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HIGHLIGHTS

The volume of a stem or any part of a tree can be accurately estimated depends on the stem 
taper estimations.

The ANN models and taper equations were compared for estimating stem diameters for a 
mixed stand in Turkey.

The ANN models were superior to taper equations for stem diameter predictions.

ANN models offer some advantages to overcome the problems such as multicollinearity and 
autocorrelation.

ABSTRACT

Development of artificial neural network (ANN) models to estimate stem tapers of indi-
vidual trees in mixed Fagus orientalis and Abies nordmanniana subsp. equi-trojani stands dis-
tributed in Karabük region of Turkey, and comparison of the ANN models with stem taper 
equations were aimed in this study. The measurements were obtained from 516 sample 
trees (238 for Oriental beech and 278 for Kazdağı fir) in mixed stands of Karabük region. 
The measurements included diameter at breast height, tree height, diameter at stump 
height, and diameters at intervals of 1 m along the stem. In total, 45 ANN models and four 
stem taper equations were developed. Estimation performances of ANN models and stem 
taper equations were compared using relative rankings according to seven goodness-of-fit 
criteria. As a result, the ANN models were more successful in estimation of stem taper 
for both tree species. The most successful ANN model structures were (i) the model us-
ing logistic function in hidden layer with 10 nodes and hyperbolic tangent function in out-
put layer for Fagus orientalis, and (ii) the model using logistic function in hidden layer with 
10 nodes and linear function in output layer for Abies nordmanniana subsp. equi-trojani.

v.24 n.4 2018
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INTRODUCTION

In order to know merchantable stand volume, 
which is one of the main components of forest dynamics, 
type and amount of the wood-based products obtained 
from the stands are important components of forest 
inventory which forms the basis of forest management 
(Barrio-Anta et al., 2007). In addition, depending on the 
commercial standards changing in the direction of forest 
products industry’s demands, the quantities of wood-
based products must be estimated successfully as well as 
stem volumes before harvesting activities. The success 
of accurate and reliable estimation of the stem volume of 
a tree and the volumes of the wood products obtained 
from trees coincides with the success in estimation of the 
stem diameters. Thus, volume of a stem or any part of a 
standing tree can be accurately estimated depending on 
the stem taper estimation success for the subject tree.

The most common approach to estimate stem 
diameters, which is the main variable to predict the 
volume of wood products more accurately, is to use stem 
taper equations (Fang et al., 2000; Diéguez-Aranda et al., 
2006; Li and Weiskittel, 2010; Özçelik and Crecente-
Campo, 2016). Researches on modeling of stem taper 
estimates have still been in progress for over a century 
(Fang and Bailey, 1999). It has been stated that there are 
two main reasons for these studies; (i) the absence of a 
basic theory that would explain the change in stem forms 
of trees, and (ii) the need for a method that considers 
various wood products standards depending on the 
changing market conditions (Nevnham, 1988).

In general, regression models are used to develop 
stem taper equations, and successful equations are 
determined by making evaluations according to various 
statistical criteria. However, some statistical assumptions 
have to be provided in order to develop regression 
models. These assumptions are; (i) independent, normally 
distributed and homoscedastic data, (ii) exact relationships 
between dependent and independent variables, and 
(iii) no measurement errors in variables (Ashraf et al., 
2013). Moreover, multicollinearity and autocorrelation 
among variables also influence estimation success of 
regression models (Legendre, 1993; Sakici et al., 2008). 
The multicollinearity measures the correlations between 
the independent variables, and autocorrelation affects the 
independence of errors (Kozak, 1997). These problems 
may seriously affect the standard errors of the coefficient, 
invalidating statistical tests using t or F distributions and 
confidence intervals (Diéguez-Aranda et al., 2006; Özçelik 
and Crecente-Campo, 2016), even if it may not be 

important for practical use of regression models such as 
stem taper equations (Özçelik et al., 2016).

Artificial neural networks (ANN) is a modelling 
and estimating method based on the architecture 
of human brain, and it has been an essential tool in 
estimation studies since 1980’s (Elmas, 2007). It is 
known that regression models developed on the basis of 
various biological data (i.e., forestry researches) cannot 
fulfill some of the aforementioned assumptions, and may 
contain multicollinearity and autocorrelation problems. 
Since ANN techniques have considerable flexibility 
in achieving these assumptions and they can provide 
successful estimation results for modeling complex 
relationships, its use is an innovative trend in forestry 
researches as well as other biological based studies.

Since the initial studies on stem taper estimations, 
the regression analysis approach has been commonly 
utilized (e.g., Kozak et al., 1969; Max and Burkhart, 1976; 
Clark et al., 1991; Kozak, 2004; Özçelik and Brooks, 
2012; Corral Rivas et al., 2017). However, the knowledge 
on the use of ANN techniques for stem taper estimation 
is quite limited (e.g., Diamantopoulou, 2010; Özçelik et 
al., 2010; Leite et al., 2011; Özçelik et al., 2014; Nunes 
and Görgens, 2016), although this approach has been 
widely used in some other research areas of forestry 
(e.g., Diamantopoulou et al., 2009; Diamantopoulou 
and Millios, 2010; Cai et al., 2012; Diamantopoulou and 
Özçelik, 2012; Ashraf et al., 2013; Castro et al., 2013; 
Özçelik et al., 2013; Yurtseven et al., 2013; Ashraf et 
al., 2015; Diamantopoulou et al., 2015; Vahedi, 2016; 
Nazerian et al., 2018).

In this study, the ANN models for stem taper 
estimations were developed for both Oriental beech 
(Fagus orientalis Lipsky.) - Kazdağı fir (Abies nordmanniana 
subsp. equi-trojani (Asc. & Sint. ex Boiss.) Coode & 
Cullen) species in mixed stands located in Karabük 
region, Turkey. The estimation successes of these models 
were compared with some regression based stem taper 
equations (i.e., Max and Burkhart, 1976; Fang et al., 
2000; Bi, 2000; Kozak, 2004). It was hypothesized that 
ANN models would give a better estimation of stem 
taper than regression based equations.

MATERIAL AND METHODS

Study area

The total forested area of Turkey is 22.3 million 
hectares, and it comprises 28.6% of the total area of 
the country. Among the numerous tree species spread 
throughout the forest ecosystems in Turkey, beech 
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(Fagus L.) has the largest distribution area (1.96 million 
hectares) within deciduous tree species, while fir (Abies 
Mill.) has the second widest distribution area (0.67 
million hectares) following pine (Pinus L.) species within 
coniferous (General Directorate of Forestry, 2015).

The data used in this study were obtained 
from beech and fir sample trees located in mixed 
Oriental beech (Fagus orientalis) and Kazdağı fir (Abies 
nordmanniana subsp. equi-trojani) forests of Büyükdüz 
Planning Unit, which is one of the nine planning units of 
Karabük Forest Enterprise (Figure I). The total forested 
area of the planning unit is 5,341 ha (99% of the total 
acreage), and 51% of these forests are covered by 
mixed stands of beech and fir. Seventy-eight percent 
of these mixed stands are managed using even-aged 
techniques, while uneven-aged methods are used within 
the remaining 22%. 

The elevation of the study area ranges from 800 
to 1,736 m above sea level, with an average of 1,270 m, 
while the average slope is 45%. Mean annual temperature 
is 12 °C, and mean annual precipitation is 650 mm. The 
soils are loam or sandy-loam, and soil depth is medium 
or deep.

Data

In total, 516 sample trees (238 for Oriental beech 
and 278 for Kazdağı fir) were sampled in the study area. 
During the selection of the sample trees, healthy trees 
with unbroken tops were chosen from both even-aged 
and uneven-aged stands covering the existing range of 
sites. All sample trees were felled from stump height 
(i.e., 0.30 m above ground). For each sample tree, 
stump diameter (cm, at 0.30 m above ground), diameter 
at breast height (cm, at 1.30 m above ground), and 
diameters over-bark (cm) at 1 m height interval above 
breast height along to the stem were measured to the 
nearest 0.1 cm. Total tree heights (m) were also recorded 
to the nearest 0.01 m.

The sample trees were randomly divided into 
two groups as model development and validation data, 
considering diameter at breast height and tree height 
ranges. The first group included 75% of the sample trees 
of both species (i.e., 178 for Oriental beech and 208 for 
Kazdağı fir), while the second included the remaining 
25% (i.e., 60 for Oriental beech and 70 for Kazdağı fir). 
The data within the first group were used to develop 
ANN models and stem taper equations, while the data 
within second group were used to test the validity of 
the developed models. Descriptive statistics of the data 
groups are given in Table I.

Artificial neural networks

Artificial intelligence techniques were used 
to estimate stem diameters, and ANN models were 
developed for this aim in this study. There are several 
criteria such as number of layers, learning algorithms, 
form of transfer functions, node numbers in hidden layer, 
and determination of data sizes for training, verification 
and test processes for defining the neural network 
architectures. The ANN models developed in this study 
included three layers: input, hidden and output layers. 
The feed-forward backpropagation network structure 
was chosen, since this structure has been very popular 
in forestry literature due to its estimation success (e.g., 
Özçelik et al., 2014; Diamantopoulou et al., 2015). The 
Levenberg-Marquardt algorithm was used as learning 
algorithm in ANN models because of the same reason 
with selecting network structure. In hidden and output 
layers separately, the transfer function forms were linear, 
logistic and hyperbolic tangent functions (Equations 
1-3). To determine the successful alternatives, the node 
numbers in hidden layers tested were 2, 4, 6, 8 and 10 in 
training process of ANN models, where s=∑wixi, wi are 
weights and xi are the input variables.

FIGURE 1 Study area.
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The input variables of ANN models were diameter at 
breast height (D), tree height (H) and diameter measurement 
height (h), while the output (target) variable was diameter 
over-bark (d) at a height h. It is stated that the training of an 
ANN could be more efficient by normalizing the raw data 
of the network (Jayalakshmi and Santhakumaran, 2011). The 
normalization of the data will accelerate the training process 
and minimize the bias within the network. There are various 
types of data normalization. One of them is the min-max 
normalization, in which the data are rescaled within a range 
from 0 to 1 or from -1 to 1. The min-max normalization was 
applied to all inputs and outputs of this study using Equation 4. 
Thus, all variables were scaled between -1 and 1, separately, 
for both species. If the normalized data are used in training 
process, the outputs of the ANN models should be de-
normalized to get real outputs. The de-normalization of model 
outputs can be easily obtained using Equation 5, where XN and 
XD are normalized and de-normalized data, respectively, Xi is 
raw data, Xmin is minimum raw data, Xmax is maximum raw data, 
Ymin is equal to -1 and Ymax is equal to 1. The “data” term in these 
explanations means that input or output variables used in the 
study, separately.

TABLE 1 Descriptive statistics of the data groups.
Species Data Group Variables n Min. Max. Mean Std. Dev.

Oriental beech

Model 
development

Diameter at breast height (cm) 178 10.1 88.5 43.9 16.4
Tree height (m) 178 8.5 33.9 22.1 6.6

Stem diameter (cm) 3,969 1.1 91.4 27.1 16.9

Validation
Diameter at breast height (cm) 60 14.0 80.1 44.4 15.9

Tree height (m) 60 8.8 34.0 22.2 6.6
Stem diameter (cm) 1,331 1.1 82.1 27.2 17.2

Total
Diameter at breast height (cm) 238 10.1 88.5 44.0 16.2

Tree height (m) 238 8.5 34.0 22.1 6.6
Stem diameter (cm) 5,300 1.1 91.4 27.1 17.0

Kazdağı fir

Model 
development

Diameter at breast height (cm) 208 11.4 100.1 44.4 17.4
Tree height (m) 208 7.5 35.6 22.2 6.1

Stem diameter (cm) 4,647 0.5 104.0 26.4 17.2

Validation
Diameter at breast height (cm) 70 10.8 84.7 43.5 17.3

Tree height (m) 70 8.6 34.3 22.4 5.9
Stem diameter (cm) 1,576 0.9 89.0 25.7 16.9

Total
Diameter at breast height (cm) 278 10.8 100.1 44.2 17.3

Tree height (m) 278 7.5 35.6 22.2 6.0
Stem diameter (cm) 6,223 0.5 104.0 26.2 17.1
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both training and test data within the model development 
data is important to prevent overfitting of the models 
(Leahy, 1994). In this study, the model development data 
obtained from 178 Oriental beech and 208 Kazdağı fir 
sample trees were randomly divided into training (70% 
of the model development data), verification (15%) and 
control data (15%), separately for both species (Figure 2).

Finally, a total of 45 ANN model architectures for 
stem diameter estimations were created for both species 
using three transfer function alternatives in hidden and 
output layers, and five number of nodes alternatives in 
hidden layer. The architecture of the ANN models used 
is given in Figure 3. These models were built using the 
neural network toolbox in R2015a version of MATLAB.

Stem taper equations

The development of the stem taper equations began 
in the late 1960s, and they have been still widely used today in 
forestry literature (e.g., Bruce et al., 1968; Kozak et al., 1969; 
Hjelm, 2013; Arias-Rodil et al., 2015; Özçelik and Crecente-
Campo, 2016; Corral-Rivas et al., 2017). Various types of stem 
taper equations have been published, and these equations are 
basically classified according to their model forms such as (i) 
simple polynomial (e.g., Bruce et al., 1968), (ii) segmented 
(e.g., Max and Burkhart, 1976; Clark et al., 1991; Fang et al., 
2000), and (iii) variable-exponent (e.g., Bi, 2000; Kozak, 2004) 
taper equations (Diéguez-Aranda et al, 2006; Sakici et al., 
2008). In this study, four stem taper equations were developed 
using regression analysis to compare the ANN models. Two 
of these equations were segmented stem taper equations 
(Fang et al., 2000; Max and Burkhart, 1976), while the others 
were variable-exponent equations (Bi, 2000; Kozak, 2004). 
The forms of these equations are presented in Table 2. In the 
segmented equations used in this study (i.e., Max and Burkhart 
(1976) and Fang et al. (2000)), the tree stem is divided into 
three parts, and all parts are fitted separately. The first of the 
variable-exponent equations is based on the trigonometric 
principles (Bi, 2000), while the other uses exponential function 
form (Kozak, 2004). All of these equations have been often 

When using the feed-forward backpropagation 
network structure, the model development data should 
be partitioned into training and test data, and the test data 
should also be separated into verification and control data in 
the training process of ANN models. This is because having 
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FIGURE 2 Division of the data sets.

FIGURE 3 Architecture of the ANN models used.

TABLE 2  Stem taper equations fitted in this study.

Max and Burkhart (1976) 
equation:
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Fang et al. (2000) 
equation:
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Kozak (2004) equation: d a D H q
b
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* d is stem diameter (cm), D is diameter at breast height (cm), H is tree height (m), h is height of the measurement point of diameter d(m), q is equal to h/H, b is 

equal to 1.3/H, pi are proportions of the height of inflection points (li) to tree height, k is π/40000, and ai and bi  are equation parameters.
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preferred, and provide better statistical results in the literature 
(e.g., Brooks et al. (2008) for Max and Burkhart (1976) equation, 
Diéguez-Aranda et al. (2006), Özçelik and Crecente-Campo 
(2016), Özçelik et al. (2016) and Corral-Rivas et al. (2017) for 
Fang et al. (2000) equation, Li and Weiskittel (2010) and de-
Miguel et al. (2012) for Bi (2000) equation, and Fonweban et al. 
(2011) and Menéndez-Miguélez et al. (2014) for Kozak (2004) 
equation). The stem taper equations were fitted using model 
development data by MODEL procedure of SAS software for 
both species.

Model comparisons and validation

The ANN models and taper equations were 
evaluated based on seven goodness-of-fit statistics including 
the correlation coefficient (R), root mean square error 
(RMSE), bias (B), mean absolute error (MAE), total error 
percent (TE%), mean absolute error percent (MAE%), 
and Akaike information criterion (AIC). Corresponding 
mathematical forms of statistical criteria utilized were 
defined as: in these equations; di and  are observed and 
estimated diameters, respectively,  is mean diameter, p is 
number of parameters in equations, and n is sample size.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R
m S S
S Si

i= +
−( ) −( )

−( )
1

1 min

max min

[17]

Relative rankings of the ANN models were first done 
according to number of nodes in hidden layer for transfer 
function pairs of hidden and output layers, separately, for each 
statistical criterion. Therefore, seven rankings with 45 ANN 
models were formed for nine transfer function pairs (i.e., linear, 
logistic and hyperbolic tangent functions were used in both 
hidden and output layers.) for both tree species. The model 
with the highest R was ranked as 1 and the lowest R was ranked 
as 45 for correlation coefficient, while the model with the 
lowest value was ranked as 1 and the highest value was ranked 
as 45 for the other goodness-of-fit statistics. Next, seven 
relative ranks of each model according to statistical criteria 
were summed. The second relative ranking was implemented 
using the total relative ranks of each ANN model. Thus, the 
most successful ANN models were specified for overall ANN 
models as well as for transfer function pair groups. 

The validities of the ANN models and stem taper 
equations were tested using the statistical procedure 
proposed by Leite and de Oliveira (2002) to test the 
identity between the observed and predicted results. This 
procedure resulted from the combination of the F test, 
t-test for the medium error of predictions and analysis of 
the linear correlation coefficient (R) between observed 
and predicted values. In their study, it is recommended 
that only one measure is not enough to compare model 
results with observed ones efficiently. For instance, a 
model may give statistically similar results with observed 
ones according to the t-test, while the accuracy of the 
same model is unsuccessful regard to the F test with low 
correlation coefficient. In another case, a model with high 
correlation coefficient cannot pass the t-test and/or F test. 
To avoid these inconveniences, comparison tests should 
be implemented simultaneously as suggested by Leite and 
de Oliveira (2002). In our study, the proposed statistical 
procedure, which detailed in reference article, was applied 
to all developed models for each tree species.

Finally, the successive ANN models and stem 
taper equations were re-ranked together after the 
validation tests. To present the prediction abilities of the 
ANN models and stem taper equations, residual graphs 
based on observed and predicted stem diameters were 
also prepared for the most suitable ANN models and 
stem taper equation for each species. 

RESULTS

A total of 45 ANN models were developed using five 
number of nodes and nine transfer function pairs alternatives 
for both species. When these models were evaluated 
according to the statistical criteria, all alternatives containing 
logistic transfer function within output layer were unsuccessful 

It is desirable that the R values are high, while the 
others (i.e., RMSE, B, MAE, TE%, MAE%, and AIC) are low 
when comparing alternative models. For ranking of models, 
considering all the goodness-of-fit statistics together is 
better than the ranking of each criterion separately. To 
compare the models and equations developed, the relative 
ranking method was used (Poudel and Cao, 2013). In this 
method, the relative rank of model i according to a statistical 
criterion is defined using following formula, where Ri is the 
relative rank of model i (i=1, 2, …, m), Si is the goodness-
of-fit statistic of model i, Smin and Smax are the minimum and 
maximum values of Si, respectively. 

R
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for stem diameter estimations of both tree species. In addition, 
the ANN models comprising linear transfer function within 
hidden layer have also dissatisfactory results. When the ANN 
models were ranked with these inappropriate alternatives, the 
evaluation of success of the other models was quite difficult. 
Hence, the relative rankings were built only for remaining 
20 models according to the statistical criteria for both tree 
species. The goodness-of-fit results and their corresponding 
relative ranks for the evaluated ANN models were given in 
Table 3 and Table 4, respectively.

As it can be seen in Table 3 and Table 4, the goodness-
of-fit statistics and relative ranks of the ANN models provided 
more favorable results depending on the increase of the node 
numbers in the models within each transfer function pair. 
The models comprising 2 nodes in hidden layer seemed to 
be the worst models for each pair, while the models with 
10 nodes were the best for Oriental beech. However, for 
Kazdağı fir, the similar results were achieved, that is, models 

with 2 nodes in hidden layer were considered as the worst 
models, while the best models were comprising 6 nodes for 
the pairs with hyperbolic tangent function, and 10 nodes for 
the pairs with logistic transfer function in hidden layer. When 
all models were compared together for each tree species, 
the best ANN model for both species was the model with 
logistic function in hidden layer and linear function in output 
layer containing 10 nodes. 

In this study, four stem taper equations were also 
fitted for both species using regression analysis approach. 
The parameter estimates and their corresponding goodness-
of-fit statistics for these equations were presented in Table 5 
and Table 6, respectively. All parameters of these equations 
were significant at α=0.05 level. As it can be seen in Table 6, 
all equations had appropriate results, and the most successive 
equation was Kozak (2004) for both species according to 
the statistical criteria.

TABLE 3  Goodness-of-fit statistics of the ANN models.
Tree 

Species
Transfer  function Number of 

node
R2 RMSE B MAE TE% MAE% AIC

Hidden Layer Output Layer

Oriental 
beech

Hyperbolic 
Tangent

Hyperbolic 
Tangent

2 0.981 3.323  0.148 2.465  0.547 9.096 4,158
4 0.988 2.637 -0.031 1.937 -0.114 7.146 3,376
6 0.989 2.493  0.023 1.830  0.085 6.752 3,198
8 0.989 2.469 -0.044 1.807 -0.161 6.667 3,180

10 0.989 2.528 -0.002 1.816 -0.006 6.701 3,277

Linear

2 0.984 3.025 -0.108 2.259 -0.398 8.335 3,833
4 0.988 2.608 -0.031 1.882 -0.113 6.945 3,338
6 0.989 2.548 -0.037 1.813 -0.137 6.688 3,274
8 0.989 2.523  0.018 1.805  0.067 6.659 3,254

10 0.989 2.485 -0.033 1.775 -0.122 6.549 3,218

Logistic

Hyperbolic 
Tangent

2 0.980 3.361  0.075 2.492  0.275 9.193 4,196
4 0.988 2.608  0.030 1.903  0.111 7.020 3,338
6 0.989 2.534 -0.046 1.825 -0.171 6.734 3,254
8 0.989 2.513 -0.002 1.807 -0.008 6.668 3,240

10 0.990 2.437  0.035 1.729  0.128 6.379 3,150

Linear

2 0.984 3.015 -0.026 2.240 -0.098 8.265 3,822
4 0.988 2.587 -0.009 1.873 -0.034 6.912 3,310
6 0.989 2.519 -0.009 1.826 -0.032 6.737 3,233
8 0.989 2.527  0.051 1.803  0.189 6.653 3,260

10 0.989 2.478  0.010 1.771  0.038 6.533 3,208

Kazdağı 
fir

Hyperbolic 
Tangent

Hyperbolic 
Tangent

2 0.983 3.122 -0.021 2.377 -0.081 9.008 4,612
4 0.987 2.716 -0.019 2.010 -0.074 7.616 4,066
6 0.988 2.610  0.014 1.919  0.053 7.271 3,920
8 0.988 2.608 -0.059 1.929 -0.222 7.309 3,933

10 0.988 2.648  0.007 1.930  0.025 7.315 4,010

Linear

2 0.984 3.091 -0.049 2.381 -0.184 9.022 4,572
4 0.986 2.893  0.034 2.134  0.128 8.085 4,321
6 0.988 2.685 -0.031 1.991 -0.117 7.545 4,036
8 0.988 2.675 -0.036 1.983 -0.138 7.514 4,036

10 0.988 2.704  0.029 1.991  0.108 7.545 4,094

Logistic

Hyperbolic 
Tangent

2 0.983 3.122 -0.041 2.373 -0.157 8.995 4,613
4 0.986 2.847 -0.029 2.089 -0.112 7.915 4,256
6 0.988 2.630  0.003 1.945  0.013 7.372 3,951
8 0.988 2.625 -0.026 1.943 -0.100 7.364 3,959

10 0.989 2.545 -0.015 1.885 -0.057 7.142 3,851

Linear

2 0.984 3.091 -0.023 2.371 -0.088 8.985 4,572
4 0.987 2.769  0.037 2.079  0.141 7.879 4,144
6 0.988 2.682 -0.099 1.975 -0.374 7.486 4,030
8 0.988 2.648  0.032 1.963  0.120 7.438 3,994

10 0.990 2.472  0.012 1.842  0.045 6.980 3,733
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TABLE 4  Relative ranks of the ANN models.

Tree 
Species

Transfer Function Number of 
node

Ri

(R2)
Ri 

(RMSE)
Ri 
(B)

Ri 
(MAE)

Ri 
(TE%)

Ri 
(MAE%)

Ri 
(AIC)

Total
Ri 

Overall 
RankHidden Layer Output Layer

Oriental 
beech

Hyperbolic 
Tangent

Hyperbolic 
Tangent

2 19.00 19.22 20.00 19.33 20.00 19.35 19.31 136.20 20.00
4   4.98   5.11   4.77   6.18   4.79   6.18   5.11   37.13   4.58
6   2.00   2.15   3.73   3.52   3.77   3.52   1.87   20.56   2.00
8   2.00   1.66   6.47   2.94   6.44   2.94   1.54   23.99   2.53

10   2.99   2.87   1.00   3.17   1.00   3.17   3.31   17.51   1.52

Linear

2 12.98 13.09 14.79 14.20 14.77 14.21 13.41   97.44 13.97
4   4.98   4.52   4.77   4.81   4.76   4.82   4.41   33.08   3.95
6   2.99   3.28   5.55   3.09   5.60   3.09   3.25   26.86   2.98
8   2.99   2.77   3.08   2.89   3.14   2.89   2.89   20.66   2.02

10   2.00   1.99   5.03   2.15   5.07   2.15   2.24   20.62   2.01

Logistic

Hyperbolic 
Tangent

2 20.00 20.00 10.50 20.00 10.45 20.00 20.00 120.95 17.63
4   4.98   4.52   4.64   5.33   4.69   5.33   4.41   33.91   4.08
6   2.99   2.99   6.73   3.39   6.79   3.40   2.89   29.18   3.34
8   2.99   2.56   1.00   2.94   1.07   2.95   2.63   16.15   1.31

10   1.00   1.00   5.29   1.00   5.28   1.00   1.00   15.58   1.22

Linear

2 12.98 12.89   4.12 13.72   4.23 13.73 13.21   74.88 10.46
4   3.99   4.08   1.91   4.59   1.98   4.60   3.91   25.06   2.70
6   2.99   2.69   1.91   3.42   1.91   3.42   2.51   18.84   1.73
8   2.99   2.85   7.38   2.84   7.43   2.85   3.00   29.34   3.36

10   2.00   1.84   2.04   2.05   2.12   2.04   2.05   14.14   1.00

Kazdağı 
fir

Hyperbolic 
Tangent

Hyperbolic 
Tangent

2 20.00 20.00   4.56 19.86   4.58 19.87 19.98 108.85 18.57
4   8.29   8.13   4.17   6.92   4.21   6.92   8.19   46.83   7.49
6   5.37   5.03   3.18   3.71   3.11   3.71   5.04   29.15   4.34
8   5.37   4.98 12.08   4.07 12.00   4.06   5.32   47.88   7.68

10   5.37   6.14   1.79   4.10   1.63   4.12   6.98   30.14   4.51

Linear

2 18.53 19.09 10.10 20.00 10.00 20.00 19.11 116.85 20.00
4 12.68 13.31   7.14 11.29   7.05 11.28 13.70   76.44 12.78
6   6.83   7.23   6.54   6.25   6.47   6.26   7.54   47.13   7.55
8   6.83   6.93   7.53   5.97   7.58   5.97   7.54   48.36   7.77

10   6.83   7.78   6.15   6.25   6.00   6.26   8.79   48.06   7.71

Logistic

Hyperbolic 
Tangent

2 20.00 20.00   8.52 19.72   8.58 19.75 20.00 116.57 19.95
4 11.22 11.96   6.15   9.71   6.21   9.70 12.29   67.23 11.14
6   5.37   5.62   1.00   4.63   1.00   4.65   5.71   27.98   4.13
8   5.37   5.47   5.55   4.56   5.58   4.57   5.88   36.99   5.74

10   3.91   3.13   3.38   2.52   3.32   2.51   3.55   22.31   3.12

Linear

2 18.53 19.09   4.96 19.65   4.95 19.66 19.11 105.95 18.05
4   9.75   9.68   7.73   9.35   7.74   9.36  9.87   63.49 10.47
6   6.83   7.14 20.00   5.69 20.00   5.71   7.41   72.78 12.13
8   6.83   6.14   6.74   5.27   6.63   5.26   6.64   43.51   6.90

10   1.00   1.00   2.78   1.00   2.68   1.00   1.00   10.47   1.00

TABLE 5 Parameter estimations of stem taper equations.
Tree species Stem taper equation Parameters

Oriental beech

Max and Burkhart 
(1976)

b1 b2 b3 b4 p1 p2 - - -
-2.1208 1.0206 3.5514 -0.7826 0.1915 0.3522 - - -

Fang et al. (2000)
a0 a1 a2 b1 b2 b3 p1 p2

5.5x10-5 1.6022 1.2965 2.3x10-5 2.8x10-5 3.9x10-5 0.0849 0.8546 -

Bi (2000)
b0 b1 b2 b3 b4 b5 b6 - -

0.6484 0.1554 -0.0341 -0.3385 0.0006 0.0404 -0.0896 - -

Kozak (2004)
a0 a1 a2 b1 b2 b3 b4 b5 b6

1.0910 0.9661 0.0149 0.1450 -1.4914 0.8860 5.2611 0.0295 -0.7538

Kazdağı fir

Max and Burkhart 
(1976)

b1 b2 b3 b4 p1 p2 - - -
-1.4759 0.6685 3.2293 0.4849 0.1582 0.7210 - - -

Fang et al. (2000)
a0 a1 a2 b1 b2 b3 p1 p2 -

5.3x10-5 1.7683 1.0903 2.3x10-5 2.7x10-5 3.4x10-5 0.1573 0.7007 -

Bi (2000)
b0 b1 b2 b3 b4 b5 b6 - -

0.0960 0.1645 -0.0252 0.0204 0.0001 0.0341 -0.0411 - -

Kozak (2004)
a0 a1 a2 b1 b2 b3 b4 b5 b6

0.9963 0.9796 0.0281 0.0997 -0.7408 0.9437 0.4707 0.0054 -0.5781
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The validities of the developed ANN models 
and stem taper equations were analyzed with the 
statistical procedure proposed by Leite and de Oliveira 
(2002) using independent data set obtained from 60 
and 70 sample trees for Oriental beech and Kazdağı 
fir, respectively. According to the test results, nine 
ANN models for Oriental beech and ten for Kazdağı 
fir resulted in statistically different from the observed 
data (p<0.05). The unsuccessful ANN models were 
generally having low number of nodes in hidden layer 
for both species. However, the ANN models having the 
best ranks for each transfer function pair group had the 
similar predictions with observed ones (p>0.05). Among 
the stem taper equations, the equations except Max and 
Burkhart (1976) gave non-significant results (p>0.05) for 
both species.

The best ANN models and statistically usable 
stem taper equations were ranked based on their 
goodness-of-fit-statistics as given in Table 3 and Table 
6, and they were compared for both species (Table 7). 
According to the comparisons, the ANN models were 

superior to the stem taper equations for estimation 
of stem diameters. The best ANN models were the 
model comprising logistic transfer function in hidden 
layer and hyperbolic tangent transfer function in output 
layer with 10 nodes for Oriental beech, and the model 
containing logistic transfer function in hidden layer and 
linear transfer function in output layer with 10 nodes for 
Kazdağı fir. Thus, due to their statistical successes, these 
ANN models can be used for stem diameter estimations 
in mixed stands of Oriental beech and Kazdağı fir locating 
within Karabük region of Turkey.

To do visual comparisons, the residual distributions 
of predicted stem diameters obtained by the best ANN 
models for each transfer function pair using all data for 
tree species were given in Figure 4. The terms shown at 
the left side of this figure clarified the transfer function 
pairs in hidden and output layers, respectively. When 
the residual patterns were examined, it was seen that 
the residuals were randomly distributed, and the mean 
residuals were centered on zero. The third graph on the 
left side and the fourth graph on the right side in Figure 4 

TABLE 6  Goodness-of-fit statistics of the stem taper equations.
Tree Species Stem taper equation R2 RMSE B MAE TE% MAE% AIC

Oriental 
beech

Max and Burkhart (1976) 0.983 3.274 -0.990 2.369 -3.653 8.740 4098

Fang et al. (2000) 0.985 2.935 -0.199 2.101 -0.733 7.752 3724

Bi (2000) 0.982 2.772 -0.183 2.029 -0.676 7.486 3526

Kozak (2004) 0.987 2.738 -0.034 1.977 -0.127 7.292 3486

Kazdağı fir

Max and Burkhart (1976) 0.988 3.115 -0.746 2.327 -2.826 8.818 4596
Fang et al. (2000) 0.985 2.932 0.080 2.169 0.303 8.218 4355

Bi (2000) 0.979 2.898 -0.193 2.164 -0.730 8.202 4305

Kozak (2004) 0.986 2.836 -0.012 2.069 -0.047 7.839 4221

TABLE 7 Relative ranks of the best ANN models and taper equations.
Tree 

Species
ANN models / Stem taper equations

Ri

(R2)
Ri 

(RMSE)
Ri 

(B)
Ri 

(MAE)
Ri 

(TE%)
Ri 

(MAE%)
Ri 

(AIC)
Total

Ri 
Overall 
Rank

Oriental 
beech

ANN models
Transfer Function Number of 

nodeHidden Layer Output Layer
Hyp. Tangent Hyp. Tangent 10 1.75 2.10 1.00 2.40 1.00 2.41 2.33 13.0 1.63
Hyp. Tangent Linear 10 1.75 1.58 1.94 1.74 1.96 1.74 1.74 12.4 1.54

Logistic Hyp. Tangent 10 1.00 1.00 2.01 1.00 2.01 1.00 1.00  9.0 1.00
Logistic Linear 10 1.75 1.49 1.24 1.68 1.26 1.67 1.61 10.7 1.27

Stem taper equations
Fang et al. (2000) 4.75 7.00 7.00 7.00 7.00 7.00 7.00 46.8 7.00

Bi (2000) 7.00 5.04 6.51 5.84 6.53 5.84 4.93 41.7 6.19
Kozak (2004) 3.25 4.63 1.97 5.00 2.00 4.99 4.51 26.4 3.76

Kazdağı 
fir

ANN models
Transfer Function Number of 

nodeHidden Layer Output Layer
Hyp. Tangent Hyp. Tangent 6 2.09 2.80 1.07 2.41 1.07 2.41 2.80 14.7 2.12
Hyp. Tangent Linear 6 2.09 3.78 1.63 3.73 1.63 3.74 3.92 20.5 2.98

Logistic Hyp. Tangent 10 1.95 1.95 1.10 1.79 1.11 1.79 2.14 11.4 1.65
Logistic Linear 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00  7.00 1.00

Stem taper equations
Fang et al. (2000) 3.73 7.00 3.25 7.00 3.26 7.00 7.00 38.2 5.58

Bi (2000) 7.00 6.56 7.00 6.91 7.00 6.92 6.52 47.9 7.00
Kozak (2004) 3.18 5.75 1.00 5.17 1.02 5.16 5.71 27.0 3.93
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were showed that the residual distributions were slightly 
better than the others for Oriental spruce and Kazdağı 
fir, respectively. In the last row of the Figure 4, residual 
distributions of the Kozak (2004) taper equation were 
also given as the best stem taper model for both species. 

DISCUSSION

There have been limited research regarding 
the stem taper estimations using artificial intelligence 
techniques. Özçelik et al. (2010) investigated the 
estimation successes of ANN models and Max and 

Burkhart (1976) stem taper equation for four main 
tree species (i.e., Scotcs pine, Brutian pine, Cilicica 
fir, and Lebanon cedar) of Turkey. The results of 
their study showed that the ANN models were 
superior to the taper equation as we observed 
in our study. Another similarity of this study with 
our research is the increase in the success of ANN 
models with the increase in the node numbers in 
hidden layer. In another study (Leite et al., 2011), 
the ANN models were compared with the stem 
taper equation by Kozak et al. (1969) for under-bark 

FIGURE 4 Residual distributions of the best ANN models.



449

CERNE

SAKICI AND OZDEMIR.

STEM TAPER ESTIMATIONS WITH ARTIFICIAL NEURAL NETWORKS FOR MIXED ORIENTAL BEECH AND KAZDAĞI 
FIR STANDS IN KARABÜK REGION, TURKEY

stem diameter estimations of Tectona grandis located in 
the Brazil. The similar results were also obtained with 
their study, and the ANN models had better estimations 
than taper equation. The number of nodes considered to 
be sufficient in this study were also similar to our findings. 
Özçelik et al. (2014) compared the ANN models with 
the taper equation of Clark et al. (1991), and the ANN 
models were found to be better for stem diameter 
estimations of Pinus brutia in southern Turkey. 

Nunes and Görgens (2016) investigated and 
compared the stem taper estimating performances 
of some ANN models and six stem taper equations 
including Bi (2000) and Kozak (2004) functions for three 
forest types including a tropical savanna, a rainforest 
and a semi-deciduous forest in southeastern Brazil. 
According the results of their study, the ANN approach 
were recommended for stem diameter estimations 
due to some advantages of this approach, although the 
Kozak (2004) were also gave better results. We have also 
nearly the same results with Nunes and Görgens (2016) 
for both estimation approach (i.e., the ANN models and 
the stem taper equations) despite the different forest 
structures. The results of the limited number of studies 
described above on stem taper estimation with artificial 
intelligence techniques were quite similar to of our study.

Contrary to our work and the studies described 
above, da Silva et al. (2018) stated that the neural networks 
(i.e., some kinds of Radial basis function and Multilayer 
perceptron) and classical equations (i.e., Schumacher-
Hall and Spurr volume models) are equivalent to each 
other when there is a lot of data for training, while the 
classical models performed better when there are few 
training data for the volume estimation. However, they 
suggested the Radial basis function neural networks 
because of their adaptation capabilities for different 
data sets and advantage of having architecture defined 
automatically by clustering algorithms.

CONCLUSION

Although regression based functions such as 
stem taper equations have still favorable usage for stem 
taper predictions, artificial intelligence applications can 
be another flexible tool. According to the results of 
the study, the ANN models have better stem diameter 
predictions than stem taper equations for the mixed 
Oriental beech and Kazdağı fir stands, which have large 
distribution area within the study region. The stem 
diameter estimations obtained from developed models 
can be used to determine the volume of wood-based 
products of standing trees.

It is important to define the successive ANN model 
structures for various individual tree or stand parameters 
in forestry researches. In this study, it was aimed to make 
this definition for stem diameter estimations. Within the 
ANN models, using the linear transfer function in hidden 
layer causes the unsuccessful results. Moreover, utilization 
of the logistic transfer function in output layer negatively 
influences the estimation power of the ANN models for 
stem diameter estimation. The models containing a large 
number of nodes (i.e., six to ten) within hidden layer were 
better than the ones with smaller node numbers (i.e., two 
or four). Based on these initial results, it can be stated 
that the transfer functions, which should not be used in 
hidden and output layers, are linear and logistic functions, 
respectively. The number of nodes in hidden layer should 
be more than five in stem diameter estimation models.

The ANN models offer some advantages to 
overcome the problems such as multicollinearity and 
autocorrelation in forestry data. These advantages are 
also important for researches on stem taper. In this 
respect, the ANN models should be considered as an 
alternative approach for this aim. If stem taper equations 
are used for the stem taper estimations of the studied 
tree species, the equation proposed by Kozak (2004) 
can be used with the parameters acquired in this study. 
However, when choosing a stem taper estimating model, 
both practical and acceptable statistical considerations 
should be taken into account.

We preferred the feed-forward backpropagation 
network structure and achieved the satisfactory results in 
our study. The other network structures such as cascade 
correlation or resilient backpropagation can also be 
investigated in further studies for stem diameter or any 
other individual tree or forest parameters estimations.
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