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HIGHLIGHTS

Regularization methods were tested for selecting covariates in loblolly pine survival models.

Stepwise method was the most suitable approach for selecting the covariates.

Link functions can influence the covariates selection procedure.

The survival models presented great ability to predict alive trees.

ABSTRACT

To quantify the surviving trees in a forest stand and estimate the probability of an individual 
tree to survival are a fundamental task in forest management planning. Therefore, the 
main goal of this paper was to estimate the tree survival probability in loblolly pine (Pinus 
taeda L.) plantations based on generalized linear models (GLM). The data set was obtained 
from forest inventories carried out in the Midwest of Santa Catarina State, Brazil. The data 
analysis combined strategies for selecting covariates and different specifications of link 
functions in a Bernoulli GLM. We performed strategies for covariate selection at plot-
level along with the standard stepwise procedure, where we considered the elastic net 
approach, as well as its special cases the lasso and ridge penalization. Our analyses showed 
that the stepwise procedure combined with the complementary log-log link function 
provide the best fit. The variables that most contributed to assess tree survival were basal 
area, number of individuals, maximum diameter, diameter of the average cross-sectional 
area and the diameter coefficient of variation per plots. This model presents 81.5% of 
accuracy given by ROC curve. Finally, we evaluated the fitted model by means of the 
half-Normal plots and randomized quantile residuals, whose results showed evidence of a 
suitable fit. We suggest the stepwise procedure for selecting covariates for a tree survival 
probability model, besides a complementary log-log link function.
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INTRODUCTION

Species of Pinus genus are cultivated in large-scale 
in the Southern region of Brazil, especially in Paraná and 
Santa Catarina States, mainly due to great adaptation 
to climatic conditions and their high timber economic 
potential. According to IBÁ  - Indústria Brasileira de 
Árvores (2017), Pinus taeda L. and Pinus elliottii Engelm 
planted area covered more than 1.6 million of hectares 
in the base year of 2016, which represent 20.4% of the 
total planted area in the country.

The extensive Pinus planted area in Brazil 
implies that the trees are submitted to a wide range 
of environmental conditions and forest management 
systems, which results in a large range of timber 
productions. Therefore, statistical models able to 
express the forest developing in different conditions 
has become an important tool on the growth and yield 
planning. Despite important in individual tree growth 
simulators, tree survival is still few explored, probably 
because it is a rare phenomenon of high variability (Avila 
and Burkhart, 1992).

The tree survival or mortality in both planted 
and natural forest stands is a phenomenon associated 
to many factors (Adame et al., 2010) which include 
the competition among individuals; forest management 
practices, such as thinnings; climatic conditions (Diéguez-
Aranda et al., 2005; Das and Stephenson, 2015; Thapa 
and Burkhart, 2015, Miranda et al. 2017; Téo, 2017); 
as well as the species genetic diversity. Thus, it is not 
completely clear how the tree mortality or survival 
occurs in a forest, once that individuals with similar 
features may present different outcomes.

To quantify the number of surviving trees over 
time is important in forest plantations. This information 
indicates the number of trees expected in the silvicultural 
rotation; and the potential timber assortments for being 
explored in the industry. Based on this, the tree survival 
probability at different site conditions and management 
systems can be obtained by statistical tools. Furthermore, 
regression models are essential on forest planning 
because can assist to identify factor associated to high or 
low survival probabilities.

One of these tools is logistic regression, a 
statistical approach widely used for estimating the tree 
survival probability in forest plantations (Yao et al., 2001; 
Diéguez-Aranda et al., 2005; Thapa and Burkhart, 2015; 
Téo, 2017). This model allows to express the survival 
probability through a linear predictor, which is usually 
composed by a set of tree and plot-level covariates. The 
linear predictor is connected to the expectation of the 

survival probability by a link function, frequently specified 
by a logit or probit functions (Téo, 2017; Vanclay, 1991; 
Yang et al., 2003; Yao et al., 2001).

Although their popularity, both logit and probit 
link functions share a limitation for the reason they are 
symmetric (McCullagh and Nelder, 1989). In practice, 
this feature can be a limitation depending of the data sets. 
Thus, Cauchit and complementary log-log asymmetric 
link functions are available in the statistical literature as 
alternative approaches. However, the suitability of these 
link functions is not well-known in the context of forest 
management research, doing this subject quite relevant.

The specification of a statistical model for modeling 
tree survival has at least two crucial choices: a suitable 
link function and which covariates will compose the linear 
predictor. In general, forest researchers have been used 
forward, backward, or stepwise selection procedures, 
where satisfactory results have been reported (Téo, 2017; 
Zhang et al., 2017). In this paper, we introduce an alternative 
approach for selecting covariates at plot-level based on 
regularization methods. The main idea of this methods is 
to fit a regression model whose parameter estimates are 
penalized or shrunken toward to zero. In this approach, 
the goal is to obtain estimates with lower variance at the 
cost of introducing some bias in the parameter estimates. 
This feature of the regularization methods can be used for 
selecting covariates measured in forest plantations, once 
that they present high value of correlation among them, 
which implies in large standard errors.

Lasso (Least Absolute Shrinkage and Selection 
Operator) and Ridge regression are a frequently applied 
regularization technique (Tibishirani, 1996). An extension 
of these strategies is the Elastic Net approach which is a 
combination of Lasso and Ridge penalizations (Zou and 
Hastie, 2005). These techniques penalize the covariates 
by shrinking the parameter estimate and enabling the 
removal of the covariates whose estimated effects 
approach zero. Thus, our research hypothesis is that the 
regularization methods are appropriated for selecting 
correlated covariates, once this approach can reduce the 
variance of the parameter estimates.

The aim of this paper was to estimate the 
probability of loblolly pine (Pinus taeda) survival in forest 
plantations; and to identify which factors are associated 
to the tree survival. Therefore, we obtained data from 
forest inventories carried out in the Midwest of Santa 
Catarina State, Brazil. Our data was composed by a 
set of covariates usually measured at plot-level. The 
response variable was a binary value that indicated 
whether the tree is alive or not. We investigated and 
compared Bernoulli’s regression models fitted by the link 
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functions logit, probit, Cauchit and complementary log-
log. Furthermore, we performed the covariates selection 
based on the standard stepwise procedure, as well as the 
methods based on regularization as the Lasso, ridge and 
elastic net approaches.

We present the data set, a brief description about 
the study area and the modeling strategies in the material 
and methods section. The results section describes an 
exploratory data analysis and the application of the 
models to the data. We also present a discussion section 
about the main results. Finally, concluding remarks are 
presented in the conclusion section.

MATERIAL AND METHODS

Study area

The study area corresponds to loblolly pine (Pinus taeda) 
plantations, located at Midwest region of Santa Catarina state, 
Brazil. The plantations are distributed on the municipalities of 
Caçador, Lebon Régis, Macieira, Rio das Antas, Santa Cecília, 
and Timbó Grande. According to IBGE - Instituto Brasileiro 
de Geografia e Estatística (2012), the region presents original 
vegetation belonging to Mixed Ombrophilous Forest (MOF), 
under the Montane Mixed Ombrophilous Forest. Based on 
the Köppen classification, the study region presents a Cfb 
climate type, that is, a wet subtropical zone, oceanic climate, 
without a dry season and with summers temperate. The 
average temperature of the warmest month is 19.7 °C and 
the coldest month is 11.5 °C, and the annual precipitation is 
1,736 mm (ALVARES et al., 2013).

The forest plantations were planted with an average 
initial spacing of 2.5 x 2.5 m (1,600 trees per hectare). 
The ideal rotation age is 25 years, with three commercial 
thinnings usually performed at 10, 15, and 20 years old. 
In the first thinning, 50% of the trees per hectare were 
removed; while 40% of the remaining trees were removed 
in the second thinning; in the third and last thinning were 
removed 30% of the remaining trees.

Data set

The data set was obtained from forest inventory 
performed in two occasions carried out at 2009 and 
2015. The age ranged from 5.5 to 35.2 years old. In 
addition, due to the difference of six years between 
both forest inventories and because we re-sampling a 
few sample units, we assume that there is no correlation 
between measures.

The plots had dimensions from 497.93 to 739.68 
m2, which were randomly allocated (simple random 

sampling) in the study area, by using a stratified sampling 
process. The stratum represented administrative 
divisions of the company (projects and stands). The 
diameter at breast height (DBH) was measured at 1.30 
m of height in all trees inside each sub-sample. The total 
height of 20% of the trees in each plot was indirectly 
taken by using a hypsometer Vertex III. The trees 
dominant height was measured in individuals without 
bifurcation or defects over the stem and crown, and it 
was defined proportionally as the 100 trees with largest 
diameter at breast height per hectare.

The data set we used for modeling was composed 
by 13 random variables measured at plot-level. The 
number of trees selected was 40,556 trees. The 
description of each variable is given as follow:

survival: binary variable – takes value 1 if the tree 
is alive or 0 otherwise. The classification of alive tree was 
performed when the data was collected in the forest 
inventory. The tree was considered a dead individual 
when green branches were not observed on the field. In 
our approach, both regular and irregular mortality were 
combined. The regular mortality was due to the natural 
competition among trees and the senescence process. 
The irregular mortality was caused by irregular factors, as 
monkey attacks, which are quite common at the study area.

age: continuous variable – age of the tree (years);
gsample: continuous variable – sum of cross-

section areas (m²) of the trees inside plot.
nsample: discrete variable – number of trees 

inside plot;
daverage: continuous variable – average diameter 

(cm) of the trees inside plot;
dcv: continuous variable – coefficient of variation 

(%) of the diameters inside plot;
dg: continuous variable – quadratic average 

diameter (cm) of the trees inside plot;
dmax: continuous variable – maximum diameter 

(cm) of the trees inside plot;
ddom: continuous variable – dominant diameter 

(cm) of the trees inside plot. This variable was computed 
based on the average diameter of the one hundred 
largest trees per hectare, but proportionally to the size 
of each plot;

hdom: continuous variable – dominant height 
(m) of the plot. This variable was computed based 
on the height average of the one hundred largest 
trees by hectare, but proportionally to the size of 
each plot;

thinsample: binary variable – takes value 1 whether 
were performed thinnings on the plot or 0 otherwise;
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gthin: continuous variable – sum of removed 
cross-sectional area on the plot during the thinnings;

nthin: discrete variable – number of trees removed 
during the thinnings on the plot.

The generalized linear model

Tree survival (survival) was the response variable, 
which takes a binary value, i.e., the response variable 
take value 1 whether the tree is alive and 0 otherwise. 
Therefore, we applied a Bernoulli’s regression model due 
to the nature of response variable (McCullagh and Nelder, 
1989). The systematic component was formulated by a 
linear combination of a set of predictor variables, besides 
a link function selected according to the behavior of 
response variable. The specification of the model is given 
as, where  is the random variable, whose observed values 
are denoted by yi, i=1,2,...,n; xi1,...,xip are vectors of the 
predictor variables  is the probability of success, i.e., 
is the survival probability; g is a differentiable and monotone 
link function;  is the linear predictor; and  
are parameters to be estimated.

of penalization intensity. The optimum  was determined 
by cross-validation, using the cv.glmnet function of the 
glmnet package (Friedman et al., 2010) on the R software 
(R Core Team, 2019). In this approach, our main goal was 
to identify the smallest loss for a sequence of . Still, we 
tested the loss function based on Mean Squared Error 
(MSE), Mean Absolute Error (MAE) and Deviance (DEV). 
Once that the , the penalization term has no effect when 
, and the parameter estimates are equal to the maximum 
likelihood estimates. However, when  the penalization 
is strong and the parameter estimates tend to zero 
(Tibshirani, 1996). The covariates have different nature, 
what can influence on the selection procedure; thus, we 
standardized them for minimizing their scale effects.

[1]

[2]

Linear predictor and link function selection

For composing the linear predictor, 12 covariates 
were available. We applied two strategies for selecting 
the covariates:

I) Stepwise: covariate selection was based on the 
minimization of the Bayesian Information Criterion (BIC), 
given by the following expression, where  is the maximized 
log-likelihood value;  is the number of observations; and  is 
the number of parameters of the model. This algorithm 
is a combination of backward and forward procedure, 
where the covariates are added or removed in successive 
iterations until obtaining the smallest BIC. Thus, we 
assumed that this methodology is the standard approach in 
forest modeling due to its large applications.

[3]

II) Regularization: covariates selection was 
performed with regularization methods. This procedure 
is based on penalizations controlled by the parameter 
; while the penalization intensity was quantified by 
parameter . The general formulation is given by equation 
4. For the especial case where , we obtained a first order 
penalization, also called as lasso regularization method. 
A second order penalization was defined when , and the 
method is called as ridge regression. The Elastic Net is an 
intermediate penalization when , and we tested a large grid 

[4]

After defining the best  and  parameters and the 
covariates selected on the regularized model, we specified 
four link functions. The Cauchit (01), complement log-
log (02), logit (03) and probit (04) link functions were 
tested for verifying their influence on the selection of 
covariates for the stepwise approach. The most suitable 
link function was based on the smallest value of Bayesian 
Information Criterion (BIC), once that the models can 
present different number of covariates. The generalized 
linear model specification for each link function on linear 
predictor scale is given by equations 5, 6, 7 and 8, where 
tan is the tangent function;  is the natural logarithm; and 

 is the inverse of probability density function of the 
standard normal distribution.

[5]

[6]

[7]

[8]

Investigating the performance of non-normal 
models usually cannot be done by traditional residual 
analysis. Therefore, for evaluating the assumptions of the 
fitted models, we performed a diagnostic analysis based 
on half-Normal plots (HNP) with simulated envelope, 
built by hnp function of the hnp package (Moral et al., 
2017) on the R software. The idea behind HNP is to 
verify whether the error distribution was specified in 
an appropriately way. Thus, for a well-fitted model, the 
simulated envelope is such that the model diagnostics 
measures are likely to fall within it. The main purpose 
of the envelope is to serve as an indicative of what we 
expect about the residuals under a well-fitted model 
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(Moral et al., 2017). Still, we computed the randomized 
quantile residuals (RQR) as a complementary analysis. In 
this case, if our model is correctly specified, we expect 
the residuals follow a normal distribution (Dunn and 
Smyth, 1996).

Predictive performance

The predictive performance of the models was 
compared by standard methods. The data set was 
randomly split in two subsets. The fitting data was 
composed by approximately 90% of the observations and 
was used to fit the survival model. The validation data set 
was applied for evaluating the prediction performance of 
them models by Receiver Operating Characteristic curve 
(ROC) of the ROCR package (Sing et al., 2005) on the 
R software. The sensibility (Sens) and specificity (Esp) 
of each model was estimated for 0.75; 0.85; 0.90; 0.95 
and 0.99 probability cut points. These measures indicate 
the performance of the models for classifying individuals 
in survival or non-survival, in which the more suitable 
cut point was obtained based on Youden and Closest 
Topleft rules (Unal, 2017), whose expression are given 
respectively as equation 9.

individual dimensions tend to decrease. Moreover, 
thinnings covariates showed high positive correlation 
among them, but negative correlation with almost all the 
other covariates. High positive correlation values were 
also observed for covariates directly computed based on 
tree-level measures, such as diameter and height.

Fitting the models

The stepwise procedure selected the covariates 
gsample, nsample, dcv, dg and dmax for composing the linear 
predictor. On the other hand, all covariates were selected 
by the regularization methods. The best  value obtained 
by cross-validation was close to 0 for all sequences of  that 
perform the Lasso, Ridge, and Elastic Net procedures, 
regardless of loss measure tested (MSE, MAE or DEV), 
indicating that the penalization term had no effect on the 
parameter estimates. However, even when we fitted the 
model with all covariates, only gsample, nsample, dcv, dmax, 
gthin, and nthin were significant (Table 2). Thus, we decided 
to continue the data analysis considering these covariates 
in their natural scale. So, we could easily interpret their 
effects on tree survival.

Bayesian information criterion (BIC) and residual 
deviance (RD) indicated that the complementary log-log link 
function provided the best fit in both modeling approaches 
(Table 1). However, when BIC values were compared 
between covariate selection approaches, the stepwise 
procedure provided the best fit for all link functions. This 
result is related to the largest penalty on the log-likelihood 
function of the model based on the regularization approach 
due to the largest number of parameters. Furthermore, 
complement log-log and probit link functions had the same 
covariates selected by the stepwise procedure. For logit 
link function, this method also selected the covariates 
related to thinnings, such as gthin and nthin, while Cauchit 
selected ddom and daverage.

We performed a graphical analysis for evaluating 
the assumptions of the fitted models. Our models were 
based on a Bernoulli specification of the binary response 
variable survival. Thus, the assumptions usually assumed 
for normal data are no longer demanded. The half-
Normal plot presented in Figure 3 suggested that the 
models were properly specified, once the residuals do not 
exceed the simulated envelope. However, both models 
presented similar behavior, indicating a good fit and a 
suitable probability distribution of response variable. 
As a feature of the randomly quantile residuals, when 
the model is suitable to the data it should be expected 
a normal distribution of the residuals, regardless of 
the distribution of the response variable and selected 

[9]

RESULTS

In this section, we presented an exploratory 
analysis of the variables and how they are related which 
others. We also showed the effect of the link functions 
in selecting covariates for composing the linear predictor 
of the generalized linear model, besides the main results 
obtained on the covariates selection procedure. Finally, 
we applied the best models in the validation data set for 
assessing their prediction performance.

Exploratory data analysis

Boxplots presented in Figure 1 suggested an 
asymmetric distribution of the covariates according to 
the response variable levels and a possible significant 
effect of the covariates based on diameters measures 
and age. Figure 2 presents a correlogram based on 
Spearman´s rank correlation coefficient, where the 
covariates were clustered by the centroid method 
(Mingoti, 2005). Three groups with high correlation 
values stand out, which suggest that multicollinearity can 
be a concerning problem for this data set and highlights 
the need of a covariate selection. The nsample covariate 
had a negative relationship with other covariates that 
directly express tree dimensions. This indicates that as 
the number of trees in the sample increase, the tree 
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covariates. In our case, sample and theoretical residual 
quantile had a linear association (Figure 3), confirming 
a good performance of the fitted models and a normal 
distribution of the residuals.

Some preliminary analyses indicated that only the 
main effects of covariates were suitable for modeling the 
response variable survival, in which interaction terms are not 
required to be included in the linear predictor. Parameter 
estimates and standard errors for both covariate selection 
procedures are presented in Table 2. Point estimates of the 

fitted model based on stepwise selection suggested that 
the response variable has negative relation to gsample and 
dcv, since the associated parameters had a negative sign. 
In practice, larger cross-sectional area and higher diameter 
variability in the sample are associated with a lower 
individual survival probability. On the other side, nsample, 
dg, and dmax covariates are associated with higher values 
of survival probability.

FIGURE 1 Boxplots (A:K) and barchart (L) of the covariates by survival index..

FIGURE 2 Correlogram between variables clustered by 
centroid method.

TABLE 1 Bayesian information criterion (BIC) and residual 
deviance (RD) by link functions and covariate 
selection methods.

Link function
BIC (Number of variables) Residual Deviance

Stepwise Regularization Stepwise Regularization
Cauchit 7,068.31 (9) 7,094.78 (12) 6,963.30 6,958.20

C. log-log 6,847.46 (5) 6,904.20 (12) 6,784.40 6,768.30
Logit 6,874.73 (7) 6,910.75 (12) 6,790.70 6,774.20
Probit 6,851.50 (5) 6,906.84 (12) 6,788.50 6,769.30

TABLE 2 Parameter estimates, standard errors (SE) and 
p-value of the fitted models with complementary 
log-log link function on the linear predictor scale.

Parameter Estimate SE p-value Estimate SE p-value
Regularization Stepwise

intercept -0.2940 0.3917 p > 0.05 -0.3973 0.2305 p ≤ 0.10
age -0.0097 0.0128 p > 0.05 - - -

gsample -0.0404 0.0034 p ≤ 0.05 -0.0413 0.0024 p ≤ 0.05
nsample 0.0017 0.0001 p ≤ 0.05 0.0017 0.0001 p ≤ 0.05
daverage -0.4005 0.3486 p > 0.05 - - -

dcv -0.0484 0.0146 p ≤ 0.05 -0.0411 0.0047 p ≤ 0.05
dg 0.4891 0.3469 p > 0.05 0.0575 0.0118 p ≤ 0.05

dmax 0.0451 0.0093 p ≤ 0.05 0.0312 0.0069 p ≤ 0.05
ddom -0.0426 0.0224 p > 0.05 - - -
hdom 0.0028 0.0102 p > 0.05 - - -

thinsample -0.0238 0.1884 p > 0.05 - - -
gthin 0.0230 0.0098 p ≤ 0.05 - - -
nthin -0.0008 0.0003 p ≤ 0.05 - - -
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Predictivity performance

A validation data set was used for comparing the 
performance of the fitted models in predicting the response 
variable, once the forest planning directly depends on the 
estimated number of alive trees in a forest stand. The ROC 
curves were similar for both models (Figure 4). However, 
the area under the curve was 0.805 for the model selected 
by stepwise procedure, and 0.814 for the model chosen 
by regularization method, indicating a slightly better 
predictions for the model with more parameters.

The estimated sensitivity and specificity values for 
a 0.99 probability cut point are presented in Table 4. The 
results suggested that the models have great capacity 
to identify alive trees, due to the high sensitivity value. 
However, the low specificity value can be related to the 
rare non-surviving trees in the sample.

FIGURE 3 Half-Normal plot (left) and randomly quantile residuals 
(right) for assessing the fitted models.

FIGURE 4 ROC curve of the models applied to the validation 
data set.

When we changed the cut point for defining a 
suitable probability value for classifying trees in survivors 
or non-survivors, the best result was obtained with a 
0.99 probability cut point. This result was observed 
for both models, once that in this probability cut point 
was obtained the highest value in Younden´s rule and 
the lowest value in Closest Topleft´s rule (Table 3). We 
also noticed that the model based on the regularization 
procedure presented slightly higher values in the decision 
rules than the stepwise procedure, resulting in a better 
performance for classifying the individuals.

TABLE 3 Youden and Closest Topleft decision rules for different 
probability cut points of the models applied to the 
validation data set.

Model Cut point Youden Closest Topleft

Stepwise

0.75 1.000 1.000
0.85 1.010 0.977
0.90 1.049 0.890
0.95 1.300 0.372
0.99 1.449 0.291

Regularization

0.75 1.000 1.000
0.85 1.000 1.000
0.90 1.049 0.890
0.95 1.315 0.347
0.99 1.454 0.286

TABLE 4  Sensitivity and specificity of the selected models 
applied to the validation data set for a 0.99 probability 
cut point.

Model Sensitivity Specificity
Stepwise 0.989 0.460

Regularization 0.989 0.466

DISCUSSION

The main goal of this paper was to specify and 
fit a generalized linear model for estimating the tree 
survival probability in loblolly pine plantations. We tested 
four strategies of covariate selections based on stepwise 
and regularization procedures, such as ridge regression, 
lasso and elastic net method. We were also interested in 
analyzing the influence of link functions when selecting 
covariates for composing the linear predictor. Initially, we 
expected that the regularization method would be more 
appropriate for selecting correlated covariates, which are 
common in forest variables, because this approach can 
include some bias in parameter estimates in contrast to 
reduce their variance. Since the covariates are correlated 
and standard errors are larger, regularization procedures 
are quite promising in forest modeling. However, 
the penalization term had no effect in our model. As 
consequence, the stepwise procedure performed best 
due to the fewer selected covariates, making this a more 
parsimoniously procedure.

A different number of selected covariates for 
composing the linear predictor of the model can be 
obtained when we consider different link functions, what 
suggests that the link function must be appropriated 
for a specified data set. Despite preference by Logit 
link function on the tree survival probability modeling 
in forest plantations (Téo, 2017; Yang et al., 2003; 
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Yao et al., 2001), better results on BIC were obtained 
for complementary log-log and probit link functions, 
which provided models with a few parameters. The 
performance of the complementary log-log link 
function showed evidence that the behavior of tree 
survival probability is asymmetric when related to the 
linear predictor, once that the individual tree survival 
probability approaches to zero and one in different rate. 
Thus, considering a symmetric link function may not be 
a reasonable assumption in tree survival modeling (Jiang 
et al., 2013). These results became relevant because the 
probability of success presented values quite near of one, 
where the link functions show more discrepancy.

Our models performed well for fitting and predicting 
the survival probabilities. However, better results can be 
obtained whether more covariates are considered for 
composing the linear predictor, such as environmental 
variables, mainly whether the model is applied to large 
areas. Zhang et al. (2017) modeled the mortality of forest 
plantations located at China using climatic covariates, 
besides initial planting density and competitions indexes. 
The authors suggested the inclusion of climatic variables 
in mortality models can facilitate the projection of tree 
mortality under future climate change conditions. Thapa 
and Burkhart (2015) tested climatic and soil effects on 
tree mortality, and the predictions performed best when 
they included these covariates. However, climatic variables 
were significant just when the model was fitted for large 
areas, which suggests that only climatic effects play a minor 
role in small areas.

In forest research involving tree mortality or survival, 
tree competition indices are commonly used as predictor 
variables (Miranda et al., 2017; Téo, 2017, Zhang et al., 
2017). However, these indexes are computed in function 
of covariates usually included in the linear predictor. As 
an example, basal area larger index (BAL) is obtained by 
summing the cross-sectional area of all trees with larger 
diameter than the object tree (Eid and Tuhus, 2001), 
then being a function of the diameter at breast height. 
This procedure can induce a correlation between both 
variables (Miranda, 2016; Schröder and Gadow, 1999). 
Consequence of correlated covariates is a larger standard 
error of the parameters estimates, that can compromise 
the hypothesis tests and inferences. In our preliminary 
analysis, changes in the parameters sign and standard error 
of the stepwise model were observed when we removed 
the covariates dg or dmax. This result is explained by the 
high correlation value (0.95) between them.

We tested thinsample, gthin and nthin covariates 
for accounting possible thinning effects on tree survival 

probability. However, similar to what was found by Avila 
and Burkhart (1992), no improvement was obtained in 
the predictions when those variables were added to the 
model. A possible reason is that the mortality is a quite rare 
phenomenon, and after thinning we also do not expect a 
relevant regular mortality. According to Bose et al. (2018), 
commercial thinning treatment replaced self-thinning of 
suppressed trees; thus, decreasing tree mortality in loblolly 
pine and Douglas-fir plantations in North America. The 
authors also highlighted that the thinning was effective for 
reducing long-term tree mortality in red spruce and balsam 
fir, confirming the significance of thinning intensity and basal 
area as relevant predictor covariates.

Our tree survival probability models presented a 
great ability to predict alive trees, as suggested by the 
sensitivity statistic (Table 5). Téo (2017) used logistic 
regression combined with logit link function for modeling 
Pinus taeda tree survival probability in Midwest of Santa 
Catarina. The sensitivity of his model was 98.9% and 
the specificity was 43.1% for irregular mortality, being 
similar that one obtained in this paper. When the 
author considered only regular mortality, sensitivity and 
specificity were 99.1% and 52.3%, respectively. These 
results suggest that the natural mortality is more regular 
than that one caused by external factors.

A possible reason for the discrepancy observed 
for sensitivity and specificity of the model was the 
different number of survived and non-survived trees. 
These imbalance between alive and dead trees classes have 
influence on the effectiveness of the model. In general, tree 
survival probability models usually do not present high 
values of specificity (Adame et al., 2010; Téo, 2017), what 
may be related to the few dead trees in a forest plantation 
when compared to the number of alive trees. As alternative, 
Kuhn and Johnson (2013) suggested to use more balanced 
prior probabilities or a balanced training set may help to 
deal with this class imbalance. However, this approach still 
requires detailed researches in forest modeling. Another 
possible reason for lower values of specificity is related 
to the lack of ability of the covariates usually measured at 
forest inventories in identifying the dead individuals. Thus, 
we recommend testing more covariates for increase the 
specificity of the survival models.

Finally, futures topics to be explored in survival 
modeling are related to the inclusion of forest inventories 
performed in several occasions, with several occasions of 
sample units measurements, defining a longitudinal study, 
due to the temporal dependency among observations. 
Applications of spatial statistics should be considered for 
improving the analysis of tree survival in forest stands, 
since the environmental gradient can influence the tree 
individual mortality.
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CONCLUSION

In this study, we specify and fit a generalized linear 
model for estimating the probability of loblolly pine tree 
survival in forest plantations, considering covariates 
usually measured in forest inventories. The plot-level 
variables that most contributed to assess tree survival 
were basal area, number of trees, maximum diameter, 
diameter of the average cross-sectional area and the 
diameter coefficient of variation.

The stepwise procedure for selecting covariates 
was more parsimonious than the regularization 
procedures tested; and combined with complementary 
log-log link function was the procedure provided the most 
suitable model. The model presented a great prediction 
ability, mainly due to the high number of survival 
trees. Additional researches related to regularization 
techniques are recommended in forest modeling, mainly 
regarding survival and individual growth models.
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