPF) and Florsheim 
et al. (2020). In Florsheim et al. (2020), more than 350 
commercially available wood species were described in 
detail for in-creasing efficiency and assertiveness in the act 
of inspection. The dataset contains 10x magnified images 
of the cross section for identification. However, in some 
instances, identification of the species level is not feasible 
by only looking at macroscopic images or at 10x magnifying 
glass, thereby microscopic level is required.

Multiple approaches using machine learning have 
emerged in the last years to ameliorate the limitation of 
scalable wood identification as they rely on human expertise 
for forensic wood analysis. Most of the wood identification 
based on machine learning research is done through either 
feature extraction or computer vision approaches. Both 
techniques use either microscopic or macroscopic cross-
sectional images of wood. In this context, de Andrade et 
al. (2020) developed intelligent systems able to classify 21 
species of Brazilian flora using support vector machines 
(SVM). Results indicated that the best model achieved 
97.7% accuracy. In other study, Souza et al. (2020) used 
local binary patterns (LBP) to extract information for 
discrimination of 46 Brazilian species using SVM, artificial 
neural networks and random forests. They reported F1-
score of 97.67% when using SVM. However, the literature 
points out major drawbacks when using SVM. According to 
Han and Jiang (2014), SVM algorithm is prone to overfitting 
when the number of features is higher than number of 
samples, and can be time-consuming when training large 

datasets, as well as weak when finding boundary separations 
in large datasets (Cervantes et al., 2020). Similarly, LBP is not 
rotation invariant, and segmentation is determined based 
on pixel intensity codes (Vidya and Chandra, 2019). 

The advancement of artificial intelligence is the core 
of enhanced performance for all industries to implement 
industry 4.0. Computer vision methods have risen since the 
breakthrough in machine learning, more specifically deep 
learning, with the work of (Krizhevsky et al., 2012) using 
convolutional neural networks to identify 1,000 different 
classes. Since then, CNNs have been applied in several 
domains namely, precision agriculture, information content 
security, data monitoring, and surveillance (Rahnemoonfar 
and Sheppard, 2017; Christiansen et al., 2016; Muhammad 
et al., 2018; Moy de Vitry et al., 2019). More recently, CNNs 
have been implemented in wood identification based 
on anatomical features. For example, Hafemann et al. 
(2014) identified microscopic images from Martins et al. 
(2013) dataset using CNNs with two convolutional and 
maxpooling layers, followed by fully connected layers. The 
method reached 97.32% of accuracy. However, it is not clear 
how the validation set was defined. Similarly, in research 
developed by Garcia-Pedrero (2020), a convolutional neural 
network model was developed to microscopically segment 
xylem vessels of Nothofagus pumilio. The method achieved 
90% of pixel accuracy. Furthermore, deep learning has the 
potential to revolutionize and expand the wood anatomy 
field, promote a sustainable environment, and ensure 
economic growth.

Machine learning is rapidly growing into the wood 
identification field (Hafemann et al. 2014; Tang et al. 2017, 
2018; De Geus et al. 2021) as the number of professionals 
capable of performing identification is declining (Lens et al. 
2020).  Furthermore, this new technology has the potential 
to alleviate current constraints in the wood identification 
body. To that end, our hypothesis is that convolutional 
neural networks can identify a wide range of microscopic 
Brazilian wood species accurately, reliably, and quickly. The 
overall goal of this research was to expand the use of artificial 
intelligence and machine learning, in microscopic wood 
anatomy for the Brazilian market. To that end, our objective 
was to develop a custom deep convolutional neural network 
(DCNN) to accurately identify 23 commercially available 
species. For training and validation of the DCNN model, we 
used a limited dataset from microscopic slides of the cross-
section, and to increase robustness and trustworthiness, we 
performed data augmentation and cross-validation.

MATERIAL AND METHODS

Dataset acquisition

The species were donated from other Brazilian 
to build a research and development program in wood 
anatomy. Identification of each species was carried out 
by an expert with many years of training in microscopic 
identification of Brazilian flora, which ensures rigidity 
in the process for high accuracy and robustness of the 
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machine learning model. Some species were chosen 
based on their potential to be commercialized in the 
Brazilian market by legal means. 

Before image acquisition microscopic slides were 
produced for each species. First, wood species with size of 2 
cm × 2 cm × 3 cm (radial × tangential × longitudinal) were 
softened through boiling in deionized water. Thereafter, 20 
μm permanent histological microscopic were obtained by 
using a commodity microtome. The veneer was dehydrated 
by a series of alcohol concentration, and thereafter colored 
using safranine (Yeung et al. 2015). Finally, the cross-
sectional images were obtained from the veneers using a 
50× micro-scope (Zeiss Axion Scope). The resulting images 
were then saved in JPEG format with a resolution of 2584 
pixels × 1936 pixels. Table 1 describes the 23 species used 
in this work and the number of images per species and in 
Figure 1 the anatomical images. 

Image pre-processing and training set-up

Deep learning models require a large number of 
images for accurate training and validation (Krizhevsky et 
al, 2012). To that end, the images were divided into eight 
non-overlapping 646 pixels x 486 pixels (width x height) 
sub-patches of grayscale depth to enlarge the initial 
dataset. The final dataset contained 2,448 images, and it 

was composed of imbalanced classes with minimal and 
maximum images varying from 80 to 192 respectively. 

In order to control or avoid any possible model’s 
overfitting and account for an unbalanced dataset, we 
leveraged the stratified k-fold cross-validation technique. 
In this procedure, the final dataset was randomly split into 
5 (k=5) folds of mutually exclusive and shuffled subsets 
(training and validation) of proportional size. In other 
words, the dataset was divided into 80% training (1,958 
images) and approximately 20% validation (490 images) 
for each fold. It is important to note that any given image 
appears only in the train or validation set, but never on 
both at the same time. In addition to cross-validation 
method, to overcome the highly variable nature of the 
target wood dataset, a series of augmentations were 
performed only on training data to account for variation 
in rotation, zoom and perspective. Image augmentation 
was per-formed on-the-fly. The images were firstly 
resized to 299 pixels x 299 pixels in size and randomly 
augmented for each epoch of training. The images 
were also randomly rotated (90°). Random perspective 
shifting in the range of (0, 0.15) was applied to simulate 
a variation in viewing distance. Finally, the images 
were randomly and vertically flipped. Without these 
techniques the custom network is drastically overfitted 
by memorizing the training dataset. 

ID Family Common name in Brazil Species  images

Aca Fabaceae Acácia Acacia mangium Wild 5

Ang Fabaceae Angico Hymenolobrium petraecem 5

Anp Fabaceae Angelim pedra Hymenolobium petraeum 5
Anv Fabaceae Angelim vermelho Dinizia excelsa Ducke 5
Cav Fabaceae Caviúna Dalbergia nigra 5
Ced Meliaceae Cedro Cedrela sp. 6
Cer Fabaceae Cerejeira Amburana cearensis 5
Gar Fabaceae Garapa Apuleia leiocarpa (Vogel) J. F. Macbr. 6
Gon Anacardiaceae Goncalo alves Astronium sp. 5
Jac Moraceae Jaca Artocarpus heterophyllus Lam. 6
Jeq Lecythidaceae Jequitiba Cariniana legalis (Mart.) Kuntze 6
Kha Meliaceae Mogno africano Khaya ivorensis A. Chev. 6
Kir Paulowniaceae Kiri Paulownia tomentosa (Thunb.) Steud 10
Lou Lauraceae Louro canela Nectandra rubra (Mez) C. K. Allen 12
Mar Simaroubaceae Marupa Simarouba amara Aubl. 5
Mui Anacardiaceae Muiracatiara Astronium lecointei 5
Pam Rutaceae Pau marfim Balfourodendron riedelianum (Engl.) 11
Rox Fabaceae Roxinho Peltogyne angustiflora Ducke 8
Swi Meliaceae Mogno brasileiro Swietenia macrophylla King 11
Tau Lecythidaceae Tauari Couratari spp. 10
Tec Lamiaceae Teca Tectona grandis L. F 5
Too Meliaceae Cedro australiano Toona ciliata M. Roem 6
Vin Fabaceae Vinhático Plathymenia foliosa Benth. 5

Table 1.    The 23 wood species used for classification. 
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In this study, a custom convolutional neural network 
model was developed to classify microscopic images of 23 
wood species. The CNN model was inspired by Krizhevsky 
et al. (2012) with the use of convolutions, max pooling, 
batch normalization, and fully connected layers. The overall 
architecture is displayed in Figure 2.

The network took as input 299 x 299 grayscale 
images and outputted a vector for each image with one 
entry for each class (species). The network had one 11 x 
11 convolutional layer, followed by a batch normalization 
layer. This was mapped into a 3 x 3 convolutional layer that 
increased the number of filters from 128 to 256. The reason 
for working with large receptive fields was to capture 
complex wood structures, such as vessels, parenchyma, 
and rays. This convolutional layer was followed by a 2 
x 2 max pooling layer that decreased the image size by 
half. Next, a second 3 x 3 convolutional layer with reduced 
number of filters from 256 to 128 was applied followed by 
a 3 x 3 max pooling layer that also decreased the image 
size by half. Next, the network was composed of a global 
average pooling layer that calculated the average output 
of each feature map from the previous layer to reduce data 
complexity and prepare the model for final classification. 
Finally, the network had two fully connected layers, which 
produced a vector of size 256, and 23 which corresponded 
to the class probabilities (species). The entry with the 
highest value determined the predicted class of the species. 
In total, the network was constituted of 645,015 trainable 
parameters. The weights of the network were randomly 
initialized with glorot uniform. After each convolutional, 
batch normalization, max pooling, and fully connected 
layers, the rectified linear unit (ReLU) activation function 
that introduces non-linearity decision boundaries in the 
network was used. The ReLU function was defined as:

f(x)=x, if x>0
0, otherwise
The categorical cross function was iteratively 

minimized by training the CNN with the Adaptive Moment 
Estimator (Adam) optimizer, leveraging the stochastic 
descent and backpropagation algorithms. The learning 
rate was initially set to 10-2, and then progressively 
decreased by an exponential rate adapted from Szegedy 
et al. (2015). The training step was stopped when the 
training loss stalled for 25 epochs. We monitored training 
loss to certify model’s convergence. The CNN model was 
run on Nvidia GPU with a batch size of 64 using Python 
3.6, Tensorflow 1.14, and Keras 2.3.1. Training lasted for, 
on average, 298 epochs. It used Keras Model_checkpoint 
callback to evaluate model’s performance after training, 
which saved the model when validation loss reached a 
minimum value. In this work, we trained the architecture 
from scratch. Average accuracy, precision, F1-score, 
and recall were then calculated on the validation set to 
evaluate the performance of the CNN, which correspond 
to Equations 1-4, respectively. The metrics were based on 
Sokolova and Lapalme (2009).

Accuracy= (True Positives+True Negatives)
                    (Total Number of Samples)                (1)

Figure 2.    Network architecture. For convolution and max 
pooling layers [kernel size, filters, and strides] and [pool 
size, and strides], respectively.

Figure 1.    The 23 wood species used for classification (1: 
Aca; 2: Ang; 3: Anp; 4: Anv; 5: Cav; 6: Ced; 7: Cer; 8: Gar; 9: 
Gon; 10: Jac; 11: Jeq; 12: Kha; 13: Kir; 14: Lou; 15: Mar; 16: Mui; 
17: Pam; 18: Rox; 19: Swi; 20: Tau; 21: Tec; 22: Too; 23: Vin).
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Precision=            (True Positives)            
                 (True Positives+False Positives)            

(2)

Recall=              (True Positives)             
            (True Positives+False Negatives)               (3)

F1 score= (Precision×Recall)
                (Precision+Recall)                                 (4)

Where: True Positives: Number of correctly 
recognized class examples. True Negatives: Number of 
correctly recognized examples that do not belong to 
the class. False Positives: Number of incorrectly assigned 
examples to the class. False Negative: Number of not 
recognized examples as class examples.

RESULTS
Figure 3 shows the loss and accuracy for each 

fold and epoch during training. For all folds the model 
reaches validation accuracy above 0.9.

Table 2 documents averaged model’s performance 
against several metrics across all five cross-validated folds. 
The overall adjusted accuracy was 92.4% with several 
species reaching F1-score, which is the harmonic mean 
between precision and recall, near or higher than 95%. 

Another method used to assess performance of 
machine learning models is confusion matrix. Figure 4 

shows the averaged confusion matrix for the five-fold 
cross-validation method. As noted, several species reached 
remarkable accuracy such as, Ang, Anp, Gar, Gon, Kir, Mar, 
Pam, Rox, and Tau with more than 95% accuracy, which 
exceeds the performance of any field trained and wood 
anatomy expert.

DISCUSSION
The yellow and orange curves represent validation 

and training losses, respectively (Figure 3). Training loss 
supports the idea that the model was capable of fully learn 
all patterns of the training set, which in all cases converged 
in learning (loss app. 0 and accuracy app. 1). Validation 
loss is an index of how robust a model is during training 
when predicting “unseen images”. Some fluctuations are 
normal as the model learns all features of each species. It 
is observed that validation loss decreased as training loss 
also decreased, which did not indicate overfitting. Blue and 
gray curves represent training and validation accuracies. 
They carry minimal performance results as high validation 
accuracy by itself does not indicate a model’s prediction 
capacity on truly unseen data. To that end, the average 
lower validation loss during training was 0.2233. 

It is crucial to break down the performance by 
species to fully understand where improvements need to 
be made (Table 2) In this case, data collection, network 
architecture, and hyperparameters should be altered to 

Figure 3.    Training 
and validation losses 
and accuracies for fold 
1 (a) through fold 5 (e).
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obtain a better model performance. To that end, the F1-
score of seven species, namely Ced, Jac, Kha, Swi, Tec, 
Too and Vin was below 90%. Similar results were found 
by Lens et al. (2020) using combination of both SVM 
and LBP to identify microscopic images of wood species 
(89.3% of accuracy). In our case, it may be explained 
by the lack of unique images, even though heavy data 
augmentation was performed.

Misclassifications were prevalent for Ced, Kha, Tec 
and Lou. with 0.21, 0.19, 0.21, and 0.14, respectively. The 
model confuses approximately 6% of Ced with Kha and 
Too, and 4% with Tec. Similarly, 16% of Kha is confused with 
Too and 9% with Tec. Lastly, another 5% of Tec images are 

confused with Vin. Similarly, Ravindran et al. (2018) found 
that a custom convolutional neural network model also 
showed poor performance in classifying images of Khaya, 
which was misclassified with Carapa guianensis. By reviewing 
the particular case of Kha and Too (Figure 5), although Too 
is a semi-ring-porous species and Kha is a diffuse-porous, 
this difference was not evidence from our dataset. Both 
species have solitary and radial multiples pores that are 
large to very large in size as well as scanty, vasicentric and 
marginal parenchyma. Maruyama et al. (2018) also reported 
misclassification while identifying microscopic images of 
hardwood charcoal. Species that had similar attributes were 
assigned to the wrong category.

Species ID Precision Recall F1 Score

Aca 0.978 0.914 0.942

Ang 0.976 0.964 0.97

Anp 0.966 0.964 0.962

Anv 0.928 0.902 0.912

Cav 0.976 0.952 0.962

Ced 0.93 0.79 0.844

Cer 0.938 0.926 0.93

Gar 0.922 0.97 0.944

Gon 0.988 0.964 0.976

Jac 0.816 0.906 0.856

Jeq 0.97 0.968 0.966

Kha 0.802 0.812 0.802

Kir 1 1 1

Lou 0.966 0.866 0.912

Mar 0.988 0.988 0.988

Mui 0.916 0.888 0.9

Pam 0.994 0.988 0.994

Rox 0.908 0.968 0.936

Swi 0.904 0.88 0.89

Tau 0.988 0.976 0.978

Tec 0.808 0.788 0.79

Too 0.762 0.918 0.818

Vin 0.86 0.928 0.892

Table 2.    Averaged performance of the custom convolutional neural network. 
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Figure 4.    Averaged confusion matrix for five folds cross-validation.

Figure 5.    Example of images highlighting model’s misclassification classes between Too (a) and Kah (b).
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CONCLUSIONS
A custom convolutional neural network was 

constructed for distinguishing images of commercially 
available species either introduced or native from Brazil. 
The machine learned custom model accuracy was 
considered excellent (>0.90). In fact, in some instances 
the F1-score reached 0.99, which surpasses any 
human identification. The poor model’s performance 
in distinguishing between Toona ciliata and Khaya 
ivorensis was more due to wood variability than a 
machine-learning problem. 

	 Machine learned algorithms are becoming 
more frequent in wood science, which greatly offers 
rapid and robust analysis. In the context of this research, 
a trained deep learning model can significantly increase 
forensic wood identification and law enforcement and 
assist agencies economically as well as risk minimization. 
However, the wood science community still faces 
machine-learning deployment challenges even with 
modern timber identification performance. Therefore, 
future studies should focus on integration, verification/
monitoring and updating of current models for end 
user’s manipulation, trust, ethics and security.
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