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HIGHLIGHTS

The ANN prediction model is a quite effective tool for modeling properties of MDF.

At a low press temperature, the negative effect of the fire retarding agents was maximum.

A reverse relation was observed between the changes in the mass loss of the fiberboard 
during the firing test and the MOR.

Improvement in properties of MDF can be achieved by the less experiments.

ABSTRACT

The present study presents the application of artificial neural network (ANN) to predict the 
modulus of rupture (MOR) and mass loss (ML) of the fire retarded fiberboard. Hence, the 
effect of adding the fire retardants including boric acid, borax and ammonium sulfate was 
evaluated on MOR and ML of fiberboard manufactured at different press temperatures. At 
first, the experimental design was created based on the Response Surface Methodology, and 
then the significance of each independent variable with respect to its effect on the responses 
was evaluated through ANOVA test. It was determined that the positive effects of increasing 
press temperatures on MOR compensated the negative effects of fire retardant content on 
it. However, ML decreases more at the same time. ANN results exhibited a good agreement 
with experimental results. It was shown that the prediction error was in an acceptable 
range. The results indicated that the developed ANN model can predict the MOR and ML 
of the fiberboard with an acceptable accuracy. Therefore, applying the proposed model can 
lead to obtain the desirable outputs of MOR and ML by performing fewer experiments, and 
spending less time and cost.

v.26 n.2 2020



EVALUATION OF MECHANICAL AND FLAME RETARDANT PROPERTIES OF MEDIUM DENSITY FIBERBOARD USING 
ARTIFICIAL NEURAL NETWORK

280

CERNE

NAZERIAN et al.

INTRODUCTION

It is for a long time that the application of MDF 
is popular for internal uses of buildings. However,  
flammability properties of this panel are still an important 
barrier to develop its application in different fields. Hence, 
actions must be taken in this regard to reduce flammability 
properties. However, like most wood-based composites, 
fire retardants can affect physical and mechanical 
properties of the fiberboard . Meanwhile, factors such 
as wood species, press conditions, type of treatment 
and type of the fire retarding chemical largely affect the 
panel’s properties. The main fire retardants used in wood-
based composites include mineral compounds such as 
phosphoric acid, mono-and di-ammonium phosphate, 
boron-compounds including borax, boric acid, etc. Like 
phosphorus-based salts, these materials are the oldest 
and the most common fire retardants that could play 
their role in wood-based panels (Winandy and LeVan, 
1990; Ma et al., 2013; Mantanis et al., 2019). Creating 
the highest level of charcoal during burning among many 
compounds, these salts have the highest effect on fire 
retardant composites (Winandy and LeVan, 1990). In 
fact, these compounds affect the flammability by forming 
a carbon layer. Such a layer blocks the surface access 
to oxygen and temperature and prevents it from firing. 
Also, it reduces the release of flammable gases (Ozdemir 
and Tutus, 2013). Battegazzore et al. (2018) showed that 
the mass loss in the fiberboard can be reduced and the 
access of the surfaces to oxygen can be decreased by 
forming a carbon layer on the surfaces of lignocellulosic 
fibers due to the presence of fire retardants such as 
ammonium phosphate. At the same time, it was known 
that the amount of the fire retardant also significantly 
affects the fire retarding properties of the board (Loredo 
and Bermejo, 2016). As the properties of resistance of 
the fiberboard against fire improve with the application 
of the fire retardants, the strength properties of the 
board are affected. The board’s strength can be affected 
differently as a result of the physical and chemical changes 
created in the structure and chemistry of the cell wall of 
the wood (Winandy, 2001), acceleration or deceleration 
of resin coagulation by reducing or increasing pH in 
the resin solution (Winandy and River, 1986; Uner and 
Olgun, 2017) and contamination of the fibers’ surface 
due to the presence of crystalline deposits loosely 
connected with fire retardantsin the glue line that can 
interfere with a suitable fiber-fiber contact (Arsenault, 
1964). If the salts are in the interface of resin and fiber, 
separation under stress can be expected (Ayrilmis, 
2007). Some fire retardants such as ammonium sulfate 

can dissolve in water, but some others such as borax 
remain only as a powder on the fibers’ surface and 
increase the specific surface area in the mat and reduce 
the strength (Ayrilmis, 2007). Acidic fire retarding 
agents such as boric acid or phosphoric acid can also 
affect mechanical properties via increasing the panel’s 
brittleness through depolymerization of long molecular 
polymers of cellulose, especially hemicellulose (Ayrilmis, 
2007). This decrement is probably due to the brittleness 
of wood fibers created by the formation of crystals inside 
the cell walls of the wood or cross connections between 
cellulose or hemicellulose molecules (Bayani et al., 2019). 
These acidic fire retarding compounds largely decrease 
the length of the cellulose molecule and increase the 
level of charcoal (Winandy and LeVan, 1990; Wang et 
al. 2004). When the composite’s surface is exposed 
to a high temperature, boric acid and borax make the 
flame disappear and prevent it from spreading (Yang and 
Qing, 2014; Uner et al., 2016). These materials work 
through a low melting point and formation of a glassy 
film layer on the surface of these materials. In fact, borax 
acts by preventing the spread of flames, while boric acid 
increases carbonization. Hence, the combination of these 
two fire retarding agents can be used to obtain synergistic 
improvement in fire ret ardency (Baysal, 2002).

In addition to the additives such as fire retardants 
that can differently affect the fiberboard’s properties, 
the press conditions also significantly affect the efficiency 
of the fiber components connected with resin (Ferle et 
al., 2018). It can be said that the press temperature is a 
very important part of the adhesion process and the resin 
curing. In the presence of fire retarding agents, the increase 
in the temperature may lead to the development or non-
development of the connection strength depending on 
improvement level of diffusion process which leads to an 
effective absorption of solution (Bekhta et al., 2016) and 
the change in the production capacity due to less press 
time required and completion of the resin curing process 
(Iswanto et al., 2013). On the other hand, the excessive 
increase in the press temperature can decrease the 
strength of the fiber components. Therefore, press time 
can be increased as an alternative way to the higher press 
temperature to guarantee complete curing of the resin 
(Winandy and Krzysik, 2007). However, increasing either 
press temperature or press time significantly increases 
the thermal energy required for press operation and 
decreases the volume of production per unit time. Hence, 
the press conditions and panel efficiency must be balanced 
and this balance must be found permanently. Reaching 
this balanced point through experimental studies requires 
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a large amount of time, cost, and raw materials. Hence 
recently, the studies on the prediction of the board’s 
properties using modeling tools are preferred to common 
experimental instructions. 

ANNs can process information in a parallel 
distributed method, train the complicated cause and 
effect relation between input and output data, deal with 
nonlinear problems and generalize known examples or 
tasks to unknown tasks. ANNs are good methods for 
cases including a set of incomplete data and offering 
incomplete fuzzy information and for problems with high 
complexities where people usually make decisions based 
on intuition (Boga et al., 2013).

An artificial neural network can provide an 
opportunity to achieve and determine the desirable 
values from the physical and mechanical properties of 
the fiberboard by doing less experimental studies due to 
its ability to detect the complexity and nonlinear relation 
in the information structure obtained (Reis et al., 2018). 
It can be stated that ANN models are very helpful to 
improve the processes of fabrication and to increase the 
strength of the fiberboards. Therefore, ANN techniques 
were used in several studies to predict the strength 
and physical properties of wood-based products and 
lignocellulosic materials. For exemple, Bardak et al. 
(2016), Palacios et al. (2018), Andre et al. (2008), Bardak 
(2018), and Watanabe et al. (2015) used ANN methods 
to model the mechanical properties of the particleboard 
and fiberboard. Akyuz et al. (2017) also examined a 
similar method to model the formaldehyde emission.

Most of these studies have examined the 
bondability, bending strength or physical properties. To 
the best of our knowledge, ANN techniques are not used 
to study and predict the properties of the fire retardant 
fiberboard in presence of different fire retarding agents. 
In the related resources, the effect of the additives 
and variables related to the production process was 
discussed on the physical and mechanical properties of 
the particleboard and fiberboard in detail. In addition, 
ANN tried to predict these properties both in wood-
based composites and massive wood. In fact, ANNs are 
a branch of artificial intelligence and focus on modeling 
and optimization. The structure and functionalization 
of this modeling technique are based on the biological 
brain activity and this is achieved by training from the test 
results and extracting knowledge from it. This analysis is 
achieved by the results of a test from some nodes called 
neurons that are organized in several layers depending 
on the type of ANN. The type of the neural network 
that is mainly used to model the mechanical properties 

is the multilayer perceptron (MLP). MLP’s nature as an 
approximating function has made it a powerful tool, 
especially when obtaining a very reliable solution is 
more important than determining the relation between 
the variables involved in the process (De Veaux and 
Ungar, 1996). There are a little or no information on 
the study and prediction of the effects of different 
fire retarding compounds and their interaction with 
the process variable of fiberboard production on the 
fire retarding behaviors and mechanical properties 
of medium density fiberboard using ANN as a new 
method. Therefore in the present research, it is tried 
to show capability of ANN approach in order to predict 
the bending strength and fire retarding property of MDF 
fire-retarded with adding different fire retarding agents 
including boric acid, borax and ammonium sulfate as the 
press temperature is changed.  

MATERIALS AND METHOD

The fibers required for making the fiberboard 
were prepared from the industrial wood species fibers 
produced in Khazar Amol MDF factory, Mazandaran 
Province, Iran. After being transferred to the laboratory 
of Zabol University and keeping their moisture at the 
point of equilibrium with the environment (~5-6%) 
by a laboratory oven dryer, the fibers were put into 
plastic bags to make their moisture constant. Urea 
formaldehyde resin with a concentration of 62% used 
in this study  was produced in Samed adhesive producing 
company, Mashhad, Iran (Table 1). 

TABLE 1 Characteristics of urea formaldehyde resin.

Density 
(kg.m-3)

Solid 
materials 

(%)

Viscosity 
(CP)

Gel time 
(s)

pH 

1275 50 200-400 55 7.6

Independent variables include boric acid at five 
levels (0, 1.5, 3, 4.5, 6%), borax at five levels (0, 1.5, 3, 
4.5, 6%), ammonium sulfate at five levels (0, 1.5, 3, 4.5, 
6%) and press temperature at five levels (135, 150, 165, 
180 and 195 C° ). The dependent variables measured 
include modulus of rupture (MOR) and mass loss (ML) 
of the fiberboard during the flammability test. The 
second order plan statistical design and Expert Design 
Software ver. 6 were used to determine the significance 
of the direct effects, squared effects, and mutual effects 
of the independent variables of the study on MOR and 
ML as dependent variables. The number of fabrication 
conditions and levels of the variables in each fabrication 
condition are given in Table 2. 
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To prepare the specimens, the dried fibers were 
first weighed by a digital scale with the precision 0.05 gr 
and were mixed with resin in a laboratory adhesive blender. 
The required amounts of the fire retardants were added 
to the resin solution according to Table 2, and they were 
stirred for 20 min in the mixer until they were dissolved/
dispersed well in the resin. Afterwards, the resin mixture 
was sprayed on the fibers (with 5% moisture) inside the 
rotating adhesive blender, and they were mixed for 5 
minutes. After being mixed completely, the mixture of resin 
and fibers was put manually into a wooden mold and was 
distributed uniformly. After removing the mold, the fibers’ 
mat was put into a laboratory press. The final moisture of 
the mat was set at 12%. Some important constant factors 
of the fabrication of the fiberboard included: pressure of 
3MPa, press time of 9 min, press closing time of 4.5 mm 
min-1, final board thickness of 16 mm, final board density 
of 750 kg/m3, adhesive concentration of 62%, and resin’s 
dry weight to the total board’s dry weight ratio of 12%.  

The test boards made in the laboratory conditions 
were put in the climatization chamber for two weeks at the 
relative humidity of 65% and the temperature of 20 2 C± °  
to reach the equilibrium condition. To determine the MOR, 
the test specimens were then cut at the specific dimensions 
according to EN 326 – 1 standard and were exposed to 
the static bending and mass loss tests according to EN 310 
(1993) and ISO 11925-3 (1997) standards, respectively. 

To determine the efficiency of fire retardants, 
samples were exposed to the flame and their mass loss 
percentage was measured. The experiment was carried 
out in triplicate for each treatment. In this regard, 
after being climatized, each board was weighed and a 
specimen with dimensions of 140mm×70mm and the 
angle of 35°was installed on a laboratory clamp fixed 
in a chamber with metal walls where a spirit lamp was 
turned on and put under the specimen with the flame 
height of 55 mm. The distance between the flame and 
the specimen was 10 mm and the test time was 150 s. 
A chronometer was used to record the time of the firing 
point and durability of firing after removing the nozzle. 
When the test finished, the specimen was weighed 
and the mass loss percentage due to the burning was 
calculated based on the following equation 1, where, ML 
is the mass loss percentage and W(t), and W(o) are the 
specimen’s weight before fire test  and dry weight of the 
specimen after fire test, respectively.

TABLE 2 Independent variables, their levels, actual and 
estimated values of dependent variables, and the mean 
percentage error indicating the accuracy of predicted 
values usingANN compared to actual values.

№ X1 X2 X3 X4 MOR (MPa) Mass loss, %
Tar. Out. Err. Tar. Out. Err.

1 165 3.88 3.88 3.88 17 16.167 0.83 1.55 1.534 0.015
2 165 3.88 3.88 7.77 13 13.178 -0.17 0.6 0.454 0.145
3 180 1.94 5.83 1.94 17 17.216 -0.21 1.59 1.630 -0.040
4 195 3.88 3.88 3.88 21 21.051 -0.05 1.7 1.7358 -0.035
5 180 5.83 1.94 1.94 17 16.935 0.64 1.44 1.474 -0.034
6 150 5.83 5.83 1.94 12 11.623 0.37 0.85 0.866 -0.016
7 150 1.94 1.94 1.94 21 21.166 -0.16 1.65 1.567 0.0824
8 135 3.88 3.88 3.88 13 13.099 -0.09 1.38 1.3796 0.0003
9 150 5.83 5.83 5.83 8 9.245 -1.24 0.49 0.5099 -0.019

10 165 3.88 3.88 3.88 16 16.167 -0.16 1.56 1.534 0.0256
11 150 1.94 1.94 5.83 19 21.166 -2.16 1.49 1.567 -0.077
12 150 1.94 5.83 5.83 10 10.071 -0.07 1.22 1.2029 0.0170
13 165 3.88 0.00 3.88 19 19.157 -0.15 1.55 1.5018 0.0481
14 165 3.88 3.88 3.88 15 16.167 -1.16 1.5 1.5343 -0.034
15 165 3.88 3.88 3.88 17 16.167 0.83 1.53 1.5343 -0.004
16 165 3.88 3.88 0.00 17 17.022 -0.02 1.33 1.3626 -0.032
17 165 0.00 3.88 3.88 17 17.132 -0.13 1.8 1.8158 -0.015
18 150 5.83 1.94 5.83 8 8.140 -0.14 0.68 1.2876 -0.607
19 180 5.83 1.94 5.83 15 19.046 -4.04 1.08 1.3652 -0.285
20 180 1.94 5.83 5.83 13.7 13.97 -0.23 1.25 1.2596 -0.009
21 165 3.88 7.77 3.88 8 8.137 -0.13 0.88 0.9003 -0.020
22 150 1.94 5.83 1.94 12.9 13.166 -0.24 1.43 1.4343 -0.004
23 165 3.88 3.88 3.88 16 16.167 -0.16 1.49 1.5343 -0.044
24 165 3.88 3.88 3.88 16.5 16.167 0.33 1.5 1.5343 -0.034
25 180 1.94 1.94 1.94 19 21.968 -2.96 1.95 2.5138 -0.563
26 180 1.94 1.94 5.83 23 19.046 3.95 1.61 1.3652 0.2447
27 180 5.83 5.83 5.83 12 11.947 0.05 0.65 0.5284 0.1215
28 150 5.83 1.94 1.94 12 11.397 0.60 1.25 1.2703 -0.020
29 165 7.77 3.88 3.88 9 9.012 -0.01 0.6 0.6090 -0.009
30 180 5.83 5.83 1.94 16 15.615 0.38 1.07 1.1028 -0.032

[1]

To create the experimental design and determine 
the number of treatments for making the test specimens 
and finally to analyze the MOR results and ML of the boards, 
the response surface method (RSM) and CCRD (central 
composite rotatable design) matrix were used with the 
points at the center of any axis of the factorial space. The 
total number of the tests required for four independent 
variables is 42 ( 4* 2 ) 6 30+ + =  based on the 
equation 2 ( * 2 )n n k+ + where n is the number of 
variables and k is the number of repetitions at the center of 
the matrix cube (Manonmani et al., 2007). The experimental 
design used to produce the board is given in Table 2. An 
artificial neural network (ANN) was utilized to predict and 
determine the optimal point for producing the fire retardant 
fiberboard. Any neural network includes an internal neuron 
layer as the inputs of the system, an external neuron layer as 
the outputs of the system and one or more intermediate or 
hidden neuron layers (Fig. 1). While the number of neurons 
in the first and last layers of the neural network depends on 
the number of input and output parameters of the system, 
the number of neurons in the intermediate layers depends 
on the designer’s opinion and correctness of the outputs 
obtained with the actual output parameters of the system. 
The number of intermediate layers is normally one layer or 
it is two layers in special cases, and more than two layers are 
rarely used and are not recommended. Neural networks are 
powerful tools to model nonlinear statistical data and can be 
used to model the complicated relations between the inputs 
and outputs or find the data patterns (Guoliang et al., 2010).
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normally used as the activation functions for the hidden 
layers, such as tan sigmoid function or log sigmoid function. 
However, the linear transfer function can be used for output 
neurons (Wu et al., 2001; Phaniraj and Lahiri, 2003). Tan 
sigmoid and log sigmoid functions range from -1 to 1 and 1 to 
0, respectively, and they can be expressed as the equations 
(3) and (4). In this network, a tan sigmoid function is used as 
the transfer function in the hidden layers and a linear function 
is used in the output layer.

FIGURE 1 An ANN architecture used to compute 
fiberboard parameters.

The input layer receives and processes the input 
data, and sends them to the hidden layers, then, an answer 
is sent to the output layer and when this answer is accepted 
in this layer, the results are offered (Ashtiyani and Shahsavari, 
2018). Development of a neural network includes selecting 
the test data, determining the input and output parameters 
and preprocessing the selected data, training the network, 
testing the trained network and finally evaluating the 
efficiency of the developed network (Zhao et al., 2014). 
Among different types of artificial neural networks, feed-
forward network with the back propagation (BP) algorithm 
is more efficient in applied sciences and Levenberg-
Marquardt algorithm is also used to train the network. The 
trial and error method is used to determine the structure 
of the network and the number of hidden layers and the 
number of neurons in each hidden layer. Therefore, several 
networks with one, two and three hidden layers are trained 
and the mean squared error equivalent to each network 
is calculated to examine the performance of the network 
architecture. In fact, the mean squared error is a criterion 
to evaluate the architectural ability of a neural network that 
is obtained by the following equation 2, where n is the total 
number of data, Ei is the experimental values and Pi is the 
predicted values. 

[2]

Hence, the neural network used in this study 
received three inputs of fire retardants including 
ammonium sulfate, boric acid and borax and the press 
temperature as the forth input while MOR and ML were 
considered as outputs of the ANN models. 

All input and output data used for the neural network 
include 90 data that were chosen from diagrams of press 
temperature - MOR and press temperature - ML between 
the temperatures from 135 to 195 C° with the distance 
of 15 °C. Among all data, 70% were used for training the 
network, 15% were used for validating the network and 
15% were used for testing the predictability of the trained 
network. In the neural network, transfer functions are 

[3]

[4]

Toolbox of MATLAB 15 Software was used to 
develop the neural network. 

RESULTS AND DISCUSSION 

The number of treatments was chosen as 30 for 
this analysis (Table 3) based on the reference (Manonmani 
et al., 2007). 
TABLE 3 Analysis of variance (ANOVA).

Source Response S.S. Df M. S. F Value Prob > F Sig.
Model MOR 436.1 11 39.64 27.35 < 0.01 **

M. loss 4.46 9 0.50 217.80 < 0.01 **

X1 MOR 48.12 1 48.12 33.20 < 0.01 **
M. loss 0.20 1 0.20 88.74 < 0.01 **

X2 MOR 33.94 1 33.94 23.42 < 0.01 **
M. loss 0.49 1 0.49 214.63 < 0.01 **

X3 MOR 42.48 1 42.48 29.31 < 0.01 **
M. loss 0.12 1 0.12 54.55 < 0.01 **

X4 M. loss 0.011 1 0.011 4.73 0.0418 *

X22 MOR 18.88 1 18.88 13.02 0.002 **
M. loss 0.18 1 0.18 79.61 < 0.01 **

X32 MOR 13.56 1 13.56 9.36 0.001 **
M. loss 0.17 1 0.17 72.52 < 0.01 **

X42 M. loss 0.54 1 0.54 238.70 < 0.01 **
X1x2 MOR 6.47 1 6.47 4.47 0.0488 *
X1x3 M. loss 0.012 1 0.012 5.31 0.0321 *
X2x3 MOR 37.05 1 37.05 25.56 < 0.01 **
X2x4 M. loss 0.027 1 0.027 11.95 0.0025 **
X3x4 MOR 6.47 1 6.47 4.46 0.0489 *
MOR Lack of Fit 23.21 13 1.79 3.11 0.1091 not sig.

M. loss Lack of Fit 0.041 15 0.00275 3.21 0.1016 not sig.

Based on the output of the variance analysis (Table 3), 
it is observed that the model used is significant for MOR and 
mass loss responses. The direct effect of the independent 
variables including the press temperature (x1), boric acid (x2), 
borax (x3) and ammonium sulfate (x4) is significant on the 
mass loss statistically, while the effect of x4 is not significant 
on MOR. Also, the squared effects of x2 and x3 are significant 
both on MOR and mass loss, while the squared effect of 
x1 is not significant on MOR and mass loss. In addition, the 
squared effect of x4 is significant only on mass loss, and it 
is not significant on MOR. Furthermore, it is observed that 
the mutual effects of x1x2, x2x3 and x3x4 are significant on 
MOR, and those of x1x3 and x2x4 are significant on mass loss 
statistically, and other mutual effects are not significant on 
the responses being examined.
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To produce valid prediction of output datasets from 
targets, an ANN was employed to analysis effect of assumed 
variables on MOR and ML of fiberboard. To determine the 
number of neurons in the hidden layer, 6 neurons were 
finally considered in this layer after following the method of 
trial and error and repetition in the training of the network 
by changing the number of neurons from 0 to 20 in the 
hidden layer. In this condition, the network showed the best 
performance, so that as the number of neurons decreased 
or increased in the hidden layer, the efficiency of the network 
decreased, and the network did not learn. The comparison 
between experimental results from the experiment and 
predicted results by the neural network is given in Figs. 2a and 
3a for the fiberboard. The results indicate that the prediction 
of the neural network from the training datasets (Fig. 2b and 
3b) is acceptable in a wide range of data. The predicted 
data by the neural network show the bending behavior and 
mass loss of the fiberboard with different values of the fire 
retardantscured at different press temperatures well. Also, 
the suitable ability of the neural networks to predict the static 
bending behavior and mass loss of the panel is observed, so 
that at the all ranges of press temperatures, 140 -200 C°
, and amount of added fire retarding agents as 1.5%, the 
bending behavior and mass loss are predicted well with the 
lowest error. 

According to Fig. 2 and 3, it is evident that there 
is a high correlation and fitness between the test and 
predicted values and it shows that the ANN model used 
has proved its efficiency to predict the bending behavior 
and mass loss of the fiberboard. 

After observing the suitable performance of the 
neural network, the network is used to develop, estimate, 
and analyze the outputs of the neural network, i.e. MOR 
and mass loss of the fiberboard made under the press with 
a similar temperature. The values of MOR and mass loss 
predicted by ANN model for specimens with different 
contents of fire retardants (0%, 1.5%, 3%, 4.5% and 
6%) and cured at different temperatures from 135 to 195
C°  are presented in Figs. 4 and 5, respectively.

According to Fig. 4A, the results of the artificial 
neural network show that MOR values decreased as the 
fire retarding agent “boric acid” increased up to 6% at all 
ranges of the press temperature. Also, as the temperature 
increased from 135 C°  to 195 C° , MOR increased at all 
ranges of the consumed boric acid and the negative effect 
of adding boric acid as the fire retarding agent decreased. 
These results are obtained when the values of other fire 
retarding agents including borax and ammonium sulfate 
were minimum (i.e. 0%). The diagrams show that the 
changes in MOR almost follow a stable uniformity. 

According to Fig. 4B, adding borax from 0 to 
1.5% results in a decrease in MOR as the temperature 
increases from 135 C°  to 195 C° , and at the level of 
3%, the changes in the temperature do not affect the 
MOR value (also according to Table 2). However, adding 
borax from 4.5 to 6% increases this property as the 
press temperature increases. These results are obtained 
when the values of other fire retardants content in the 
fiberboard including boric acid and ammonium sulfate 
were minimum, i.e. 0%.  

FIGURE 2 Comparison between the target (actual) and 
output (estimated) values for (A) all data and (B) 
train data for MOR.

FIGURE 3 Comparison between the target (actual) and 
output (estimated) values for (A) all data and (B) 
train data for ML.
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According to Fig. 4C, the changes in the press 
temperature do not affect the MOR, while adding 
ammonium sulfate from 1.5% to 6% decreases this 
property, and the increase in the press temperature at any 
range of the consumed ammonium sulfate results in an 
increase in MOR. The positive effect of the temperature 
was maximum when a maximum level of ammonium 
sulfate was used. This is when the consumption of other 
fire retarding agents including boric acid and borax in the 
fiberboard was minimum, i.e. 0%.  

In Fig. 5, the effect of press temperature on 
the ML of MDF specimens is presented in presence of 
different ranges of fire retardants contents from 0 to 6%. 
According to ANOVA (Table 2), the independent effect 
of the press temperature, the type of the fire retardants 
and its value is significant on the ML. Also, according 
to this table, the squared independent effects and the 
mutual effects of any of the independent variables are 
significant on the ML. According to Fig.3A, adding boric 
acid from 0 to 6% has decreased the ML at all ranges of 

the consumed fire retarding agent. Increasing the press 
temperature has increased the ML of the fiberboard 
at any range of the fire retarding agent during the 
flammability test. The highest level of ML, i.e. more than 
2%, is related to a specimen made at the highest press 
temperature (195 C° ) and containing the lowest level 
of the fire retardants, while the lowest level of ML, i.e. 
1.2%, is related to a specimen made at the lowest press 
temperature (135 C° ) and containing the highest level 
of the fire retardants. It is observed that the changes in 
the ML are completely linear.

According to Fig. 5B, as the press temperature 
increases and the consumption of the fire retarding agent 
“borax” decreases, mass loss increases. On the contrary, 
as the level of the fire retardant “borax” increases and 
the press temperature decreases, mass loss decreases. 
It seems that as similar levels of boric acid and borax are 
used in a certain press temperature, the mass loss of the 

FIGURE 4 The change of MOR as a function of the press 
temperature together with the retardant agents: 
(A) boric acid, (B) borax and (C) ammonium sulfate 
at the minimum level of other fire retarding agents 
(the lines belong to the actual values and markers 
belong to the predicted values obtained by ANN).

FIGURE 5 The change of the mass loss as a function of the press 
temperature together with the retardant agents: (A) 
boric acid, (B) borax and (C) ammonium sulfate at 
the minimum level of other fire retarding agents (the 
lines belong to the actual values and markers belong 
to the predicted values obtained by ANN).
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specimens containing borax is more and approaches 3%. 
According to the Figs. 5A and 5B, it is evident that the 
changes in the mass loss of the specimens follow a rather 
similar trend, although the addition of borax has made 
the curve a little parabolic.

According to Fig. 5C,  the trend of the changes 
in the mass loss of the specimens containing ammonium 
sulfate is similar to the specimens containing boric acid 
and borax, so that as the temperature increases and the 
level of ammonium sulfate as a fire retardant decreases 
, the mass loss of the specimens increases. On the 
contrary, as the level of ammonium sulfate increases and 
the press temperature decreases, the mass loss of the 
specimens decreases. Generally, the changes in the mass 
loss of the specimens containing borax and ammonium 
sulfate are similar and are somewhat (significantly) less 
than the specimens containing boric acid. The trend of 
the changes of this response is almost similar as the press 
temperature and the level of different fire retarding 
agents being used change.

The predictability and performance of the neural 
network model are generally described by the correlation 
coefficient (R), Average Absolute Relative Error (AARE) 
and Root Mean Square Error (RMSE) that are defined as 
the following equations, where Ei is the experimental data, 
Pi is the data predicted by the neural network,  and 

 are the average values of the experimental data and the 
data predicted by the neural network, respectively, and N 
is the total number of the data of the study. 

for the training and testing data. It can be concluded 
that these values of the training and testing data sets 
showed the ability of the used network in predicting 
studied responses. The predicted values and the percent 
of MOR and ML errors are given in Table 2 as a result 
of ANN analysis. The prediction of the neural network 
is very close to the measured values in most cases . In 
other words, it can be said that ANN analysis is capable 
to predict MOR and ML with a low error percentage. 

The Table 4 shows RMSE and MAPE as indicators 
of the accuracy of the prediction It is well known that 
MAPE is used as the basic criterion to evaluate the 
performance of the proposed ANN model. MAPE 
values calculated ffor MOR of training, validation and 
test datasets were 0.4876%, 4.005, and 1.9853%, 
respectively.. The values of MAPE for ML of training, 
validation and test datasets were found 0.4560%, 4.005, 
and 0.0345%, respectively. Therefore, the MAPE values 
are less than 10% which is considered as acceptable for 
a prediction with a high accuracy.

According to the calculated RMSE values, 
accuracy in prediction of responses was very satisfactory. 
For MOR, RMSE was 1.3033 for all datasets, 1.2025 for 
the training dataset, 1.9196 for the validation dataset and 
1.9914 for the testing dataset. For ML, RMSE was 0.1725 
for all datasets, 0.1545 for the training dataset, 1.4846 for 
the validation dataset and 0.0836 for the testing dataset. 
It can be stated that RMSE values close to 0 mean the 
better fit between the predicted and measured outputs 
(Canakci et al., 2012). In sum, both MAPE and RMSE 
are in an acceptable range of accuracy for the testing, 
validation, and training stages.

The regression curves fitted to the training, 
validation, test datasets as well as to all data are shown in 
Figs. 6 and 7 for MOR and ML, respectively. As it can be seen 
R was found 0.95721, 0.92554, and 0.96552 for training, 
validation and test datasets of MOR, respectively and the 
curve fitted to all MOR data showed a correlation value of 
0.92117. Regression curves fitted to ML data also showed 
R values greater than 0.9 (training R=0.96919, validation 
R=0.99899, test R=0.93291, and all R=0.91882). As the 
correlation coefficient (R2) approaches 1, the accuracy 
of the prediction increases, and it shows a desirable 
agreement between the experimental results and the 
model’s prediction. According to R2 values, the obtained 
network can describe at least 93%, 91%, 85% and 84% 
of the test, training, validation and all dataset obtained for 
MOR, respectively, and 87%, 93%, 99% and 84% of the 
test, training, validation and all dataset obtained for ML, 
respectively. These values support the agreeability of the 
application of ANNs in this study. 

[5]

[6]

[7]

The correlation coefficient usually shows the 
linear relation between the predicted values and the 
experimental data. R ranges from 0 to 1 and if R is 
close to 1, it means that the linear regression of the 
data has a good fit. However, as R approaches 0, the 
linear regression of the data is not a good fit. Hence, an 
equation may show the tendency toward higher or lower 
values. Therefore, higher R values do not always show 
the better performance of the model. MAPE and RMSE 
are unbiased statistics to measure the predictability of a 
model, so that lesser MAPE and RMSE values are better. 
Table 2 shows the predictability of the neural network 
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The effect of the parameters of the study on MOR 
and ML of the fiberboard is complicated and there are 
interdependencies. It is difficult to show the mutual effects 
of the parameters on MOR and ML by examining one 
factor. Hence, the mutual effects of the press temperature 
and different values of different fire retardants on MOR 
and ML are presented as 3D diagrams (Figs. 8 and 9). The 
prediction model produced by applying the neural network 
in this figure predicts the test results with a high accuracy 
with no need to run further experiments. The effect of 
the temperature and the level of the fire retardants “boric 
acid” on MOR was analyzed (Fig. 8A) and it was observed 
that as the temperature increased from 145 C°  to 185
C° , the fiberboard’s strength increased significantly. 

However, the increase in the temperature has increased 
the ML (Fig. 9A).

The increase in the ML is reversely proportional 
to MOR. However according to the results obtained, it 
became evident that the increase in the ML is accompanied 
by the increase in the MOR. The reason can be attributed 
to the dependency of MOR not only on the decrease in 
the ML but also on other related factors simultaneously.

The increase in the temperature results in an 
increase in the compaction ratio both in the surface 
layers and intermediate layers, and hence, it improves 

and increases the fibers’ overlapping and creates a higher 
contact surface. As a result, stress can be transferred 
better from the surface under pressure to the layers 
under tension during the bending test, and the MOR 
increases. Also, as the level of the consumption of the 
fire retardants increases from 0 to 6%, the strengths 
decrease continuously. As different fire retarding agents 
are added, the changes in the MOR are almost similar 
and follow a similar pattern. ccording to Fig. 8(A, B, and 
C), a sharp decrease in MOR is observed by increasing 
the fire retardant content when the press temperature is 
minimum.  Increasing the fire retardant content enhances 
the increasing effect of temperature on MOR. Therefore, 
the negative effect of fire retardant content on MOR is 
partially compensated. As a result, if the fire retarding 
agent is added up to 3% where the temperature is at 
maximum, the strengths not only will not decrease, but 
also will increase to the maximum level (about 21 MPa). 
However, if the fire retarding agent is added more than 
3%, a remarkable decrease in the MOR can be observed 
even at high press temperatures.

Adding borate to UF resin to connect the fibers 
together prevents from resin’s coagulation. Using borates 
as fire retarding agents in the panel may create some 
problems. One of the most serious problems is related 
to its reverse effect on the mechanical properties of the 

FIGURE 6 Relationship between experimental results and ANN predicted results for MOR.
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panel. This problem is related to methanol functional 
groups (CH2OH) in resin molecule and its confrontation 
with borate ions (Sean et al., 1999). 

Boron compounds not only act as a separating 
layer on the fiber, but also affect the homogeneous 
distribution of resin. During the press, it seems that the 
fibers do not support a continuous line of resin due to 
the rougher surfaces. Meanwhile, boric acid can have 
smaller chemical effects on the board compared to 
other fire retarding agents which have a minimum effect 
on the roughness (Ustaomer et al., 2008). Adding a fire 
retardant can decrease the board’s strength as a result 
of the change in the physics and chemistry of the fibers’ 
cell wall (Winandy, 2001), the probability of the delay or 
acceleration of resin’s coagulation due to the effect on 
resin’s pH during coagulation (Jinxue et al., 2011), and the 
contamination of the fibers’ surfaces due to the presence 
of crystal deposited on the fiber which result in weakening 
of the fiber-fiber contact (Ayrilmis et al., 20012). 

Before and during the pressing process, the fire 
retarding chemicals probably dissolve in the water of the 
wet fibers and diffuse into the fibers. However, some 
of the chemicals remain as a powder on the fibers, so 
that they increase not only the specific surface area of 

the solids of the system and affect the resin’s efficiency 
(Ayrilmis, 2007) but also create an interfacial layer 
between resin and fiber during stress application. When 
these compounds are added to the fibers smeared with 
the adhesive, the pH of the system increases, moisture 
absorption and the number of accessible hydroxyl groups 
to create hydrogen bonds decreases, while intensity of the 
change in viscosity increases. When pH increases, viscosity 
increases, wettability of resin declines and quality of its 
homogeneous distribution on the fibers’ surfaces collapses. 
In these conditions, the combination of the acceleration 
of resin’s coagulation and thermal degradation results in a 
decrease in the strength (Ayrilmis, 2007). 

When the acids in the wood combine with acidic 
fire retarding agents, they can destroy most formations 
of the wood such as hemicellulose and cellulose that are 
the main elements solidifying the wood by the hydrolysis 
process and can decrease the length of the cellulose 
molecule and reduce the strength properties in micro 
dimensions (Popescu and Pfriem, 2020). During this 
cellulose depolymerization, the increase in the brittleness 
of the panels treated by acidic fire retarding agents such 
as ammonium phosphate can be due to the brittleness of 
the wood fibers as a result of the formation of crystals 

FIGURE 7 Relationship between experimental results and ANN predicted results for M.
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inside the cell walls or cross connections between 
hemicellulose and cellulose molecules (Ayrilmis, 2007). 
During the bending, the connections between the 
fibers of the upper and lower surface layers that are 
under pressure and tension are severely affected by the 
brittleness of the wood fibers and the decrease in the 
length of cellulose molecules. Also, adding fire retardants 
composed of Br salts creates a porous structure in the 
fiberboard compared to the fiberboards without fire 
retarding agents (Altuntas et al., 2017). The increase of 
porosity in the structure decreases the board’s strength. 

Based on Fig. 9, the mutual effect of the increase 
in the press temperature and t fire retardant contentd 
to the fiberboard has resulted in different changes in the 
ML. In Fig. 9A, the decrease in the press temperature 
together with an increase in the consumption of boric 
acid have decreased the ML, although this means that 
the MOR is minimum according to Fig. 8A. Increasing 
the press temperature results in the rupture of the 

hydrolysable chains of components such as hemicellulose 
and there will be a higher mass loss in the presence of 
higher boric acid levels that reduces the pH as acid 
compounds are formed due to the hydrolysis reactions 
created in the wood compnents that are effective in the 
acceleration of the higher decomposition of the wood. 
It is evident from the figure that the maximum mass 
loss occurs when the temperature is maximum while 
the level of boric acid is limited to 3%.  In other words, 
applying higher temperatures can decrease the mass loss 
of the board as the level of the fire retardants increase. 
When fire retardant content is 6%, even applying a 
maximum press temperature has resulted in a mass 
loss close to the average level. However, as the press 
temperature reaches 165 C° , the mass loss becomes 
minimum, even less than when the press temperature 
decreases to minimum level. This is desirable because 
the mass loss and the subsequent decrease in the MOR 
will be minimum during the firing.

FIGURE 8 The predicted MOR of the fiberboard with different 
values of (A) boric acid, (B) borax and (C) ammonium 
sulfate made at different press temperatures.

FIGURE 9 The predicted mass loss of the fiberboard with different 
levels of (A) boric acid, (B) borax and (C) ammonium 
sulfate made at different press temperatures.
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Table 3 shows that the mutual effect of the 
temperature and borax level is significant on the mass loss. 
Fig. 9B shows that the minimum mass loss has occurred 
when borax content is 6% and the board is cured at 165
C° , not at minimum levels of press temperature. At the 

highest press temperature when 3% borax was used, 
the mass loss was maximum. However, the mass loss 
at the minimum temperature and at the average level 
of borax consumption is almost equal to that when an 
average press temperature (165 C° ) and 3% borax are 
applied. Generally, it can be concluded that in presence 
of 3% borax, applying a press temperature of 195 C°  
results in the maximum mass loss while the minimum 
mass loss occurs in presence of 6% borax and applying a 
press temperature of 165 C° . 

According to Fig. 9C, the changes in the mass loss 
are similar to those in the diagram 9B. As ammonium 
sulfate is added to 6% and the temperature decreases 
to 165 C° , the mass loss of the specimens reaches the 
minimum. However, as the press temperature increases 
to 195 C°  and an average level of ammonium sulfate 
is consumed, the mass loss becomes maximum. As the 
level of ammonium sulfate decreases to 0% and the 
press temperature decreases to 165-180 C° , the mass 
loss can be minimum. Generally, the addition of all three 
fire retarding agents has resulted in similar changes in the 
mass loss with the mutual effect of the temperature, and 
they have followed a largely equal trend.

When the fire retardants are exposed to the 
temperature, they still can tolerate pyrolysis and produce 
more charcoal. According to Abdul Rashid and Murphy 
(1993), tar and combustible gases are not produced 
when the surface is exposed to the direct flame. This 
makes the specimen burn slowly and there will be a 
lower mass loss per unit time during the direct contact 
with the flame. It can be expected that while phosphorus 
and nitrogen compounds show a synergic behavior to 
create pyrolysis and form more charcoal and water and 
less combustible gases, boron compounds tend to melt 
down and create a glass-like barrier on the surface of the 
wood components stabilizing the charcoal and create a 
mass transport barrier (Lowden and Hull, 2013).   

The fibers treated by the fire retarding agents 
need more oxygen to flame and fire harder than the 
non-treated fibers. In addition, decomposition begins 
earlier than the non-treated fibers and flaming continues 
at lower temperatures. Many fire retardants make the 
flaming slow through this system. Hence, they are directly 
converted to carbon dioxide and water instead of forming 
the intermediate flammable tar. Due to the decline of the 

decomposition temperature, the speed of charring the 
fibers treated by fire retarding compounds may be more 
than the non-treated fibers. The increase in the charcoal 
level can produce an extra isolated surface and prevent 
it from emission of flammable gases in the presence of 
the flame. According to the studies conducted, it became 
clear that as the level of fire retarding agents such as borax 
increases during TG test, the level of the flammable gases 
decreases in the compound (Baysal, 2002). Exothermic 
reactions occurring during cellulose firing result in the 
formation of flammable gases and create less charred 
residues (Popescu and Pfriem, 2020). In the presence of 
the fire retardants, not only there is a lower exothermic 
temperature, but also other exothermic reactions 
related to two other substances making the cell wall are 
also cancelled out.

The fire retarding chemicals decrease the 
pyrolysis temperature and the mass loss decreases due 
to the increase in the carbonization. As a result of the 
increase in carbonization, fewer gases are also emitted. 
The decrease in the mass loss is related to the increasing 
the chemical effects on the panel’s resistance to fire and 
the positive effect against firing. As the fire retardant 
content increases, the treated specimens burn very 
slowly, because the ratio of the oxygen required during 
the flammability test decreases. In other words, it seems 
that the addition of fire retarding agents is effective. 
Hence, as fire retardant content increases, the rate of 
firing decreases due to the decrease in the oxygen ratio 
and as a result, the mass loss decreases. 

CONCLUSIONS

This study focused on the ANN modeling of the effect 
of adding fire retarding chemicals and press temperature on 
the MOR and ML during the firing of the medium density 
fiberboard (MDF) connected with UF resin. 

The developed artificial neural network is suitable 
for modeling the MOR together with the fire retarding 
properties of the fiberboard using the press temperature 
and chemical fire retarding agents at different levels.

The artificial neural network is suitable to examine 
the effect of the press temperature and the level of boric 
acid, borax, and ammonium sulfate as the fire retarding 
agents on the MOR and mass loss of the fiberboard 
during the firing. 

The results of the study showed that MOR 
changes significantly as the press temperature and the 
type and level of the fire retardants change. A higher 
press temperature has resulted in the increase in both 
MOR and ML of the boards. 
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As the press temperature increased, the negative 
effect of adding the fire retarding agents on the MOR 
decreased, while at a low press temperature, the 
negative effect of the fire retardants was maximum. 

A reverse relation was observed between 
the changes in the mass loss of the fiberboard during 
the firing test and the MOR, so that as the mass loss 
increased, the MOR decreased. However, when higher 
press temperatures was applied, the negative effect of 
the board’s mass loss on the bending properties of the 
board could be decreased. In other words, although 
the mass loss of the board decreased when lower 
temperatures were applied, the minimum values of MOR 
of the boards were obtained when the maximum level of 
the fire retardants was used. 

The changes in the MOR and mass loss of the 
boards were similar in presence of all types of the fire 
retardants added to the fiberboard.
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