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HIGHLIGHTS

VNS is effi cient to solve a forest planning problem.

Algorithm parameters are important to fi nd a good solution quickly.

ABSTRACT

In forest science it is important evaluate new technologies from computational science. 
This work aimed to test a different kind of metaheuristic called Variable Neighborhood 
Search in a forest planning problem. The management total area has 4.210 ha distributed 
in 120 stands in ages between 1 and 6 years old and site index since 22 m to 31 m. The 
problem was modelled considering the maximization of the net present value subject 
to the restrictions: annual cut volume between 140.000 m³ and 160.000 m³, harvester 
ages equal to 5, 6 or 7 years, and the impossibility of division of the management unity 
at harvester time. It was evaluated different settings for the Variable Neighborhood 
Search, varying the quantity of neighbours, the neighbourhood structure and number or 
generations. 30 repetitions were performed for each setting. The results were compared 
to the one obtained from integer linear programming and linear programming. The integer 
linear programming considered the best solution obtained after 1 hour of processing. The 
best setting to the Variable Neighborhood Search was 100 neighbours, a neighbourhood 
structure with changes in 1%, 2%, 3% and 4% of prescriptions and 500 iterations. The 
results shown by the Variable Neighborhood Search was 2,77% worse than one obtained 
by the integer linear programming with 1 hours of processing, and 2,84% worse than the 
linear programming. It is possible to conclude that the presented metaheuristic can be 
used satisfactorily in a resolution of forest scheduling problem when the best parameters 
are chosen.
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INTRODUCTION

Forest planning problems can be considered as 
complex in function of the amount of decision variables, 
imposed constraints and difficult to obtain all necessary 
information to develop work plans, mainly because of 
intrinsic characteristics of forest activities. In this sense, the 
effective courses-of-actions determination that maximize 
the enterprise economic returns or that optimize 
ecological and social aspects, as mentioned by Kaya et 
al. (2016), Ezquerro et al. (2016), Dong et al. (2016) and 
Shan et al. (2009), has been done with use of mathematical 
programming, like Linear Programming (LP), Integer Linear 
Programming (IP) and Mixed Integer Linear Programming 
(MIP) for instance (Troncoso et al., 2016).

Although their wide application, these tools had 
been replaced by more flexible techniques, mainly when 
there are more impeditive constraints in the models, 
like constraints of adjacency and singularity, or when 
nonlinear aspects are taking in account. It occurs because, 
with these considerations, the problem complexity is 
augmented and this can avoid a quick convergence to an 
optimal global solution in a feasible time when we use 
exact algorithms like branch-and-bound (B&B).

In these cases, when the problems became as 
belong to NP class (nondeterministic polynomial time), 
algorithms that can find a good feasible solution and that 
cannot require the full compliance with some assumption 
of classical mathematical programming, like additivity and 
proportionality (Jin et al., 2016), are indicated. This suggests 
the development and application of heuristics methods 
(Yoshimoto et al., 2016; Jin et al., 2016; Shan et al., 2009).

A heuristic is an iterative method that employs logic 
and rules that guide the search of feasible good solutions to 
a problem, near to optimal solutions but without ensuring 
the optimality (Kaya et al., 2016; Hillier and Lieberman, 
2013; Jin et al., 2016; Ezquerro et al., 2016). Its application 
for combinatorial problems has been growing in the last 
years and already pass the number of scientific publications 
that consider the development and application of exact 
algorithms (Ezquerro et al., 2016). This occurs because 
sometimes the acceptance of a too much good solution 
obtained in a short time can be more interesting than 
the optimal solution obtained from a process with high 
computational efforts and time processing.

Heuristics and metaheuristics have been used 
in forest sector since 1980 (Jin et al., 2016; Ezquerro 
et al., 2016). Specifically, in forest management their 
applications have been highlighted as computational 
resources have been developed. It allows that new works 
could be done using these methods, mainly in bigger 
and complex management plans (Dong et al., 2016). In 

terms of forest production planning, Kangas et al. (2008) 
mentioned that the integer nature of forest planning 
problems and the use of spatial criteriums are important 
reasons by the increase of popularity of metaheuristics in 
these problems.

Among the vast number of already developed 
metaheuristics it is possible to highlight (Boussaid et 
al., 2013): Tabu Search (TS), Simulated Annealing (SA), 
Genetic Algorithm (GA), Ant Colony (AC), GRASP and 
HERO, Particle Swarm Optimization (PSO), Bee Colony 
(BC), Multi-Agent Systems (MAS) and Artificial Neural 
Networks (ANN). SA is the most cited methodology 
(Ezquerro et al., 2016), but considering the advances in 
studies about artificial intelligence, new metaheuristics 
arise and it become possible their evaluation in a wide of 
operation research applications.

Thus, algorithms relatively simple, as local search 
ones, had been widely used. However, in too many cases 
it is interesting that these algorithms can be modified or 
adapted to a specific problem in order to improve their 
performance. Among these algorithms, the Variable 
Neighborhood Search (VNS) has been highlighted by 
its simplicity, efficiency, and robustness in a wide of NP-
Hard problems (Doerner et al., 2007). Its basic idea is to 
change the neighborhood structure to search a better 
solution for the problem (Affi et al., 2017; Doerner et al., 
2007; Glover and Kochenberger, 2003).

There are some works already published about 
VNS as Affi et al. (2017) for vehicle routing problem, 
Amous et al. (2017) for capacitated vehicle routing 
problem, and Brimberg et al. (2017) for capacitated 
grouping problem, for instance. Despite that, this 
algorithm was not evaluated on forest production 
planning problem. In that case, it is important that studies 
be done in order to evaluate different set of algorithm’s 
parameters for specific kind of problem, as suggested by 
Jin et al. (2016) and Shan et al. (2009), since the heuristic 
performance is highly dependent on the parameters 
used (Dong et al., 2016) and of the problem considered.

Thus, we evaluated the behavior of VNS 
metaheuristic in function of variations in parameters 
values and its relative efficiency comparing with Linear 
Programming and Integer Linear Programming in solving 
a forest planning problem.

MATERIAL AND METHODS

Data

The present work was done with data from 
a eucalyptus forest with 4,210 ha divided into 120 
management units (stands) and with ages between 1 
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and 6 years-old: 339 ha with 1-year-old; 768 ha with 
2-year-old; 1,031 ha with 3-year-old; 601 ha with 4-year-
old; 958 ha with 5-year-old; and 513 ha with 6-year-
old. Wood production estimates for each stand in each 
age was obtained from the equation (1), where Vi is 
the volume for the stand i, Ii is the age of stand i, and 
Si is the site index for the stand i.  It was developed by 
the authors considering data from a continuous forest 
inventory. Values of site index ranged from 22 to 31 m 
considering an index age equals to six-year-old.

Constraint (3) guarantees that all stand areas 
receives a determinate prescription. Constraints (4) and 
(5) limit the annual cutting volume between the minimum 
and maximum demand. Constraint (6), that is considered 
only in IP model, imposes a unique management 
alternative for each stand along the horizon plan.

[1]

Prescriptions for each stand considered 
harvester in one of three ages 5, 6 and 7-year-old, an 
immediately planting activity after the cut and a time 
horizon of the forest plan equals to sixteen years. 
It resulted in 81 management prescription for each 
stand totaling 9,720 decision variables for each model. 
Mathematical formulations for the optimization models 
were based on Model I mentioned by Jonhson and 
Scheurman (1977) in order to preserve the physical 
identity of management unit along the horizon plan. 
The objective was to maximize the net present value 
under constraints of annual demand between 140,000  
m3 and 160,000 m³.

The annual discount rate used was equals to 
8 percent, the price of wood sales equals to R$ 80.00 
per cubic meter and harvester cost equals to R$ 30.00 
per cubic meter. Silvicultural costs ranged according to 
the age of each stand and were obtained from Binoti 
(2010): R$ 4,059.05 ha-1 on first-year; R$ 1,627.81 ha-1 
on second-year; R$ 757.95 ha-1 on third-year; e R$ 88.12 
ha-1 since on fourth-year of forest growth.

Linear and Linear Integer Programming

LP and IP models were formulated as suggest by 
Rodrigues et al. (2004). A unique difference between 
ones is the absence of constraint 6 for the LP model, 
where: GNPV is the global net present value for all the 
forest (2), in reais; Cij is  NPV for stand i when assigned 
the prescription j, in reais; Xij is the decision variable 
and represents the proportion area of stand i that will 
be managed with prescription j; M is the total number of 
stands; N is the total number of different prescriptions 
for each stand; Vij(k) is the total volume of wood for the 
stand i, when assigned the prescription j, in the period 
k of planning horizon; Dmink and Dmaxk are minimum 
and maximum wood demand for the period k of the 
planning horizon.

[2]
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MaxGNPV C Xij ij
j

N

i

M

=
−=
∑∑
11

i=1

M

j=1

N

ijX =1ååV I Si i i= − ⋅ ⋅− −6 09 117 55 1 1. .

V X Dij k ij k
j

N

i

M

( ) min≥
==
∑∑
11

[4]

i=1

M

j=1

N

ij(k) ij kV X Dmax∑∑ ≤ [5]

X {0,1}ij Î [6]

The LP and IP models were solved in CPLEX 
software version 12.7.1 (IBM Corporation, 2017) 
considering simplex and branch-and-bound algorithms, 
respectively. It was done on a computer with Windows 
10, 64 bits, processor Intel Core i7 with 2.0 GHz and 
8Gb of RAM memory. The LP model was used to test 
if the optimal solution was an integer solution. If this 
was true, neither IP nor metaheuristic solutions were 
necessary for our problem.

Variable Neighborhood Search

VNS is an algorithm based on a local search with 
different neighborhood structures (Doerner et al., 2007). 
They define a set of modifications that can be applied to 
a solution in order to create new solutions (Meignan et 
al., 2012). According to Mladenovic and Hansen (1997), 
the basic algorithm can be described as a set of steps 
that starts by the definition about the amount and types 
of neighborhood structures that will be considered. 
Then a random solution is obtained (Figure 1). With 
that, for each iteration and neighborhood structure, 
the algorithm executes a local search procedure in 
order to find a solution better than the considered 
before. If the algorithm does not find no better solution 
after n iterations, or after evaluates all neighbors, the 
structure is changed and the local search is done again. 
This process repeats until all considered neighborhood 
structures are used. The algorithm finishes when a stop 
criterium is reached, like as a number of iterations or 
time of processing.
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This study considered a proposed VNS version 
with four neighborhood structures evaluated in two sets. 
This way, considering set 1 of neighborhood structure 
(S1) and the fi rst local search procedure (LS1), 1% of 
stands from one solution, randomly chosen, had its 
prescription modifi ed.  Local search procedures LS2, LS3, 
and LS4 considered modifi cations in 2%, 3% and 4% of 
stands. Set 2 of neighborhood structure (S2) considered 
local search procedures that execute modifi cations in 
10%, 20%, 30% and 40% of stands at a solution. Each 
stand modifi cation means to change a stand prescription 
(adopted for all plan horizon) that are chosen randomly 
for other prescription, also chosen in a random way.

The VNS algorithm evaluated all individuals 
from a defi ned neighborhood size in each local search 
procedure. Thus, to identify the infl uence of the number 
of neighbors, it was tested different sizes for the 
neighborhoods. It was considered neighborhoods with 
1, 10, 30, 50 and 100 neighbors.

It was considered 30 repetitions and different 
stop criterium (20, 50, 100, 300 and 500 iterations) in 
each evaluation (arrangement of a set of neighborhood 
structure and a number of neighbors). The results were 
evaluated using the Kruskal-Wallis test (K-W) with 5% 
of probability. Confi guration with best values for average 
and maximum fi tness, as a loss value for standard 
deviation at end of processing, was chosen.

Constraints imposed on LP and IP models also 
were considered for VNS model. In that case, it was 
considered a penalty for the objective function in function 
of every broken constraint. Thus, for each volumetric 
demand constraint that was broken, objective function 
was decreased in R$ 100.00 per cubic meter in excess or 
lack at end of each period in the planning horizon. This 
method is the same adopted by Rodrigues et al. (2004).

Metaheuristic processing was done using MeP 
(Metaheuristics for Forest Planning) software. It was 
developed at Operation Research and Forest Modelling 
Laboratory at the Federal University of Minas Gerais in 
java language programming.

RESULTS

The VNS has its processing interrupted after reach 
the stop criterium and the processing time ranged according 
to the parameters values used (Table 1). The smaller 
processing time was obtained for the confi guration with 1 
neighbor, set 2 of neighborhood structure and 20 iterations. 
The bigger processing time was obtained for 100 neighbors, 
set 1 of neighborhood structure and 500 iterations.

The parametrization that reached the best results 
considered a neighborhood with 100 neighbors, set 
1 of neighborhood structure and 500 iterations (Table 
2). The best solution was 231% superior to the worse 
solution found (which presented 1 neighbor, set 1 of 
neighborhood and 20 iterations). In relation to the 
average and maximum values for fi tness, the worse result 
was presented for the parametrization with 1 neighbor, 
set 2 of neighborhood structure and 20 iterations.

The increase in the number of iterations provided 
improvements on obtained results for all cases analyzed. 
However, there were not signifi cative differences 
(p<0.05) between the results obtained for 300 or 
500 iterations according to the K-W test. The same 
occurred when the number of neighbors was increased 
and, in this case, there weren’t differences between the 
results found with 50 or 100 neighbors considering the 
same test (p<0.05). Considering the different sets of 
neighborhood structure, the increase in the number of 
solution modifi cations in order to create a new neighbor 

FIGURE 1 Flowchart of processing routine of VNS.
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TABLE 1 Processing time obtained from evaluations considering different parameters of VNS.

Number of 
Neighbors

Set of Neighborhood 
Structure

Iterations
Minimum Time

(s)
Average Time

(s)
Maximum Time

(s)
Deviation Time

(s)

1

C1

20 3.00 3.25 3.77 0.18
50 6.36 7.04 7.92 0.44

100 12.28 12.72 13.39 0.31
300 34.91 35.79 37.70 0.63
500 58.53 59.25 60.39 0.38

C2

20 2.14 2.27 2.47 0.08
50 5.14 5.55 6.59 0.35

100 10.04 10.64 12.17 0.48
300 30.60 31.38 32.83 0.56
500 52.98 55.94 58.86 1.53

10

C1

20 5.44 6.06 6.89 0.38
50 11.78 12.85 15.11 0.74

100 20.16 21.80 24.16 0.99
300 65.13 65.99 67.25 0.56
500 99.10 104.57 120.40 5.28

C2

20 4.75 5.50 6.50 0.43
50 11.00 11.45 12.52 0.36

100 21.27 23.10 25.28 1.15
300 63.23 63.64 64.48 0.27
500 102.69 104.98 107.11 1.09

30

C1

20 13.80 15.80 18.89 1.17
50 27.67 31.31 33.66 1.46

100 54.58 57.09 59.63 1.36
300 145.13 149.55 156.53 2.21
500 191.78 223.32 447.46 44.85

C2

20 8.44 9.25 10.17 0.38
50 20.83 21.79 25.95 1.22

100 34.77 40.30 50.62 4.10
300 109.08 117.23 126.02 4.59
500 126.18 134.91 149.96 8.38

50

C1

20 16.85 20.67 29.02 2.42
50 35.05 39.62 44.46 2.37

100 63.41 86.17 343.91 49.61
300 187.23 197.80 215.08 5.99
500 287.66 321.57 473.94 31.75

C2

20 18.38 20.01 26.49 1.82
50 41.56 42.63 44.34 0.60

100 82.80 84.24 85.83 0.68
300 138.01 140.89 154.33 3.58
500 223.72 246.26 296.30 18.23

100

C1

20 52.52 61.38 70.33 4.76
50 96.63 111.02 123.95 6.21

100 140.24 166.01 188.00 11.38
300 358.24 390.33 433.99 19.86
500 505.61 545.28 603.48 25.66

C2

20 21.94 24.72 28.87 1.85
50 52.00 55.47 61.44 2.11

100 121.29 128.20 135.46 4.16
300 330.53 356.65 441.52 21.14
500 496.56 513.27 527.47 8.42

made the results worse and statistically different between 
the two sets according to the K-W test (p<0.05). 

The finding of all test observed that increasing 
the number of neighbors made the algorithm faster in 
converge to the best solution with a less number of 
iterations (Figure 2). The change in the neighborhood 
structure from type 1 to type 2 decreased the algorithm 
performance, and it was necessary more iterations in 
order to reach same results.

The IP model solution was obtained after 1 hour 
of processing without the algorithm had converged to 
the global optimal solution. The solution found by the 
LP model was the global optimal (Table 3). The method 
that found the best solution was LP followed by the 
solution obtained by IP model. The best VNS solution 
was approximately 2.77% inferior to the IP value.

The solution obtained from LP model was not 
binary for all decision variables. It occurred in 25 ones 
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(0.26%). They were divided into 12 from 120 stands 
and one stand received three different management 
prescriptions and the other received two prescriptions.

For all methods, the annual harvested volume 
constraint was reached at best solution found. The 
period with more or less wood volume production 
ranged among the methods (Figure 3). Also, there 
were differences in the total volume produced and 

TABLE 2 Processing time obtained from evaluations considering different parameters of VNS.

Number of 
Neighbors

Set of Neighborhood 
Structure

Iterations
Minimum

Time
(R$)

Average Time
(R$)

Maximum Time
(R$)

Deviation Time
(R$)

1

C1

20 -13,530,547 21,844,848 29,966,401 9,545,235
50 25,612,348 29,301,773 30,300,314 1,042,549

100 29,731,043 30,081,475 30,411,167 181,309
300 29,936,976 30,265,601 30,456,298 137,348
500 30,203,232 30,372,621 30,589,252 112,384

C2

20 -11,626,475 4,169,321 20,560,345 8,787,173
50 6,505,206 15,158,154 27,354,774 5,117,997

100 9,390,474 19,583,982 26,141,177 4,351,402
300 16,363,288 23,162,209 27,682,639 2,432,716
500 21,057,602 26,169,244 29,992,760 1,875,369

10

C1

20 29,967,518 30,221,822 30,510,139 131,327
50 30,060,371 30,342,201 30,636,604 145,786

100 30,184,859 30,460,931 30,692,985 122,702
300 30,413,801 30,632,924 30,872,609 124,340
500 30,468,749 30,696,456 30,933,782 121,521

C2

20 18,617,328 23,361,948 29,735,080 2,819,559
50 21,217,395 25,874,762 29,921,567 2,251,521

100 23,715,073 27,226,132 29,895,782 1,499,920
300 26,561,655 28,812,762 30,151,917 953,241
500 27,050,693 29,471,710 30,244,190 781,815

30

C1

20 30,057,139 30,371,824 30,647,249 128,889
50 30,138,694 30,521,917 30,749,268 134,688

100 30,341,603 30,598,422 30,873,988 126,254
300 30,648,549 30,862,520 31,072,842 112,703
500 30,513,361 30,926,001 31,120,320 143,097

C2

20 20,202,816 26,465,485 29,730,038 2,399,578
50 25,284,828 28,042,636 30,208,252 1,406,012

100 26,882,822 29,323,436 30,271,609 818,677
300 28,530,423 29,677,463 30,231,076 392,551
500 28,760,078 29,811,738 30,186,482 335,134

50

C1

20 30,130,643 30,474,072 30,705,788 133,835
50 30,214,490 30,603,608 30,848,142 123,486

100 30,497,950 30,799,918 31,055,639 121,480
300 30,744,304 30,954,825 31,191,456 104,738
500 30,833,913 31,029,240 31,230,218 104,722

C2

20 24,676,505 27,817,077 30,079,036 1,522,640
50 25,920,450 28,956,130 30,071,751 1,021,629

100 27,277,290 29,509,222 30,255,828 737,163
300 28,553,614 29,776,552 30,268,491 422,628
500 29,569,576 29,989,853 30,249,780 149,766

100

C1

20 30,459,223 30,692,357 30,953,820 132,670
50 30,482,402 30,759,695 31,127,963 161,043

100 30,690,880 30,906,917 31,189,477 122,775
300 30,765,250 31,035,434 31,174,404 95,035
500 30,903,026 31,138,612 31,276,858 83,580

C2

20 25,165,044 28,356,753 30,005,449 1,247,191
50 27,302,327 29,387,876 30,235,022 696,948

100 28,668,223 29,623,710 30,113,655 418,797
300 29,077,888 30,051,969 30,438,647 254,097
500 29,639,339 30,072,797 30,367,423 185,210

TABLE 3 Best solutions results founded by each method and 
its proportion in relation to linear programming (LP) 
and integer linear programming (ILP).

Methods Best solution value % in relation to LP
% in relation to ILP 

(1 h)

LP R$ 32,191,790 100.00 100.07

ILP (1 h) R$ 32,168,382 99.93 100.00

VNS R$ 31,276,858 97.15 97.23
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FIGURE 2 Evolution of solutions average for each iteration of VNS considering different settings.

FIGURE 3 Annual cut volume considering the best solutions founded by linear programming (LP), integer linear programming (ILP) and 
VNS. The dashed lines indicate the values of maximum and minimum annual demand.
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in the sequence of harvester between two consecutive 
years. The total volumes obtained with the best solutions 
for each method were: 2,265,710 m³ for LP; 2,387,331 m³ 
for IP (1h); and 2,326,413 m³ for VNS. The minimum and 
maximum annual harvested volume were: 140,000 m³ and 
158,058 m³ for LP; 140,002 m³ and 148,930 m³ for IP (1h); 
and 140,044 m³ and 157,302 m³ for VNS. The maximum 
variations in the annual harvested volume from one year to 
other were: 12.90% for LP; 5.48 % for IP (1h); and 8.81 % 
for VNS.

DISCUSSION

Metaheuristics are a field of stochastics 
optimization which is a general class of algorithms and 
techniques that employ some randomness in order to 
find very good solutions for complex problems (Luke, 
2009). When well designed, a heuristic method can 
be able to find an optimal solution for the problem. 
However, there is not a mathematical procedure that 
guarantee the optimality of any solution (Kaia et al., 
2017). It is necessary to define the stopping criteria of 
any optimization algorithm. In this case, its definition can 
be done empirically, but this can cause a non-necessary 
use of computational resources without guarantee a 
solution significantly better than the one found before.

It is important to highlight that the results obtained 
in our work demonstrate that the increase in the number 
of iterations for VNS did not guarantee a significative 
improvement in relation to the solution that was found. 
If time is a determinant factor, as discussed by Jin et al. 
(2016), it is possible to consider 300 iterations instead 
500. It will decrease the processing time near to 33%, 
although the average fitness decreases near to 0,3%.

The neighborhood size evaluated in each VNS 
algorithm iteration will define how much of the solutions 
space is verified during its processing. According to 
Hansen et al. (2017), a big amount of neighbors can 
increase the chances in find better solutions in the 
neighborhood. However, in cases where an initial solution 
is in a low promises region, evaluate too many neighbor 
solutions could not cause the expected effect. In this 
way, it is possible to spend computational resources non-
necessarily without a big return in terms of fitness value.

Considering the analysed problem, the evaluation 
of a wide of solutions in each iteration cause an increment 
in the processing time, from 119.99 to 235.23 seconds 
on average. There wasn’t a statistical difference (p>0,05) 
between the results obtained with 50 and 100 neighbors. 
It allows us to indicate a less amount of neighbors. It 
saves processing time without losses in relation to the 

best solution obtained. In another hand, the use of 
few neighbors, like 1 and 10, can make the algorithm 
unable to escape from local optima. Indeed, Costa et 
al. (2017) mentioned that VNS try to explore a solution 
neighborhood aiming to find a better path to reach the 
optimal solution for the problem. If this neighborhood 
is restricted to a few individuals, the search procedure 
could not offer an expected effect.

 The best configuration in terms of processing 
time is that considers 50 neighbors and 300 iterations. 
This option resulted in a maximum fitness equals to 
R$ 30,249,780, which is only 0.27% smaller than the 
best solution found considering 100 neighbors and 500 
iterations.

In terms of neighborhood structure, when it 
was consider modifications in prescriptions for 10%, 
20%, 30% and 40% of 120 stands, the algorithm lost 
performance. It can be explained by the high rate of 
changes at each solution, that can create new solutions 
near to randomness. Thus, the search process can be 
displaced to regions few interesting of solutions space 
and finding solutions with lower values for fitness 
function. Dong et al. (2016) observed an increment in the 
processing time for the SA when compared a local search 
procedure with modification of only one prescription for 
a management unit with the one with changes in two 
management units. In that case, the second option was 4 
times slower the first one.

We already not expect that a deterministic 
algorithm like B&B was able to solve the problem, in 
a feasible time, because of its combinatorial aspect. 
Therefore, the process was interrupted after 1 hour. 
This procedure also was adopted by Caro et al. (2003) 
because the B&B algorithm not return an optimal 
solution in a time smaller than 44 hours. This suggests 
the necessity of development of search methods that can 
obtain very good solutions in a feasible time, as the case 
of the metaheuristics.

The fact that different parametrizations of VNS 
presented values close to ones presented by the IP 
solution in a short processing time can put the algorithm 
as too much interesting to solve forest planning 
problems. In this sense, Jin et al. (2016) mentioned that, 
if the search time is a determinant factor, there is the 
necessity of identifying a heuristic procedure that can 
generate good solutions quickly, as the case of SA and 
TS algorithms. This is important when there is a demand 
for distinct forest planning scenarios or alternative work 
plans, as the ones that consider variations on annual 
demand of wood, on discount rates used, and costs and 
revenues values, for instance.
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The optimal solution found by LP model can be 
considered only as a reference to the values obtained for 
the other methods, mainly in relation to the ones obtained 
by the heuristic method, as mentioned by Dong et al. 
(2016). This is true because the LP solution didn’t generate 
binary values for all decision variables. An alternative option 
to that is round the values obtained for each decision 
variable, however, Silva et al. (2003) does not recommend 
it, being necessary the use of an IP model.

The best VNS algorithm parametrization 
presented average effectiveness equals to 96,80% in 
relation to the B&B algorithm. This value is superior 
to one obtained by Rodrigues et al. (2004) in a work 
with GA (average effectiveness equals to 94.28%) and 
superior to Rodrigues et al. (2004b) for SA (average 
effectiveness equals to 95.33%). GA and SA algorithms 
are the most used metaheuristics in forest planning. Our 
results demonstrated that VNS has a high applicability 
potential in forest management problems. This can be 
explained by the fact that one of advantages of VNS is, 
in opposite to other metaheuristics, that doesn’t follow a 
unique way but explore neighborhoods each time more 
distant, choosing a new solution only if it is better than 
the last one (Doerner et al., 2007).

CONCLUSION

VNS is efficient to solve a forest planning problem 
and can generate solutions closer  to the one found by 
exact algorithms in a short processing time. Also, the 
choice of algorithm parameters is crucial to obtain good 
solutions with less processing time effort.
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