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HIGHLIGHTS

The higher non-wood extractives causes to the higher setting time of the gypsum paste, 
while temperature decreases.  

The ANN prediction model is a quite effective tool for modeling bending strength of 
gypsum-bonded fiberboard.

Maximum MOR is achieved by increase in bagasse, kenaf and glass fibers content and 
reaches to 10.81 MPa and 11MPa by RSM and ANN at optimum condition.

ABSTRACT

In this study, the hydration behavior of gypsum paste mixed with bagasse and kenaf fibers as 
lignocellulosic material and fiberglass as inorganic material is evaluated. Moreover, the properties of 
gypsum-bonded fiberboard (GBFB) are examined using bagasse fibers (Saccharum officinarum.L), 
kenaf fibers (Hibiscus cannabinus.L) and industrial fiberglass. The weight ratios of fiberglass (at 
three levels 0, 3 and 6%), bagasse fiber (at three levels 0, 7.5 and 15%) and kenaf fiber (at 
three levels 0, 7.5 and 15%) to gypsum are used to make the gypsum-bonded fiberboard with 
the nominal density 1.10 g.cm-3 . After preparing the fiberboard, its flexural properties were 
examined. Response surface methodology (RSM) and artificial neural network (ANN) were 
used to model the bending strength of gypsum-bonded fiberboard. According to the hydration 
tests, it was determined that as the extractives in the lignocellulosic materials increased, the 
temperature of the mixture decreased and its setting time increased. According to the bending 
test results, it was determined that there is an ideal consistency between the predicted values 
and the observed data, so that as bagasse and kenaf fiber increased, the modulus of rupture 
(MOR) increased. Maximum MOR of panel was predicted to be 10.81 MPa and 11MPa by RSM 
and ANN at optimum condition.  Based on the statistical analysis, the training and validation 
data sets of the studied models were compared by the coefficient of determination (R2), root 
mean squares error (RMSE) and mean absolute error (MAE). ANN model showed a much more 
accurate prediction than RSM in terms of the values R2, RMSE and MAE.
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INTRODUCTION 

Panels with mineral binders have extensive 
applications in flooring, inner lining of walls, ceiling and 
partition walls. These panels, such as gypsum-bonded 
fiberboard, have a better linear stability than similar wood-
based panels, and when exposed to fire, they show a higher 
resistance than other wood composite products. Adding 
cellulose fibers to a certain amount has a strengthening 
effect, and beyond the certain amount, they have negative 
effects. Moreover, the way the fibers are distributed in the 
mixture does not change the results. The comparison of 
the specimens containing fibers and the control specimens 
in a research by Rapoport et al. (2005) showed that the 
cracks observed due to the shrinkage from drying were 
narrower. For some time, organic fibers were added 
to gypsum, but artificial fibers were mainly used, such 
as fiberglass (Eve et al. 2002). Fiberglass increases the 
flexural load-bearing capacity of the composites (Lempfer 
et al. 1990). Fiberglass has a proper strength and stiffness, 
preserves its mechanical properties at high temperatures, 
has proper resistance to moisture and corrosion and is 
rather cheap. The relationship between adding natural 
fibers to gypsum matrix and the mechanical properties of 
the composites was evaluated (Coutts 1990, Hernández-
Olivares et al. 1992). 

According to the properties of any binder, 
gypsum and cement improvement must lead to a 
product with better mechanical properties and higher 
resistance to moisture. Analysis of the extractives in 
the organic compounds is very important and can delay 
the hydration of the mineral binders and hence, it can 
affect the internal bonding and mechanical properties of 
gypsum-wood particleboards (Ahn and Moslemi 1980, 
Simatuupang et al. 1989). In a research on the chemical 
relationship between wood and cement, Hachmi and 
Campbel (1990) studied the wood extractives and wood-
cement setting. Accordingly, extractives are complex 
compounds that contain resin, fatty acids, terpenes, 
phenols, tannins and sugars. These elements are largely 
different in terms of their solubility and their contents 
are different in different species. The most important 
constraint for making fiberboard using mineral binders 
is the highly variable compatibility between wood and 
mineral binders. 

Various factors can affect the compatibility, 
such as the solubility of the extractives into water or 
alkaline environment (Hofstrand et al. 1984, Semple 
et al. 2000, Hachmi and Moslemi 1989, Moslemi and 
Lim 1984). Species containing more than 7% of the 
extractives dissolved into hot water can be considered 

as incompatible materials (Hachmi and Moslemi 1989). 
Compounds of the extractives can delay the hydration. 
For reducing the incompatibility, it is suggested that 
extractives are obtained from wood using hot water and 
chemical additives (Moslemi et al. 1983, Zhengtian and 
Moslemi 1985). Conductimetry studies showed that for 
delaying the gypsum set in the system, the extractives 
delay the overall reaction. A comparative study of the 
penetration of acetic acid and phenolic compounds 
showed that these factors are the main reason of the 
slow-down of gypsum set. Improvement of mineral 
binders (cement, gypsum and soil) has become the main 
issue of concern in recent decades. It is tried to replace 
mineral reinforcing factors (fiberglass or asbestos fibers) 
by organic fibers such as sisal and craft pulp, or cellulose 
fibers (Coutts 1083, Coutts et al. 1994). 

Natural fibers slow down the gypsum set due to 
the presence water-soluble compounds (Dalmay et al. 
2010). The lack of wood and forest in many countries, 
cheapness and abundance of lignocellulosic resources 
during the seasons of the year are some main reasons 
of using agricultural wastes. Replacement of agricultural 
wastes with wood can help the improvement of 
environmental conditions, because resources are used 
correctly. According to what was mentioned above, many 
researches are conducted on using agricultural wastes 
and artificial fibers. Their effects on panel properties will 
be different due to the different shape of bagasse, kenaf 
and glass fibers, different chemical compositions and 
their different morphological and anatomical properties.

As mentioned above, the results obtained from 
experimental studies showed that many variables 
significantly affect the bending strength, such as different 
fiber types and additives. Hence, optimal conditions 
of manufacturing must be found, which provide a 
balance between product properties and manufacturing 
cost. However, it is too costly and time-consuming 
to determine the influence of each parameter on 
the bending strength. Thus, most recent researches 
have been focused on prediction of properties of 
different composites by modeling tools rather than 
comprehensive experimental procedures. Artificial 
neural network (ANN) can give a chance to achieve 
the logical values of bending properties by doing some 
experimental treatments because of its capability to 
determinate complex and non-linear relationship in the 
data structure (Kalogirou 2001, Zhang et al. 1998). Due 
to the advantages mentioned, ANN methods are applied 
in several studies for predicting mechanical and physical 
properties in the wood-based composites field. Cook 
and Chiu (1997), Fernandez et al. (2008) and Watanabe 
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et al. (2015) used the ANN approach for modeling the 
internal bond strength of particleboard. Ozsahin (2013) 
developed an artificial neural network (ANN) model 
for predicting the effects of some production factors 
on physical properties of oriented strand board (OSB). 
Demirkir et al. (2013) employed the same approach for 
modeling the plywood bonding strength. In literature, 
the effects of various factors on the mechanical and 
physical properties of wood-based composites are 
discussed mostly in detail, and ANN methods are used 
to predict the properties of these composites. However, 
it is shown that no information is available to investigate 
and predict the effects of fibers obtained from different 
resources on the bending strength of gypsum-bonded 
fiberboard. Hence in the present study, we aimed to 
investigate and predict the bending strength of gypsum-
bonded fiberboard manufactured from different fibrous 
resources with a proper weight ratio of bagasse, kenaf 
and glass fiber to gypsum, and determine the best 
composition for producing gypsum-bonded fiberboard. 

MATERIAL AND METHODS 

Origin of data

Bagasse (Saccharum Ossicinarum L.) was prepared 
from the southwest regions of Iran. Some worn-out kenaf 
sacks (Hibiscus cannabinus L.) were prepared also from a 
warehouse in Zabol. Fiberglass rolls were also prepared 
and transferred to the laboratory. The mineral binder 
was Omid-e-Semnan gypsum. The coarse particles of 
gypsum were first removed by a Mesh 40 Sieve, and fine 
particles were prepared to make the samples. 

Chemical analysis 

For chemical analysis of lignocellulosic materials, 
lignin content, extractives soluble in alcohol-benzene 
solution and ash and silica of the raw kenaf and bagasse 
fibers were determined according to TAPPI T 222 om-98 
(1998), TAPPI T 204 cm-97 (2004) and TAPPI T 211 om-
85 (2009) standards, respectively. Ten specimens were 
used for each test. The results are shown in Table 1.

Hydration test and compressive strength 

The hydration test was performed on the gypsum 
paste sample using calorimetric method to evaluate 
the compatibility of the materials used with gypsum by 
determining the temperature emitted when gypsum was 
mixed with or without kenaf, bagasse or glass fibers and 
water containing extractives. The paste’s setting time is 

a good index of the hydration reaction rate. Vicat test 
was performed to determine the consistency progress 
of the gypsum paste by recording the initial and final 
setting times during the change of the penetration depth 
of the needle of the Vicat apparatus over time. For this 
purpose, different weight ratios were used including 300g 
gypsum, 150 ml water and 15 g powder of lignocellulosic 
material for the treatments c, f and i, respectively, and 
300 g gypsum, 150 ml pure water or extractives for 
the treatments g, a, b, d, e, h, j and k, respectively. For 
specimens with or without powder of fibers, the initial 
and final setting times were recorded that are a reliable 
parameter for determining the hydration speed. From 
the treatments mentioned above, specimens were also 
prepared in 20×20×30 mm mould for performing the 
compressive strength test.

Panel preparation

The effect of independent variables was examined 
on the modulus of rapture of the boards prepared, 
including fiberglass at three levels 0, 3 and 6%, bagasse 
fibers at three levels 0, 7.5 and 15% and kenaf fibers at 
three levels 0, 7.5 and 15%. Other preparation factors 
were constant such as the amount of water (40% of dry 
weight of gypsum), board’s density (1.10 g.cm-3), press 
closing speed (4.5 mm.s-1), press pressure (15 Kg.cm-2), 
press temperature (25 ºC), press time (24h), board’s 
thickness (10mm) and etc. The preparation process was 
a semi-dry process. First, water containing citric acid 
(99.95% water+100% citric acid 0.05) was sprayed on 
the dry fibers. After moistening the fibers in a laboratory 
mixer for 5 minutes, gypsum was sprinkled on them and 
they were remixed in a high speed mixer until a smooth 
homogeneous mixture of gypsum-fibers was obtained. 
The mixture was then put into a 30×30 cm wooden 
mold to prevent from changes in the cake’s thickness 
and density in the final board. The cake was then put 
under the cold press. The boards were maintained by 
a clamp for 24 h at a constant pressure. After removing 
the clamps, the prepared boards were put into plastic 
bags for 48 h in order to complete the hydration process. 
Then, after removing the boards from plastic bags, they 
were exposed to the open air for 5 days in order that the 
moisture is balanced. After the boards were hardened, 

TABLE 1 Analysis of fibers,  from the species teste d.

Species
Cellulose 

(%)
Lignin
 (%)

Ash
 (%)

Extractives
 (%)

Silica 
(%)

Silica in 
ash 
(%)

Slenderness 
ratio

Bagasse 47.6 23. 1.7 4.1 0.9 42.9 68.8
Kenaf 57.1 12. 5.5 2.9 - - 150.9

Fiberglass - - - - - -  300
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their moisture ranged from 16 to 20%. So they had 
to be dried to achieve the desirable strength. For this 
purpose, the boards were dried into an oven at the 
temperature 50ºC for 4 h under permanent ventilation. 
The boards were dried until the moisture 5 to 7% 
was reached. The fi nal boards had the dimensions 
1×35×35 cm. After drying, cutting and preparing 
the test specimens, modulus of rupture (MOR) was 
computed according to EN 319 Standard (1999). MOR 
was determined by HOUNS Field H25ks Mechanical 
Testing Machine.  

Experimental design 

Response surface methodology 

After performing bending strength test, the results 
were analyzed as the response surface using experimental 
data that presented mathematical relations based on the 
quadratic regression model. This technique was used 
for developing a mathematical model as multivariate 
regression equations for the properties of the boards 
made. Using the response surface methodology, the 
independent variables were considered as functions 
of a mathematical model. The mathematical model is 
denoted by a general quadratic (regression) Equation 1 
for the response surface y (Balasubramanian et al. 2008), 
where xi and xj are input or independent factors, β0 is 
the free term of the equation, the coeffi cients β1, β2, βi 
are linear terms; β11, β22, βii are quadratic terms; β12, β13, 
βi-1,j are the interaction terms and the ϵ represents the 
random error.

variables (percentage of bagasse fi bers, kenaf fi bers 
and fi berglass) is [3]. When the regression analysis was 
performed, the response errors were obtained. The 
number of the independent variables, their codes and 
levels and the experimental design used are presented 
in Tables 2 and 4.  

All coeffi cients of the cube’s central axis were 
obtained using Expert Design software package. After 
determining the signifi cance of the coeffi cients (at the 
level of confi dence 95%), the fi nal model was described 
only using the coeffi cients (Lakshminarayanan and 
Balasubramanian 2009). It is recommended that the 
six-center test is used for three variables (William 
and Cochran 1992). Hence, based on the equation 
2 where n is the number of variables and k is the 
number of repetitions at the cube’s center, the total 
number of tests required for three independent 

[1]

[2]

[3]

[4]

FIGURE 1 The ANN architecture used as the prediction model 
for MOR.

TABLE 2 A Coded and actual levels of variables.

Species
Cellulose 

(%)
Lignin
 (%)

Ash
 (%)

Extractives
 (%)

Silica 
(%)

Silica in 
ash 
(%)

Slenderness 
ratio

Bagasse 47.6 23. 1.7 4.1 0.9 42.9 68.8
Kenaf 57.1 12. 5.5 2.9 - - 150.9

Fiberglass - - - - - -  300

Artifi cial neural network 

ANNs are more powerful techniques in predicting 
non-linear relationships than the RSM technique, because 
they require many more experiments than the RSM. 
However, while the statistical relationships between 
input and output districts were signifi cant according to 
the design of experiments (obtained by RSM), ANN 
methods can also work correctly even with logical 
small data (Shanmugaprakash and Sivakumar 2013). 
Therefore, the experimental data achieved by RSM 
could be adequate to organize ANN model effectively. 
A multilayer perceptron (MLP) was selected as a feed-
forward ANN consisting of three main layers called the 
input (operated using the hyperbolic tangent sigmoid 
transfer function), hidden and output layers (operated 
using the pure-linear transfer function) (Mirsoleimani- 
Azizi et al. 2015, Movagharnejad and Nikzad 2007) as 
described by Equation (4).
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A MLP was developed in MATLAB (The 
Mathworks, Inc., R2014a) with three input neurons 
representing the glass fi ber, kenaf fi ber and bagasse fi ber 
content, a single hidden layer of neurons, and one output 
neurons representing the MOR of gypsum-bonded 
fi berboard. As seen from MLP architecture (Figure 1), 
the number of neurons required in the hidden layer is 
determined by adding the weighted inputs and the related 
bias (Equation 5) and also leading the input data towards 
a more nonlinear situation; so at least 8 neurons were 
needed to fi x the fi nal model using the data obtained 
to develop the RSM, and the addition of more neurons 
made the model overfi tting possible (Cheok et al. 2012, 
Madadlou et al. 2009).

The results showed that the fi nal setting time 
of the gypsum increased at the maximum temperature 
at the presence of the lignocellulosic material or 
extractives from washing the lignocellulosic material 
(Figure 2), and then, the maximum temperature of the 
mixture decreased. In addition, the increase or decrease 
of the hydration at different times depends on the 
type of the lignocellulosic material and the extractives 
content. Generally, kenaf with less extractives (Table 
3) has a higher maximum hydration temperature and 
lower hydration time.

According to Zhou and Kamdem (2002), the 
decrease in maximum temperature may be due to the 
presence of the hygroscopic sponge tissue in pith or 
extractives in lignocellulosic materials that prevents from 
heat generation due to water absorption. The results 
indicate that as raw lignocellulosic material or water-
soluble extractives obtained from washing lignocellulosic 
material are added, the hydration temperature decreases 
and the fi nal setting time increases. In Figure 2, among 
the test treatments with two types of lignocellulosic 
msaterials (bagasse and kenaf) and along with treatments 
with extractives from washing with hot and cold water, 
maximum hydration temperature was related to the 
treatment of gypsum+citric acid 0.05 with kenaf 
fi ber extractives washed with cold water, showing the 
temperature 42 ºC and the fi nal setting time 235 min. 
Since the extractives in bagasse are 1.5 times more 

FIGURE 2 Hydration temperature and time of the test samples 
(fi berglass was excluded).

[5]

To obtain the fi nal model, all experimental data sets 
were divided evenly into three subsets: 70% of data sets 
(14 samples) were used for training the network, 15% 
(3 samples) were used for validation and the last 15% 
(3 samples) were used for testing sets. The number of 
neurons in the input layer is determined by the number of 
inputs, and those in the output layer are determined by the 
number of outputs (Wang and Wan 2009). The number of 
neurons in the hidden layer is determined by repetition in 
testing a number of neural networks until the mean square 
error (MSE) value of the output reaches a minimum. 

RESULTS AND DISCUSSION 

Hydration Test 

The effect of the type of lignocellulosic material 
and the water-soluble extractives of these materials 
was evaluated on hydration process of gypsum paste 
by measuring the fi nal setting time (tmax) and maximum 
hydration temperature (Tmax) of the gypsum+ 
lignocellulosic material (bagasse and kenaf) mixture or 
gypsum+ extractives (from washing the lignocellulosic 
material with hot and cold water) mixture. Tmax and

 
tmax 

values of the test samples are given in Table 3.
TABLE 3 Hydration temperature and time to reach the maximum temperature.

Treatment cod Treatment Treatment type Maximum temperature (°C) Curing time (min)
60 52   gypsum+ water A G.W

205 46 gypsum+ citric acid 0.05 B G. A 0.05
285 40 gypsum+ citric acid 0.05+bagasse C G. A 0.05. B
305 41 gypsum+ citric acid 0.05+bagasse cold-water extractives d G. A 0.05  BCE
340 38 gypsum+ citric acid 0.05+bagasse hot water extractives e G. A 0.05  BHE
195 41 gypsum+ citric acid 0.05+kenaf f G. A 0.05.  K
235 42 gypsum+ citric acid 0.05+kenaf cold water extractives g G. A 0.05 KCE
280 39 gypsum+ citric acid 0.05+kenaf hot water extractives h G. A 0.05 KHE
185 44 gypsum+ citric acid 0.05+fi ber glass i G. A 0.05. G
178 44 gypsum+ citric acid 0.05+fi ber glass cold water extractives j G. A 0.05 GCE
180 43 gypsum+ citric acid 0.05+fi ber glass hot water extractives k G. A 0.05 GHE

Note:  Different weight ratios included 300g gypsum, 150 ml water and 15 g lignocellulosic material for the treatments c, f and i, and 300 g gypsum, 150 ml water for 
the treatments a, b, d, e, g, h, j and k.
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than those in kenaf (Table 1), and washing with hot 
water contains more extractives, minimum hydration 
temperature was for the treatment of gypsum+citric 
acid 0.05 with bagasse fi ber extratives washed with hot 
water, showing the temperature 38 ºC and the longest 
fi nal setting time 340 min. 

Analysis of the results in Tables 1, 3 and Figure 
2 shows that washing the lignocellulosic material with 
hot water results in the solution of more extractives that 
changes the hydration temperature and setting time of 
gypsum paste. 

During the gypsum hydration process, like calcium 
hydroxide, calcium sulfate increases the pH of the gypsum 
paste when adding water to the hydration process. On 
the other hand, the extractives of plant fi bers are generally 
acidic and they delay the minerals set due to the presence 
of sugar and extractives. Therefore, the system pH 
will change that may change the speed of the hydrated 
compounds formation; Hence, the hydration process can 
be negatively affected. Alkaline hydrolysis of hemicellulose 
and lignin is due to the formation of lignin calcium salts, 
polysaccaride and decrease of some sugar substances(Singh 
1979). These soluble salts or deposits interfere with the 
hydration of the mineral physically and chemically and 
even can change the composition and morphology of 
the hydrated product (Roberts, 1967). In addition, sugar 
substances of wood are active hydrophilic materials. 
Besides setting, sugar substances added to water in the 
mixture of gypsum mineral create a thin layer of densifi ed 
water on the surface of gypsum grains as impenetrable 
gel under the effect of absorbency and coherence of the 
molecule. Although tiny gypsum particles are not compact, 
they are out of access of water. Therefore, the progress of 
hydration process is impossible and its speed slows down 
(Vaickelionis and Vaickelionis 2006).

Vicat

The effect of the type of lignocellulosic material 
and extractives on the setting time of gypsum paste 
during the vicat test is shown in fi gure 3.The setting time 
of the gypsum paste was 40 min without any additive. 
Acid solvent (citric acid 0.05%) was used to delay the 
setting speed of the gypsum paste, and the setting time 
increased to 165 min. Among the test treatments, the 
lowest setting time was for the mixture of pure gypsum 
and water followed by the treatment f (gypsum+ citric 
acid 0.05+kenaf), i.e. 85 min. The reason can be the high 
volume of fi bers, higher contents of cellulose and lower 
extractives in the lignocellolosic material (kenaf). In other 
words, the lower the extractives of the lignocellulosic 
material in gypsum paste, the shorter the setting time 
of the paste.

In addition, the paste of the mixture of gypsum 
and bagasse fi bers has led to water absorption by 
cell walls due to the low density and bagasse sponge 
structure. The increase in water absorption increases the 
concentration of gypsum paste, so that the penetration of 
vicat needle into the mixture is prevented while gypsum 
hydration has not completed yet. In fact, bagasse, kenaf 
and glass fi bers act as fi ller and are the main factor of 
the decrease in the setting time. The higher content of 
extractives soluble in the gypsum paste resulting from 
washing bagasse with hot water can be also an effective 
factor and delays the gypsum’s setting time. 

Compressive strength 

The results from the compressive strength test 
are shown in Figure 4. The strengths range from 1 to 7 
MPa. The compressive strength of the pure gypsum with 
water was highest in certain times (3, 8, 24 and 72 h).  

The results showed that increasing the time, 
the compressive strength of the samples increases. 
The highest strengths were in 72 hours and the highest 
strength was for the pure gypsum sample (6.5 MPa). 
Adding citric acid 0.05% as the retarder of dehydration, 
the compressive strength decreases. The compressive 
strength of the pure gypsum + water containing citric 
acid 0.05% decreased to 5.1 MPa after 72 h. This can be 
due to the delay of the dehydration process and prevents 
from the formation of gypsum crystal lattice (Sanda 1982). 
Samples containing extractives have lower strength. The 

FIGURE 3 Vicat test: penetration depth needle into of the 
gypsum pastes.

FIGURE 4 Compression strength of gypsum paste samples.
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extractives delay the gypsum dehydration process and 
this can prevent from completion of hydration process 
and decreases the fi nal strength of the cured mixture. 
On the other hand, for a constant wood to gypsum ratio, 
when the retarder of gypsum paste hydration is used, the 
compressive strength decreases. Generally, the lowest 
strength is for gypsum + bagasse or/and kenaf fi bers 
samples. Values show that when lignocellulosic fi bers are 
used in the test mixture, there is a lower strength than 
treatments in which only extractives are applied. 

RSM model

The effect of the variables including fi berglass (X1), 
kenaf fi ber (X2) and bagasse fi ber (X3) on MOR predicted 
by the RSM model was compared to the experimental 
data, and the results can be observed in Table 4. The 
results are plotted in Fgure 5 to provide the coeffi cient 
of determination (R2= 0.9070). 

Coeffi cients of each variable in the quadratic 
model and its estimated multiple regression equation are 
presented in Table 5 and Equation 5. 

According to the regression coeffi cient (Table 
5), it is observed that the linear coeffi cients ( 1 2 3, ,α α α

) of MOR are positive. Positive values show that the 
increase in fi berglass, bagasse and kenaf fi bers for 
making panels increases MOR. Maximum MOR is 11 
MPa for the board Nº 16 (6% fi berglass, 15% bagasse 
fi bers and 15% kenaf fi bers), meeting the standard 

FIGURE 5 Compression strength of gypsum paste samples.

TABLE 4 The experimentally obtained MOR of panels 
compared to that predicted by RSM model and ANN.

Run

Actual values 
of variabels 

(%)

Experimental 
MOR 
(MPa)

RSM predicted  
MOR (MPa) & 

Error

ANN predicted  
MOR (MPa) & 

Error
X1 X2 X3

1 0 15 15 6.70 7.02 (-0.32) 6.69 (0.0009)
2 3 7.5 7.5 6.30 6.34 (-0.04) 6.175 (0.125)
3 3 15 7.5 8.10 7.87 (0.23) 8.1 (-0.0003)
4 3 7.5 7.5 6 6.34 (-0.34) 6.175 (-0.175)
5 6 15 0 9.3 9.63 (-0.32) 9.943 (-0.643)
6 0 0 0 1.9 2.02 (-0.12) 1.9 (-0.000009)
7 0 15 0 5.9 5.83 (0.065) 5.49 (0.407)
8 3 7.5 7.5 6.5 6.34 (0.16) 6.175 (0.325)
9 3 7.5 7.5 6.3 6.34 (-0.04) 6.175 (0.125)
10 6 0 15 8.9 8.49 (-0.41) 8.902 (-0.0026)
11 3 0 7.5 5 4.81 (0.19) 4.99 (0.00064)
12 3 7.5 15 7.4 7.53 (-0.13) 7.4 (-0.0008)
13 3 7.5 0 5.3 5.15 (0.15) 5.3 (-0.0016)
14 6 7.5 7.5 8.70 8.46 (0.24) 8.7 (0.000008)
15 0 7.5 7.5 5.6 5.12 (0.48) 6.1 (0.699)
16 6 15 15 11 10.81 (0.2) 11.00 (-0.0002)
17 3 7.5 7.5 6.4 6.34 (0.06) 6.175 (0.225)
18 6 0 0 4.8 4.91 (-0.11) 4.79 (0.007)
19 3 7.5 7.5 6.00 6.34 (-0.34) 6.175 (-0.175)
20 0 0 15 5.5 5.6 (-0.1) 4.96 (-0.53)

(X1), kenaf fi ber (X2) and bagasse fi ber (X3)

Bison (Hz) (1978) and EN 634-2 (2007), that is 9 MPa. It 
is clear from Table 5 that the quadratic terms (glass fi ber 
(X1

2)), interactive term (glass fi ber × kenaf fi ber (X1X2) 
and kenaf fi ber × bagasse fi ber (X2X3)) and linear terms 
(glass fi ber (X1), kenaf fi ber (X2) and bagasse fi ber (X3)) 
have large effects on the MOR due to their higher F 
values as well as lower p-values.

ANOVA was used to illustrate which variables 
are statistically signifi cant in the determination of MOR 
at the confi dence interval 95% (Table 6). MOR values 
range from 1.9 to 11 MPa. According to Table 6, the 
Model F-value of 166.27 shows the model is signifi cant. 
In fact, there is no chance that a “Model F-Value” is 
equal to this value due to the noise. Values less than 
0.0500 for X1, X2, X3, X1X2, X2X3, X1

2 indicate that 
these model terms are signifi cant, namely model 
reduction may improve the model (Table 5). The value 
2.65% for the “Lack of Fit F-value” shows that the 
Lack of Fit is not signifi cant relative to the pure error 
which it is good. Moreover, a high F value (166.27) with 
a low probability (p=0.0001) indicates the high ability 
of the model in predicting the results. The predicted 
R-squared of 0.9070 is in full agreement with the 
adjusted R-squared of 0.8812.  

TABLE 5 Regression analysis of RSM model for the MOR of 
panels, with the associated statistical signifi cance of 
each coeffi cient.

Coeffi cient Value F-value p-value
β0 6.39 123.45 < 0.0001
βx1 1.67 442.43 < 0.0001
βx2 1.53 371.36 < 0.0001
βx3 1.19 224.65 < 0.0001

βx1x1 0.59 15.00 0.0031
βx2x2 -0.014 0.00811 0.9300
βx3x3 -0.21 1.99 0.1886
βx1x2 0.22 6.42 0.0296
βx1x3 0.13 1.98 0.1894



COMPARISON OF RESPONSE SURFACE METHODOLOGY (RSM) AND ARTIFICIAL NEURAL NETWORKS (ANN) TOWARDS 
EFFICIENT OPTIMIZATION OF FLEXURAL PROPERTIES OF GYPSUM-BONDED FIBERBOARDS

42

CERNE

NAZERIAN et al.

150.9, respectively, showing that the slenderness ratio of 
fi berglass is much higher than that of bagasse and kenaf 
fi bers. It is observed that the higher the fi berglass used for 
making gypsum-bonded fi berboard compared to bagasse 
and kenaf fi bers, the fl exural strength properties (MOR) 
increase (Figure 7).  The reason can be attributed to the 
strong effective grid produced due to the connections 
between gypsum particles and fi berglass surface. These 
fi bers are largely compatible with minerals and lead to a 
rather strong connection and mix with minerals desirably 
(Eusebio and Suzuki 1990, Bogue 1964, Hachmi and 
Moslemi 1990). Fiberglass is resistant to alkalis and 
signifi cantly affects the composite quality due to its 
surface activities and hence, it has desirable compatibility 
with mineral (Eusebio and Suzuki 1990). Due to their 
high desire to form a bond with minerals, mineral fi bers 
provide better and stronger bonding conditions for the 
cohesion between wood, fi bers and cement(Mashima et 
al. 1994, Eusebio and Suzuki 1990). Findings of Cao et 
al. (2006) and Ganesan et al. (2007) showed that using 
fi bers for making fi ber-cement composites improved the 
mechanical properties, especially the fl exural strength. 
They attributed the reason to the high contact surface, 
formation of a more effective grid and increase in the 
cohesion of fi bers with cement particles.

FIGURE 7 Direct effect of the glass, kenaf and bagasse fi ber 
contents on MOR.

FIGURE 6 Direct effect of the glass, kenaf and bagasse fi ber 
contents on MOR.

The direct effect of three variables on the MOR is 
shown in fi gure 6. When the content of glass fi ber, kenaf 
fi ber and bagasse fi ber in the panel varied from 0 to 6%, 0 
to 15% and 0 to 15%, respectively, MOR value increased 
continuously, but the effect of glass fi ber content is greater 
than others as shown in fi gure 6 and Table 5. 

The interactive effects of the variables (bagasse 
× kenaf fi bers content and kenaf fi bers × glass fi ber) 
showed that increasing the content of glass, kenaf 
and bagasse fi bers, the fl exural strength (MOR) also 
increases (Figure 7).

 The reason can be attributed to the high fl exibility 
and slenderness ratio of the fi bers (Mashima et al. 1994, 
Takahashi 1986). This fact affects the brittleness of 
gypsum composites. Due to their high slenderness ratio, 
mineral fi bers such as fi berglass also improve the fl exural 
strength and stiffness of the panels based on mineral 
binders such as gypsum. This result was in agreement 
with the previous study that using natural fi bers such 
as bagasse combined with other lignocellulosic waste 
materials for making gypsum-bonded particleboard 
increases the fl exural strength due to their desirable 
fl exibility (Nazerian and Kamyab 2013). The lowest value 
of MOR is related to the specimen without any fi ber 
(Figure 7). According to Table 1, the slenderness ratio 
of fi berglass, bagasse and kenaf fi bers is ≥ 300, 68.8 and 

TABLE 6 Analysis of variance (ANOVA).

Source
Sum of 
squares

df F-value P-value

Model 69.76 6 166.27 0.0001
Residual error 0.63 10 - -
 Lack-of-fi t 0.74 8 2.65 0.1487
 Pure error 0.17 5 - -
R-Squared = 0.9070 Adj R-Squared = 0.8812
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Artifi cial neural network

In order to determine the suitability of the model, 
the experimental (actual) values of MOR were compared 
to those predicted by ANN model. The experimental 
and predicted values for each experiment were plotted 
against the run numbers (Figure  8). This fi gure consists of 
the perfect fi t line y=x (predicted data = experimental 
data with a high degree of correlation) and best fi t line 
described by the best linear equation (y = mx + c) with 
a high coeffi cient of determination (R2 = 0.9837).

FIGURE 8 Correlation coeffi cient for mean MOR (ANN).

In order to predict the MOR values of gypsum-
bonded fi berboard, the experimental data were grouped 
into four data sets. The number of hidden neurons 
between 4 and 10 was selected and evaluated to 
determine a favorable ANN model. Mean square error 
(MSE) of the selected hidden neurons in the model was 
calculated, including 4, 6, 8 and 10 (0.6, 0.065, 0.007 
and 0.35, respectively). Hence, 8 hidden neurons were 
chosen for the model.  

The results of MOR value prediction using the 
developed ANN model are exhibited in Table 4, which 
included an input layer with three neurons (content of 
glass fi ber, kenaf fi ber and bagasse fi ber), an output layer 
with one neuron (MOR value), and 8 hidden neurons. 
According to the data sets used in the ANN prediction 
model (Figure 9), the correlation coeffi cient (R) of the 
predicted values (output) versus the actual values (target) 
were 0.99946, 0.98783, 0.99942 and 0.99183 for the 
training, validation, testing and all data sets, respectively.

These R values between experimental response 
and ANN predicted response showed in all the cases that 
there was a good correlation between the experimental 
and predicted values; so the developed ANN model 
trained using experimental data predicted the studied 
response (MOR) of panels precisely. 

These R values between experimental and 
predicted values showed in all the cases that there was a 
good correlation between the actual and predicted values; 

FIGURE 9 Correlation coeffi cient for mean MOR (ANN).

FIGURE 10Comparison of RSM and ANN predictions with the    
experimental mean values of MOR.

and the developed ANN model, which was trained using 
actual values, predicted the panel MOR precisely. Also, R2 
value suggests that 99.88% of the variation in the actual 
and predicted values can be explained by the model.

Comparison of RSM and ANN

In order to estimate accurate prediction of 
the developed models, actual mean MOR values were 
compared with the mean MOR predicted values of 
the ANN and RSM models as shown in fi gure 10. It is 
observed in the fi gure that the prediction of mean MOR 
in both models is in full agreement with that of actual 
values; so the experimental values are approximated by 
trained neural network effi ciently. However, RSM model 
was slightly accurate. 
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ANN model predictions fit the line of perfect 
prediction more than RSM model. Thus, ANN model 
is more capable of data generalization than RSM model. 
This higher accuracy of prediction by ANN can be related 
to its approximation ability through nonlinearity of the 
system (Maran et al.2013), whereas RSM belongs only 
to a second-order polynomial (Shanmugaprakash and 
Sivakumar 2013). However, the negative effect of using 
ANN technique lies in its limited prediction due to the 
application of some studied variables and factors through 
the training process (Rajkovic et al. 2013).

the models. The relationships between these values 
obtained using the CCRD and ANN models are shown 
in figures 5 and 8, respectively. According to Figure 8, 
R2 values in training, validating and testing the data sets 
for MOR are greater than 0.99%. This result implies 
that the model designed is capable of explaining at least 
0.99% of the measured data. These values also support 
the applicability of ANN. On the other hand, R2 values 
in quadratic model are 90.70% for MOR, which are 
desirable. These results indicated that the models used in 
both methods can be selected for accurate predictions, 
since they both have high explanatory values. However, 
the normal probability diagram of the measured-
predicted values for ANN and quadratic models show 
that in the ANN model, data are more closely distributed 
on straight line (Figure 8) than those in quadratic model 
(Figure 5). This means that the errors in ANN model 
are distributed more normally. Hence, ANN model is 
selected as the regression model of MOR. Other studies 
are carried out about the strength properties of wood-
based composites, but R2 values obtained by ANN and 
quadratic models in this study are higher compared to 
other studies (FERNANDEZ et al. 2008, DEMIRKIR et 
al. 2013, ESLAH et al. 2012).

The interactions among three parameters 
investigated for the bending strength of the panels are 
examined using three dimensional surface plots (Figure11). 

As it can be seen, there is a considerable similarity 
between Figures 7 and 11. The relationship between the 
content of kenaf fiber and glass depicted in Figure 7. The 
figure shows both parameters interact with each other, 
which significantly affects the MOR value of the panels. 
MOR value of the panels is highest at the highest kenaf and 
glass fiber loading. As the loading of both kenaf and glass 
fibers decreases, MOR value of the panels decreases.

MOR value decreased from over 10.11 MPa to 
less than 4MPa. Similarly, figure 11 shows MOR value 
as a function of input parameters including the content 
of kenaf fiber and bagasse fiber in three dimensional 
patterns. The lowest MOR value is observed at kenaf 
fiber content loading 0% and bagasse content 0%. 
Increasing the content of kenaf and bagasse fibers, MOR 
value of panels increases; so, MOR value decreased from 
over 8.9 MPa to less than 2.4MPa.

CONCLUSSION  

The study of the hydration process showed that 
the higher the non-wood extractives, the higher the 
setting time of the paste containing the extractives. On 
the other hand, the resulting temperature decreases.  

TABLE 7 Performance evaluation of RSM and ANN models.
Coefficient Value F-value p-value

β0 6.39 123.45 < 0.0001
βx1 1.67 442.43 < 0.0001
βx2 1.53 371.36 < 0.0001
βx3 1.19 224.65 < 0.0001

βx1x1 0.59 15.00 0.0031
βx2x2 -0.014 0.00811 0.9300
βx3x3 -0.21 1.99 0.1886
βx1x2 0.22 6.42 0.0296
βx1x3 0.13 1.98 0.1894

ANN predicted values of the experimental 
samples of MOR and their errors are given in Table 
4. The model showed good prediction performance. 
Moreover, the results indicated that the values predicted 
by ANN had a low percent of error that is satisfactory 
for predicting MOR values.

R2, Adjusted R2, RMSE and MAE values used to 
evaluate the performance of ANN and quadric models 
developed in this study are given in Table 7. The calculated 
R2 and adjusted R2 of the ANN model were 0.9837 
and 0.9619, respectively; however, the determination 
coefficients and adjusted determination coefficients for 
RSM models were 0.9070 and 0.8812, respectively. 

 The high value of R2 obtained for ANN model is 
indicative of its better fit (Joglekar and May 1987). The 
model’s generalizability can be verified by its prediction 
accuracy for a validation data set (Eslah et al. 2012). 
RMSE and MAE values for ANN were less than those for 
RSM as shown in Table 1. These results show that the 
predication of RSM model has a greater deviation than 
the prediction of ANN model. This also means that the 
experimental data are fitted with a higher accuracy using 
the ANN model. 

As seen from the results, ANN approach has 
shown better prediction performance than the quadratic 
approach based on the evaluation criteria and has a 
sufficient accuracy level in the prediction of MOR values. 
The determination coefficient (R2) between the measured 
and predicted values is used to check the adequacy of 
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Moreover, the longest setting time of the test treatments 
is related to pure gypsum with water. In addition, among 
treatments in which only fi bers are used in the gypsum 
paste, the longest setting time is related to the paste 
containing bagasse fi bers. 

Production of gypsum-bonded fi berboard 
using bagasse fi bers, kenaf fi bers and fi berglass as the 
reinforcing fi bers increases the bending strength of the 
boards. Increasing bagasse and kenaf fi bers when making 
mineral composites, the MOR increase, but the effect of 
fi ber glass was higher than others. 

The fl exural properties modeling were developed 
to predict the bending strength. The prediction of not 
only ANN model but also RSM were found to be in good 
agreement with experimental data.

The predictive ANN model is found to be capable 
of better predictions of fl exural properties within the 
range that they had been trained. The results of the ANN 
model indicate it is much more confi dent and accurate 
in estimating the values of bending strength when 
compared with the response surface model
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