
CERNE

48

Historic:
Received 03/10/2019
Accepted 17/02/2020

Keywords:
Artificial intelligence

 Artificial neural network
 Forest Management

 Schumacher and Hall Model
 Support-vector machine

1 Federal University of Lavras, Lavras, Minas Gerais, Brazil- ORCID: 0000-0002-7928-9155a, 0000-0001-8323-
1223b, 0000-0002-9553-0148c, 0000-0003-0626-2178d

2 Federal University of Mato Grosso, Mato Grosso, Brazil-ORCID: 0000-0002-5590-9049a

3 Federal Instituto Goiano, Goias, Brazil -ORCID: 0000-0001-5923-3157a

+Correspondence:
dantasdaniel12@yahoo.com.br

ISSN 0104-7760

DOI:
10.1590/01047760202026012668

Daniel Dantas1a+, Natalino Calegario1b, Fausto Weimar Acerbi Júnior1c, Samuel de Pádua 
Chaves Carvalho2a, Marcos Antonio Isaac Júnior1d, Elliezer de Almeida Melo3a

MULTILEVEL NONLINEAR MIXED-EFFECTS MODEL AND MACHINE 
LEARNING FOR PREDICTING THE VOLUME OF Eucalyptus SPP. TREES

DANTAS, D.; CALEGARIO, N.; ACERBI  JÚNIOR, F. W.; CARVALHO, S.  P. C.; ISAAC  
JÚNIOR, M. A.; MELO, E. A. Multilevel nonlinear mixed-effects model and machine 
learning for predicting the volume of Eucalyptus spp. trees. CERNE, v. 26, n. 1, p. 48-
57, 2020. 

HIGHLIGHTS

Multilevel random-effects in the Schumacher and hall model improved volume predictions.

Huynh-Feldt structure in the variance and covariance matrix provided better model fit.

Machine learning techniques are suitable in modeling tree volume.

It was extracted accurate volume equation from neural network training process.

ABSTRACT

Volumetric equations is one of the main tools for quantifying forest stand production, and is 
the basis for sustainable management of forest plantations. This study aimed to assess the 
quality of the volumetric estimation of Eucalyptus spp. trees using a mixed-effects model, 
artificial neural network (ANN) and support-vector machine (SVM). The database was 
derived from a forest stand located in the municipalities of Bom Jardim de Minas, Lima 
Duarte and Arantina in Minas Gerais state, Brazil. The volume of 818 trees was accurately 
estimated using Smalian’s Formula. The Schumacher and Hall model was fitted by fixed-
effects regression and by including multilevel random effects. The mixed model was fitted by 
adopting 14 different structures for the variance and covariance matrix. The best structure 
was selected based on the Akaike Information Criterion, Maximum Likelihood Ratio Test and 
Vuong’s Closeness Test. The SVM and ANN training process considered diameter at breast 
height and total tree height to be the independent variables. The techniques performed 
satisfactorily in modeling, with homogeneous distributions and low dispersion of residuals. 
The quality analysis criteria indicated the superior performance of the mixed model with a 
Huynh-Feldt structure of the variance and covariance matrix, which showed a decrease in 
mean relative error from 13.52% to 2.80%, whereas machine learning techniques had error 
values of 6.77% (SVM) and 5.81% (ANN). This study confirms that although fixed-effects 
models are widely used in the Brazilian forest sector, there are more effective methods for 
modeling dendrometric variables.
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INTRODUCTION

One of the most important parameters for knowing 
the forest potential production of a specific region is log 
volume. Log volume is a starting point for assessing the 
wood content of a forest stand, underpinning decisions 
related to silvicultural treatments, logging and timber 
transport. Therefore, log volume must be correctly 
determined to represent the sampled population well.

The volumetric estimation of Eucalyptus spp. clones 
is usually based on equations in which diameter at breast 
height (DBH) and total tree height (H) are the independent 
variables. According to Campos and Leite (2009), the 
Schumacher and Hall model stands out in tree volume 
estimation. However, classical regression models assume 
independence between observations and homogeneity of 
variance, which, in some cases, may not be true.

An alternative for analyzing correlated data, in 
space and/or in time, and for explicitly modeling their 
covariance structure is to use mixed models. Some of 
the possible approaches with mixed models include 
generalizing correlation and variance structures (Fu et 
al., 2017; Cropper and Putz, 2017; Özçelik et al., 2018; 
Wang et al., 2019). Mixed models are sophisticated 
regression techniques, and the study by Lappi (1991) 
pioneered their use in forestry research.

Mixed models are consistently fitted by the 
inclusion of unobservable variables, termed random 
effects, along with observable variables, termed fixed 
effects (Pinheiro and Bates, 2000). Besides that, mixed 
models can describe incomplete blocks, split plots, 
spatiotemporal data and random coefficients, as well as 
polynomial and growth curves.

Usually, in forest sciences, mixed models are 
applied to nonlinear problems, such as height growth, 
basal area increment of Eucalyptus spp. stands and 
genetic evaluations (Calegario et al., 2005; Barantal et al., 
2019; Wang et al., 2019; Sharma et al., 2019).

In addition, computational approaches of artificial 
intelligence/machine learning, including artificial neural 
networks (ANN) and support-vector machines (SVM), 
have been increasingly used as tools for forest data 
analysis, modeling, variable estimation and production 
prognosis (Silveira et al., 2019). Those tools have 
provided gains in the quality of estimates and predictions 
(Vendruscolo et al., 2015; Martins et al., 2016).

An ANN is an algorithm based on simple 
processing units (artificial neurons), mimicking the 
neurons found in the human brain, which calculate 
specific functions. Those units are layered and connected 
to each other through weights, which store experimental 

knowledge and weigh the inputs of each unit. Therefore, 
the acquired knowledge becomes available for use 
(Haykin, 2001; Silva et al., 2018).

The most striking features of ANNs are their 
learning and generalization capacities. In other words, 
ANNs are able to, through a learned example, generalize 
knowledge assimilated for an unknown dataset. Another 
interesting feature of ANNs is their ability to extract 
nonexplicit characteristics from a dataset provided as 
examples (Gorgens et al., 2009).

Support-vector machines (SVMs) have also become 
an interesting alternative for the mathematical modeling 
of complex systems. They are simple techniques, in 
terms of their conceptual framework, capable of solving 
extremely complex and real problems. In an SVM, input 
space vectors are mapped nonlinearly to a characteristic 
space of high dimensionality where a linear decision 
surface is constructed, constituting an optimal separation 
hyperplane, for example, the binary separation between 
data that has positive and negative labels, such that the 
separation margin is maximum (Shao et al., 2014).

Initially, SVM techniques were successfully 
applied as data classification methods (Cherkassky 
and Mulier, 1998; Yu et al., 2019). Subsequently, they 
were expanded to regression tasks using the following 
approaches: support vector regression (SVR) and least-
squares support vector machines (LS-SVMs) (Karthik et 
al., 2016; Zeng et al., 2018; Souza et al., 2019; Sivasankar 
et al., 2019).

Considering the relevance and sophistication of these 
techniques, this study aimed to assess the performance of the 
nonlinear volumetric model by Schumacher and Hall fitted 
by fixed and mixed regression with variance and covariance 
matrix modeling, by training an artificial neural network and 
by constructing support-vector machine to estimate the log 
volume of Eucalyptus spp. trees.

MATERIALS AND METHODS

Data

The study area comprises 21 management units 
planted with Eucalyptus spp. hybrid clones, located in 
the municipalities of Bom Jardim de Minas, Lima Duarte 
and Arantina, in Minas Gerais, Brazil, totaling 1,090 ha of 
inventoried area.

The climate of the region is characterized as 
subtropical highland climate, Cwb type, according to 
the Köppen climate classification, with an average annual 
temperature of 20.1°C, with dry and cold winters, with 
frost occurring in some areas, and with rainy summers 



MULTILEVEL NONLINEAR MIXED-EFFECTS MODEL AND MACHINE LEARNING FOR PREDICTING THE VOLUME OF Eucalyptus 
SPP. TREES

50

CERNE

DANTAS et.  al

with moderately high temperatures. The average annual 
total precipitation is 1,456 mm (Alvares et al., 2013).

The data used in this study were collected by 
accurately estimating the cubic volume of 818 trees of 
different ages and sizes. The study parameters were 
total height (Ht), measured in meters; diameter at breast 
height (DBH), measured in centimeters; and diameters at 
the base (at 0.1 m of height) and at heights of 0.5 m, 1 m, 
1.5 m and 2 m and, every 2 m from then on. Log volumes 
were calculated using Smalian’s Formula. Descriptive 
statistics of the data are reported in Table 1.

(2017), where V is the volume in m³; DBH is the diameter, 
in cm, at 1.30 m of height; Ht is the total height in m; β0, 
β1 and β2 are the parameters of the model; and  is the 
random error.

TABLE 1 Descriptive statistics of the data on the log volume of 
Eucalyptus spp. trees

Variable Minimum Mean Maximum
Standard 
deviation

CV%

Volume (m³) 0.0066 0.1785 0.7752 0.1335 74.79
DBH (cm) 4.19 13.60 27.00 4.45 32.72
Height (m) 8.10 21.82 33.08 5.10 23.37

where DBH is the diameter at 1.30 from the ground.

Scatter plots of log volume as a function of DBH 
and Ht are shown in Figure 1, indicating a nonlinear 
relationship between these variables.

FIGURE 1 Scatter plots of Eucalyptus spp. log volume as a function 
of DBH, Ht.

Volumetric model

The nonlinear volumetric model by Schumacher 
and Hall (1933) (1) was fitted to the volume data. 
The processing was performed using the software 
environment for statistical computing R, version 3.4.1 

[1]

Multilevel mixed-effects model for volumetric 
estimation

Subsequently, to evaluate the use of mixed-effects 
models to estimate the log volume of Eucalyptus spp., the 
Schumacher and Hall model was refitted by incorporating 
the variability of each tree and management unit, thereby 
generating a multilevel nonlinear mixed-effects model 
with fixed and random parameters. The model was 
fitted using the maximum likelihood method, proposed 
by Fisher, according to Searle (1987), which consists 
of obtaining estimators that maximize the probability 
density function of observations with respect to fixed 
effects and variance components.

In nonlinear mixed models (2) the response 
variable yij represents the random groups i and j, where i 
are the i-th management units and j the j-th trees. Then, i 
= 1,..., m, and j = 1,..., ni, where m is the total number of 
management units and ni is the number of trees within the 
i-th management unit; f is a general, real and differentiable 
function of a specific group of parameter vectors ϕij and a 
covariant vector vij; and εij is the random error normally 
distributed within groups (Pinheiro and Bates, 2000).

[2]

The parameter vector varies from individual 
to individual. In a second stage, the vector ϕij can be 
expressed by equation 3, where β is a fixed-effects 
vector (p x 1); Bi is a vector (q1 x 1) of random effects 
independently distributed with a covariance-variance 
matrix ψ1; Bij is a vector (q2 x 1) of random effects 
independently distributed with a covariance-variance 
matrix ψ1 and presumed independent of first-level 
random effects; Aij and Bij are incidence matrices; and 
εij, within groups, are independently distributed and 
independent of random effects.

[3]
In modeling mixed models, a key step is the 

definition of the variance and covariance structure 
because it aims to obtain a parsimonious structure that 
explains the data variability and the correlation between 
the measurements and a small number of parameters 
(Clark and Linzer, 2012). This choice may directly 
affect parameter estimates, standard errors of fixed and 
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random effects, diagnoses and inferences. This selection 
depends on data structures, empirical information and 
computational availability.

Variance and covariance structures were entered 
in the nonlinear mixed model by Schumacher and Hall 
because trees belonging to the same management unit are 
likely more correlated with each other than otherwise. This 
processing was performed using the package nlme, software 
environment R, and its function correlation (Pinheiro and 
Bates, 2000). In total, 14 structures were used, including 
Variance Components (VC), UNstructured (UN), 
Compound Symmetry (CS), First-Order Autoregressive 
(AR(1)), Heterogeneous First-Order Autoregressive 
(ARH(1)), Heterogeneous Compound Symmetry (HCS), 
Toeplitz (TOEP), First-Order AutoRegressive Moving 
Average (ARMA(1,1)), Heterogeneous Toeplitz (TOEPH), 
First-Order Ante-dependence (ANTE(1)), UNstructured 
Correlations (UNR), Spatial Power (SP(POW)(c-list)), 
Banded Main Diagonal (UN(1)) and Huynh-Feldt (H-
F). More details on these structures are available from 
Pinheiro and Bates (2000)

The Akaike Information Criterion (AIC) 
(Sakamoto et al., 1986) (4), for which the best model 
is that which has the lowest AIC value; the Maximum 
Likelihood Ratio Test (MLRT) (Pinheiro and Bates, 2000); 
and Vuong’s Closeness Test (1989) were used to choose 
the structure of the variance and covariance matrix, 
where AIC is the Akaike Information Criterion, ln is the 
Napierian logarithm, ml = maximum likelihood value, 
and p is the number of parameters of the model.

That is, the models are equivalent to the 
significance level , and Z /2 is the critical value of the 
standard normal distribution, rejecting the null hypothesis 
if |TRLNN  | > Z1− /2.

Machine learning

SVMs and ANNs were used as machine learning 
approaches. SVM construction was based on the 
supervised machine learning process described in detail 
by Haykin (2001), with a set of n samples represented as 
an ordered pair (X, Y), where X is a matrix of explanatory 
variables of the sample and Y is the vector of expected 
values of the sample. Based on this information, a function 
that predicts the expected value of the sample, using a 
vector of characteristics as input dataset, is chosen. This 
linear function is represented by f(X) = <W,X> + b, 
where W is a vector of weights.

The type IV error function, also known as eps-
regression, was used, and the Kernel function was a 
radial basis function (RBF). Kernel functions provide an 
alternative solution by projecting data into a space with 
high-dimensional features to increase the computational 
power of learning machines, making it possible to 
represent nonlinear phenomena (Granata et al., 2016). This 
procedure was performed in the software environment R, 
version 3.4.1, using the package e1071 (Meyer et al., 2019).

The trained ANNs were Multilayer Perceptron 
(MLP) networks, consisting of an input layer, an 
intermediate layer, and an output layer. The algorithm 
used was resilient backpropagation, where the learning 
rate was set automatically by the package neuralnet, with 
values ranging from 0.01 to 1.12. The number of neurons 
in the intermediate layer was chosen using the k-fold. 
This methodology randomly subdivides the database 
into k subgroups (Wong et al., 2017). The k value was 
10 subgroups, with 90% for training and 10% for testing 
(Diamantopolou, 2010), applying cross validation. Different 
numbers of neurons, ranging from 1 to 20, were tested.

The activation function used was logistic (or 
sigmoid), with an interval from 0 to 1, which limits the 
amplitude of outputs and inputs. Therefore, the data 
were normalized, which consisted of transforming the 
values of each variable into values ranging from 0 to 1, 
using equation (10) (Soares et al., 2011). This equation 
considers the minimum and maximum value of each 
variable in the value transformation, maintaining the 
original data distribution (Valença, 2010), where x’: 
normalized value; x: original value; xmin: minimum value 
of the variable; xmax: maximum value of the variable; a: 

[4]

The maximum likelihood ratio test (MLRT) (5) 
consists of comparing models pairwise, calculating 
its value as the difference between the values of its 
likelihood functions (Pinheiro and Bates, 2000), where ln 
is the Napierian logarithm,  is the value of the maximum 
likelihood function of model 2, and  is the value of the 
maximum likelihood function of model 1.

[5]

To compare the models, through the likelihood 
ratio test - Vuong’s TRLNN (1989) (6), the statistical 
equation stated below was used, where is an estimator 
of the variance of  and is the likelihood ratio test. The 
statistic has, asymptotically.

[6]

[7]

[8]

[9]



MULTILEVEL NONLINEAR MIXED-EFFECTS MODEL AND MACHINE LEARNING FOR PREDICTING THE VOLUME OF Eucalyptus 
SPP. TREES

52

CERNE

DANTAS et.  al

lower limit of the normalization range; and b: upper limit 
of the normalization range.

After the initial fit of the Schumacher and Hall 
nonlinear model, the mixed models were fitted by 
including multilevel random effects and considering 14 
structures of the variance and covariance matrix.

Table 3 presents the selection criteria for 
structures of the variance and covariance matrix used in 
this study. Among them, the structure that best fit the 
volumetric estimation of Eucalyptus spp. was Huynh-
Feldt (H-F), which had the lowest AIC value and the 
highest likelihood logarithm (LogLik) value. In addition, 
by performing the likelihood ratio test and by assuming 
such a structure as an alternative hypothesis, Huynh-
Feldt was compared with the other structures.

[10]

The stopping criterion of the ANN training 
process was a maximum number of 100,000 cycles, 
or a mean squared error less than 1%, stopping the 
training when meeting one of the criteria. At the end of 
the training, the best ANN was selected, based on the 
smallest mean squared error.

The data were divided into two groups, using 
70% to fit the nonlinear volumetric models, in their fixed 
and mixed forms, to construct the SVM and to train the 
ANN, and using 30% to generalize of the techniques. 
Among the data intended for ANN training, 70% were 
used in the training phase and 30% in the testing phase.

Estimate quality assessment

The nonlinear volumetric models by Schumacher 
and Hall were assessed, in their fixed and mixed forms, 
by adopting a structure of the variance and covariance 
matrix, artificial neural network and support-vector 
machine based on Mean Relative Error (MRE) (Equation 
11), Bias (Equation 12), residual standard error (Syx) 
(Equation 13), Root Mean Square Error (RMSE) (Equation 
14), correlation between estimated and observed values 
(r) (Equation 15) and residual scatter plots, where n is the 
number of cases, p is the number of parameters, Y is the 
observed values,  is the mean of observed values, is the 
predicted values, and RSS is the residual sum of squares.

RESULTS AND DISCUSSION

Multilevel mixed-effects model

Table 2 reports the fitted parameters of the 
nonlinear model by Schumacher and Hall, showing that 
all coefficients were significant at the 0.05 level, according 
to Student’s t-test.

[11]

[12]

[13]

[14]

[15]

TABLE 2 Fitted parameters for the nonlinear model by 
Schumacher and Hall

Parameters
Standard 

error
t value Pr (>t)

β0 4.15e-5 2.81e-6 14.77 <0.0000 *
β1 1.7111 0.0246 69.59 <0.0000 *
β2 1.2040 0.0358 33.64 <0.0000 *

where βi: regression coefficients; *: significant at 0.05.

TABLE 3 Selection criteria for structures of the variance and 
covariance matrix in fitting the multilevel nonlinear 
mixed-effects volumetric model

Model AIC LogLik Test MLRT p-value

1. Toeplitz 4201.92 2802.12 1 vs 7 555.58 <0.000
2. Banded Main 

Diagonal
4149.67 2804.17 2 vs 7 502.92 <0.000

3. Compound 
Symmetry

4155.61 2802.47 3 vs 7 518.33 <0.000

4.UNstructured 
Correlations

4139.32 2804.45 4 vs 7 773.58 <0.000

5. Unstructured 3951.12 3330.80 5 vs 7 2.13 <0.632
6. Heterogeneous 

Compound 
Symmetry

3949.75 3330.45 6 vs 7 2.00 <0.563

7. Huynh-Feldt 3940.31 3350.68 - - -

Table 3 indicates that almost all null hypotheses 
were rejected (p-value < 0.05), except for the 
Heterogeneous Compound Symmetry (HCS) (p-value 
= 0.563) and UNstructured (UN) (p-value = 0.632) 
structures, which exhibited no significant difference from 
HF. The results indicate that using any of these three 
structures of the variance and covariance matrix would be 
adequate for the dataset. According to West et al. (2015), 
the HF structure is characterized by unequal variances 
between management units and covariances determined 
by calculating the arithmetic mean of variances and by 
subtracting λ; λ is the difference between mean variance 
and mean covariance. In the HCS structure, different 
variances and some unequal covariances, fitted by a 
correlation coefficient between individuals, are applied. 
In the Unstructured structure, different variances and 
covariances are also assigned for each occasion.
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The HF structure was chosen considering the AIC 
and the LogLike.

According to West et al. (2015), variance and 
covariance matrix structures increase the flexibility of 
correlations. In any data analysis, the correct structure that 
is most appropriate and parsimonious for these matrices 
should be chosen, based on observed data and on the 
relationships between observations of each sample unit, in 
this case, the management unit, because different variance 
and covariance numbers should be estimated.

Table 4 outlines the results from the fit (fixed 
parameters) of the Schumacher and Hall nonlinear mixed 
model using the maximum likelihood method, adopting 
the HF structure of the variance and covariance matrix, 
which shows that all parameters were significant at the 
0.001 level, according to maximum likelihood’s test.

others evaluated, was obtained with 23041 iterations. The 
architecture and weights of the selected ANN with lowest 
error among all networks evaluated, consisting of seven 
neurons in the hidden layer, is shown in Figure 2.

TABLE 4 Significance of fixed parameters fitted for the 
Schumacher and Hall nonlinear mixed-effects model.

Parameters Standard error t value P-value
β0 3.4645e-5 1.59e-6 21.81 <0.0000 *
β1 1.8184 0.0200 90.85 <0.0000 *
β2 1.1655 0.0282 41.38 <0.0000 *

where βi: regression coefficients; *: significant at 0.001.

MACHINE LEARNING

The configurations of the SVM construction are 
reported in Table 5.

TABLE 5 SVM parameters.
SVM Parameter
Type eps-regression

Kernel Radial basis function
Cost 0.002

Gamma 0.2441
Epsilon 0.1535

Number of support vectors 420

The optimization of the parameters of an SVM 
model is fundamental for the development of the final model 
with high prediction performance. Modifying the gamma 
and epsilon parameters in the radial basis function enhances 
model performance. Epsilon regulates the function, 
minimizing the residues, while gamma is the parameter 
responsible for determining the base length of the radial 
basis function, reducing or increasing the complexity of the 
search process (Cherkassky and Mulier, 1998).

The combination of the two step grid search approach 
and cross validation was used for the global optimization 
of these parameters in this work. For each combination 
of modeling parameters, a mean square error (MSE) was 
calculated and the optimal parameters that produced the 
smallest MSE were selected. The optimal values   of epsilon 
and gamma were 0.2441 and 0.1535, respectively.

Regarding the approach by artificial neural network, 
the ANN that presented the smallest error, among the 

FIGURE 2 Architecture of the selected ANN, with seven neurons 
in the hidden layer.

From the artificial neural network with architecture 
2-7-1 an equation system was extracted to predict the 
individual volume of Eucalyptus spp. trees, with coefficients 
resulting from the weights generated by the ANN. This 
system was used to predict the volume of the trees that 
made up the database intended for validation.

Model (16) expresses the relationship between the 
hidden layer and the response variable, where β0 is the bias, 
and the other coefficients are the weights related to each 
neuron. Model (17) represents the activation function used 
in each neuron of the hidden layer, derived from the logistic 
model. Finally, the model (18) is the result of the relationship 
between the input variables and the respective hidden layer 
neurons, being generated a model for each neuron, where 

: bias; : coefficient of the model associated with 
neuron n; : coefficient of the model between input 
variable k and neuron n; zn: response of the n-th neuron 
of the hidden layer; wi: sum of the products between the 
weights and the inputs.

The coefficients of the system of equations 
extracted from the artificial neural network are presented 
in Table 6.

[16]

[17]

[18]
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Estimate quality assessment

The techniques analyzed were applied to the 
dataset for validation and performed satisfactorily 
in modeling Eucalyptus spp. trees volume, with 
homogeneous distributions and low residual dispersion, 
as shown in Figure 3.

The graphical analysis highlighted the efficiency of 
the nonlinear mixed-effects model with an HF structure 
of the variance and covariance matrix and the machine 
learning techniques, still little spread in the Brazilian 
forest sector, which indicates the potential of using these 
techniques, due to the high gain in prediction accuracy.

The inclusion of variability between and within 
each individual and between management units in the 
nonlinear mixed-effects regression model provided 
better performance than the nonlinear fixed-effects 
regression model. It is verified that the nonlinear 
mixed-effects regression model was considerably more 
accurate than the nonlinear fixed-effects regression 
model, with well-distributed residuals and with a mean 
around zero. The lowest values of log volume tended 
to exhibit a higher error, albeit within the range of -10 
to 15%. Conversely, the nonlinear fixed-effects model, 
although it presented all significant parameters at a level 
of 0.05, by the t-Student test, it exhibited high dispersion 
and greater heterogeneity of residual variance, with a 
tendency to overestimate the lowest values of log volume 
and to underestimate intermediate values. Residues 
of the nonlinear fixed-effects model were generally 
between -30 and 20%, with a value of -46%.

Thus, nonlinear mixed-effects models are 
important techniques for growth and production 
modeling. These models explain the different degrees 
of hierarchy within a dataset and can provide individual 
predictions specific to each hierarchy (Temesgen et 
al. 2008; Ou et al., 2016). These models also provide 
information from various sources of heterogeneity 
and correlations that are present in the data (Hall and 
Clutter, 2004), making them an efficient option for those 
interested in forest volume and biomass estimates.

Comparing machine learning techniques, 
according to the graphs, both showed residuals within 
the range of -20 and 10%. However, the plots show 
that the ANN was slightly better than the SVM, which 
presented more concentrated residues around zero, 
while SVM showed a higher tendency of error in the 
smallest and largest volume values.

The performance evaluation criteria for the 
techniques analyzed in this study are reported in Table 7. 
The qualities of the predictions performed by the techniques 
in the data intended for validation were evaluated.

Table 7. Performance evaluation criteria of the 
predictions of nonlinear fixed-effects (MNL) and mixed-
effects (MNLM) models, support-vector machine (SVM), 
and artificial neural network (ANN)

The predictions of the techniques analyzed in 
the validation phase were strongly correlated with the 

TABLE 6 Parameters (β’s) of the artificial neural network. N 
represents the neuron.

β0 β1 β2 β3 β4 β5 β6 β7

RNA 0.8609 -0.7323 0.7619 0.6785 -1.7671 -1.6967 1.0353 -0.7712
N1 -2.3277 2.0301 - - - - - -
N2 -1.3559 0.6158 - - - - - -
N3 -1.7104 2.3549 - - - - - -
N4 -0.1308 0.1538 - - - - - -
N5 0.1174 -1.2125 - - - - - -
N6 -0.0674 -2.5130 - - - - - -
N7 2.5005 2.8092 - - - - - -

FIGURE 3 Scatter plots of residuals distribution.
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observed values, with a value of 0.97 for the nonlinear 
fixed-effects model and values   above 0.9831 for the other 
techniques. The error values, represented by the root-
mean-square error (RMSE), were lower than 9% for the 
nonlinear mixed-effects model, ANN and SVM, while 
for the fixed-effects model the REQM was 18.5858%. 
The lower the RMSE is, the higher the accuracy of the 
estimates will be, and the optimal situation is when 
RMSE is zero. Bias indicated slight overestimation trends 
for nonlinear models and underestimate for machine 
learning techniques. The nonlinear mixed-effects model 
presented the lowest bias value, -1.2371%, indicating 
that it is a balanced (non-biased) and effective tool. 
The mean relative error was greater than 13% for the 
nonlinear fixed-effects model and less than 7% for the 
other techniques, with the lowest value presented by the 
nonlinear mixed-effect model, 2.8035%.

One advantage of random-effects models over 
fixed-effects models is a reduced residual standard errors. 
Calegario et al. (2005) studied the basal area of Eucalyptus 
spp. clones and observed a decreased of approximately 15 
times. In this study, a marked decrease in residual standard 
error was also observed, from 0.0142 in the nonlinear 
fixed-effects regression model to 0.0003 in the nonlinear 
mixed-effects regression model, that is, a 53-fold decrease. 
Carvalho et al. (2011), by applying mixed-effects modeling 
in basal area and volume prediction, found a decrease in 
error from 15% to 12% in basal area prediction and from 
26% to 4% in volume prediction.

The ANN was able to explain almost all variation 
in the Eucalyptus spp. trees volume with the available 
variables. Several studies have shown satisfactory 
performances of artificial neural networks (Özçelik et al., 
2013; Vendruscolo et al., 2015; Martins et al., 2016). This 
superiority results from the ability of neural networks to 
detect implicit information and nonlinear relationships 
between the response variable and the explanatory 
variables provided as examples and to generalize the 
assimilated knowledge to an unknown dataset.

It should be noted that despite performing 
worse than the ANN, the SVM was highly efficient at 
estimating Eucalyptus spp. trees volume. The SVM has 

the advantage over the ANN of requiring no evaluation 
after its construction, which is performed in the ANN 
to select the best network, thanks to the quadratic 
optimization that occurs during the SVM training (Yang 
et al., 2015). This optimization provides the same result 
for each system configuration, whenever applied to the 
same dataset. Conversely, the ANN has more elements 
for manipulation, in addition to the random initialization 
of neural parameters (Haykin, 2001). Thus, each trained 
network will exhibit small differences in estimates, 
even when maintaining the same architecture. These 
differences highlight the practicality of SVMs over ANNs 
by preventing operator subjectivity in having to choose 
the best network to apply to the database.

Both machine learning and nonlinear mixed-
effects model approaches were efficient in modeling the 
log volume of Eucalyptus spp. trees. The small variation 
in Eucalyptus spp. trees volume unexplained by the study 
variables results from the various factors disregarded in 
the present study that are known to affect tree volume 
variability in forests, such as biotic and abiotic factors and 
their interactions (Tanaka et al., 2017).

The nonlinear Schumacher and Hall multilevel 
mixed-effects model with an HF structure of the variance 
and covariance matrix was the most efficient in modeling 
the log volume Eucalyptus spp. clones because this type of 
model estimates fixed effects, predicts random effects and 
estimates variance components, considering the variability 
of each tree and among the different management units 
studied. Morphological alterations that occur between 
individuals, along with differences between management 
units caused by climate factors and other environmental 
factors, require that separate equations be used to make 
estimates, as tree development may vary from location to 
location and from region to region.

Studies have indicated the importance and the 
gain in precision generated by the inclusion of random 
effects in the modeling of forest structures. Ou et al. 
(2016) concluded that the addition of topographic 
variables (elevation, slope, and appearance) as a random-
effect for a nonlinear mixed-model using height and DBH 
as predictors improved the AIC and BIC values. Huff et 
al. (2018) analyzed the performance of nonlinear mixed-
effect models to predict total above ground biomass and 
the results showed that the inclusion of shrub species 
as a random-effect provided better performance than 
nonlinear fixed-effects models.

Many forest management decisions are based 
on knowledge of wood volume availability in a stand 
and growth and productivity projections, and the use 
of nonlinear mixed-effects models can be employed 

TABLE 7 Performance evaluation criteria of the predictions 
of nonlinear fixed-effects (MNL) and mixed-effects 
(MNLM) models, support-vector machine (SVM), and 
artificial neural network (ANN).

MNL MNLM SVM ANN
Mean relative error (%) 13.5185 2.8035 6.7689 5.8125

Bias (%) -6.2610 -1.2371 2.6479 3.6217
Residual standard error (m³) 0.0142 0.0003 0.0024 0.0012
Residual standard error (%) 7.9830 0.1516 1.2048 0.606

Root-mean-square error (%) 18.5858 4.4185 8.5550 7.8191
Correlation coefficient 0.9700 0.9851 0.9831 0.9838
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for accurate future predictions involving repeated 
measurements over time. This study confirms that 
although fixed-effects models are widely used in the 
Brazilian forest sector, there are more effective methods 
for modeling dendrometric variables.

CONCLUSION

The present study considerably improves the 
modeling of the log volume of Eucalyptus spp. trees, using 
nonlinear multilevel mixed-effects model and machine 
learning. The techniques performed satisfactorily, and the 
nonlinear multilevel mixed-effects model by Schumacher 
and Hall with an Huynh-Feldt structure of the variance 
and covariance matrix more accurately predicted the log 
volume of Eucalyptus spp. trees than the fixed-effects 
regression model alone, the artificial neural network 
and the support-vector machine. The ability to explain 
various sources of heteroscedasticity found in the data 
through random effects makes the nonlinear mixed-
effects model an efficient option for Eucalyptus spp. trees 
volume prediction, and its application is recommended 
due to the expressive gain in precision.
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