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ABSTRACT: Modeling of the ecological niche of vegetal species is useful for understanding 
the species-environment relationship, for prediction of responses to climate changes and 
for correct reforestation programs and establishment of plantation’s recommendation. 
The objective of this work was to establish a model for the distribution of four tree species 
(Casearia sylvestris, Copaifera langsdorffii, Croton floribundus and Tapirira guianensis), widely 
used in reforestation projects in the state of Minas Gerais, Brazil. In addition, we analyzed the 
relationship between environmental characteristics and the occurrence of species and tested 
the performance of Random Forest and Artificial Neural Networks as modeling methods. 
These methods were evaluated by their overall accuracy, sensitivity, specificity, Kappa, true 
skill statistic and the area under the receiver operating curve. The results showed the species 
Casearia sylvestris, Copaifera langsdorffii and Tapirira guianensis widely occurring in the state 
of Minas Gerais, including a broad range of environmental variables. Croton floribundus had 
restricted occurrence in the southern state, showing narrow environmental variation. The 
resulting algorithms demonstrated greater performance when modeling restricted geographic 
and environmental species, as well as species occurring with high prevalence in data. The 
algorithm Random Forest performed better for distribution modeling of all species, although 
the results varied for each metric and species. The maps generated had acceptable metrics 
and are supported by and ecological information obtained from other sources, constituting a 
useful tool to understand the ecology and biogeography of the target species.

MODELAGEM DO NICHO ECOLÓGICOS DE ESPÉCIES ARBÓREAS EM UMA 
ÁREA TROPICAL BRASILEIRA

RESUMO: A modelagem de nicho ecológico de uma espécie é útil para a compreensão da 
relação espécie-ambiente, para a previsão do comportamento frente às alterações climáticas 
e para a indicação correta em reflorestamentos e estabelecimento de plantações. O objetivo 
foi modelar a distribuição de quatro espécies arbóreas amplamente utilizadas em projetos de 
reflorestamento no estado de Minas Gerais (Casearia sylvestris, Copaifera langsdorffii, Croton 
floribundus e Tapirira guianensis). Como complemento, o objetivo foi analisar a relação entre 
as características ambientais e a ocorrência de espécies e testar o desempenho das técnicas 
random forest e redes neurais artificiais como métodos de modelagem. Estes métodos foram 
avaliados pelas métricas de acurácia global, sensibilidade, especificidade, kappa, true skill statistic 
e área sob a curva. Verificou-se que as espécies Casearia sylvestris, Copaifera langsdorffii e Tapirira 
guianensis apresentaram ampla área de ocorrência no estado Minas Gerais, cobrindo ampla 
gama de variáveis ambientais. Já Croton floribundus demonstrou ocorrência restrita do sul do 
estado, mostrando estreita variação ambiental. Os resultados dos algoritmos demonstraram 
maior desempenho na modelagem de espécies geograficamente e ambientalmente restritas, 
bem como espécies com alta prevalência em dados de ocorrência. O algoritmo random forest 
alcançou melhor desempenho na modelagem da distribuição de todas as espécies, embora 
os resultados variem para cada métrica e espécie. Os mapas gerados possuem métricas 
aceitáveis e são apoiadas por informações ecológicas obtidas em outras fontes, constituindo 
uma ferramenta útil no entendimento de sua ecologia e biogeografia.
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INTRODUCTION

The interest in describing and understanding 
geographic and environmental distribution of species is 
a very old concern (GRINNELL, 1917; HUTCHINSON, 
1957). Predominantly, the species distribution is limited 
by the multidimensional ecological niche of occupancy 
space (MACARTHUR, 1972), restricted due to several 
factors, such as climate, soil, disturbances and biotic 
factors. These factors act on different spatial scales 
and act as filters to determine which species are more 
suitable to remain alive through time in the local 
community (WHITTAKER, 1967; TER STEEGE; ZAGT, 
2002). Identifying ecological niches of vegetal species 
across environmental gradients contributes for the 
comprehension of forest diversity and ecology (RATTER 
et al., 2003; OLIVEIRA-FILHO et al., 2005), as well as 
to understanding potential responses from vegetal 
species to climate changes (MAIORANO et al., 2013; 
WANG et al., 2016). Furthermore, it provides better 
insight of environmental requirements for each species, 
which is helpful in ecological restoration projects and 
establishment of plantations (COELHO et al. 2016).

Moreover, in the last 20 years, many methods 
have been developed to understand and estimate the 
ecological niche. These methods’ main principle is 
based on relations between known occurrences and 
environmental conditions. Ecological niche modeling is 
relevant and actual. This method is useful to understand 
the species biogeography and its potential occurrence 
through the development of maps as results. These 
techniques are widely applied for different goals, such as: 
conservation of rare or endangered species (QUEIROZ 
et al., 2012; HAMILTON et al., 2015); identification of 
climate change impacts (CHUN; LEE, 2013; GWITIRA et 
al., 2014); reintroduction of species (HIRZEL et al., 2002; 
MEINERI et al., 2015); identifying of potential areas for 
invasive species (VACLAVIK; MEENTEMEYER, 2009; 
GALLIEN et al., 2012). Several techniques for ecological 
niche modeling are available and can be classified in two 
models groups: 1) classical statistical and 2) non-classical 
statistical. The second group is composed by methods 
like the Random Forest and Artificial Neural Networks 
which usually has demonstrated superior performance 
in many studies (ELITH et al., 2006; LORENA et al., 
2011; POUTEAU et al., 2012). The advantages are the 
ability to work with correlated predictors, nonlinear 
relationships and noisy data. These characteristics are 
essential to improve the performance and reduce errors 
in ecological modeling (GARZÓN et al., 2006).

Nowadays, there are some gaps concerning native 
tree species and their environmental preferences in the 
tropical area. This viewpoint restricts the suggestion of 

correct species in forest restoration programs within 
natural areas (COELHO et al., 2016). According to Lima 
et al. 2009, the ecological and silvicultural procedures 
work together to guide the best strategy to recover 
the damaged systems and guarantee their sustainability 
in the future. In this context, the main objective was 
to model the ecological niche of 4 woody species, 
widely used in reforestation projects: Casearia sylvestris, 
Copaifera langsdorffii, Croton floribundus and Tapirira 
guianensis. On the other side, was the association among 
the deep descriptive analysis between environmental 
characteristics and each species’ occurrence. Finally, 
we tested the performance of the Random Forest and 
Artificial Neural Networks as modeling methods.

MATERIAL AND METHODS

Study area

The Brazilian tropical area in this study comprises 
the Minas Gerais state covering 586.53 km² (Figure 1). Due 
to the large area, a wide range of altitude (between 40 and 
2,600 meters) and eight climate classes according to the 
Thornthwaite index (CARVALHO et al., 2008) compose 
the study. This climatic index gradient decreases from 
the south to the north of the state. In general, the regions 
of higher altitudes are characterized by humid and super-
humid climates and the regions of lower altitudes by sub-
humid to semi-arid climates. The vegetation distribution 
covers three biomes: Cerrado, Mata Atlântica and 
Caatinga. The Cerrado area covers 57% of the area of   
the state (central-western region), the Mata Atlântica 
41% (eastern region) and Caatinga only 2% (north and 
west region) (IEF, 2015). Furthermore, these biomes 
comprise the phytophysiognomies: ombrófila, estacional 
decidual, estacional semi-decidual, veredas, campo, 
campo rupestre, campo cerrado, cerrado and cerradão. 
The predominant soil class is the latosol with spots of 
neosol litholic, argisol and cambisol.

FIGURE 1 Location of study area and inventoried fragments.
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Selected species and occurrence data

According to the Forest Inventory of Minas Gerais 
(SCOLFORO; CARVALHO, 2008), the selected species 
are native trees and abundant in the study area. In addition, 
they are largely used in reforestation programs and provide 
woody products as well as secondary forest products, like 
oils and resins, and may generate economic return under 
sustainable management. These species are Casearia 
sylvestris (Salicaceae), Copaifera langsdorffii (Leguminosae), 
Croton floribundus (Euphorbiaceae) and Tapirira guianensis 
(Anacardiaceae), which are usually found in riparian forests 
of the Cerrado as well as in Mata Atlântica. Oliveira-Filho 
and Ratter (1995) described the location area of Casearia 
sylvestris, Copaifera langsdorffi and Tapirira guianensis 
throughout forest galleries, connecting Amazônia and Mata 
Atlântica. Croton floribundus is most common in primary or 
secondary remnant areas of the semi-deciduous tropical 
forest (OLIVEIRA-FILHO et al., 2006).

The data is derived from 197 areas of native 
vegetation (Figure 1) from the Forest Inventories of 
Minas Gerais (SCOLFORO; CARVALHO, 2008) and 
the Rio Grande watershed project. These fragments 
were chosen according to the physiognomy and spatial 
distribution of each project scope and provided only 
natural occurrences and accurate geographical position. 
The diameter at breast height (dbh) of individual trees was 
measured, only trees with a diameter greater than 5 cm 
were considered and identified.  Finally, the occurrence 
species data were based in the fragment location. This 
procedure was considered instead of plot level because 
of the low environmental resolution data, which covers 
larges areas. We defined the fragment centerpoint to 
extract environmental variables and species occurrence. 
Boolean variable was used to indicate the presence (1) or 
absence (0) of each species and for categorical variables. 
The example of data used to train the algorithms can be 
partially in the Table 1.

Environmental data

We used 12 environmental variables associated 
to climate, topography and soils. Climatic variables mean 
annual temperature, temperature seasonality, maximum 
temperature, minimum temperature, mean annual 
precipitation, precipitation seasonality, precipitation 
during the dry and rainy months and altitude were 

obtained from Worldclim database (HIJMANS et al., 
2005). This base is widely used in ecological modeling 
studies (ELITH et al., 2006; LORENA et al., 2011) and 
derived from historical series (1950-2000) by global 
climate data interpolation with spatial resolution equals 
to 1 km. Topography (slope) and soil data (soil class 
and water regime) were obtained from the Ecological 
Economic Zoning of Minas Gerais (CARVALHO et al., 
2008). Soil classes are categorical comprehending 11 
soil classes (argisol, cambisol, espodosol, gleysol, latosol, 
luvisol, fluvisol, litholicneosol, quartzipsament, nitosoland 
and planosol), 4 soil water regime classes (xeric, aquic, 
udic and ustic) and 4 slope classes (plane or soft wavy, 
wavy, strong wavy and mountainous). Geographical 
projection, pixel size and spatial extent were similar for 
all variables with 1 km of spatial resolution. The spatial 
reference system adopted was the South America Albers 
Conic Equal, Datum SAD69. 

Algorithms

Random Forest (RF) and Artificial Neural 
Networks (ANNs) were tested to predict the ecological 
niche of the tree species. The first one, proposed by 
Breiman (2001), is a combination method of classifiers 
(ensemble) decision trees. These trees are built by 
Random Forest using the CART algorithm (classification 
and regression trees). This algorithm divides a set of 
heterogeneous data (root) into homogeneous sub-set 
classes (leaves), generating classification rules based on 
attributes (nodes). The criterion for data partition is 
based on information gain. The mathematical procedure 
consists in decreasing the data set entropy after split 
for some selected attribute. The Random Forest 
build decision trees under different sets of training 
(bootstrap). Usually, every split decision chose randomly 
m attributes and the direction to growth. Finally, the 
gradient is quantified based on entropy gain and the tree 
is created. Each decision tree will have its classification. 
Then the Random Forest classification defines the final 
classes according to a rank for most voted trees. This 
method has been applied in ecological studies (CUTLER 
et al., 2007; PRASAD et al., 2006) offering powerful 
alternatives to traditional parametric and semiparametric 

TABLE 1  Example of the data used in the modeling, where X - latitude; Y - longitude; T° C - mean annual temperature; Alt- 
altitude; P(mm) - mean annual precipitation.

Location Numeric inputs Categorical inputs Output

X Y TºC Alt P(mm) ... latosol ... udic ... soft_wavy ... Occurrence

1741950 1601327 20.7 665 1220 ... 0 ... 1 ... 0 ... 1

1813670 1728537 20.8 666 1272 ... 0 ... 1 ... 1 ... 0
1354313 1509267 19.7 832 1302 ... 1 ... 0 ... 1 ... 1
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statistical methods with high accuracy and the ability to 
model complex interactions between variables.

The algorithm parameters were set after previous 
tests to improve its effi ciency.  We established 100 
decision trees to be created without length and pruning 
performance constraints. The number of attributes (m) 
used to create each tree was defi ned by the equation 
1 (FRANK et al., 2016), where n represents the total 
number of available variables.

under the receiver operating curve (AUC). Behind 
these tests the Artifi cial Neural Network formation was 
determined in two hidden layers of processing, with 
15 and 2 neurons respectively. The learning rate and 
momentum term were established at 0.3 and 0.2.

Algorithms assessment and application

The occurrence species and environmental 
variables data were divided into two groups: 1) training and 
2) validation (predictive validity). Phillips and Dudik (2008) 
suggest this strategy to check the method’s accuracy and 
usually adopt 70% and 30%, for training and validation, 
respectively. Cross-validation was applied to resort all 
limited areas to train and validate models. Three folds 
were formed from 197 points. For each technique, the 
examples from 2 folds were then used to train a classifi er, 
which was evaluated in the remaining fold. This process 
was repeated 3 times, using at each cycle a different fold 
for validate. The experiment was conducted with 10 
replicates and algorithm measures were obtained by mean 
of each replicate for validation set. We applied paired t-test 
statistic (95% confi dence) between means of algorithms’ 
measures for its comparison within each species. The 
software Weka (FRANK et al., 2016) was used to training, 
evaluation and implementation of Random Forest and 
Artifi cial Neural Network.

We applied six metrics to assess the predictive 
algorithm accuracy, such as: i) Overall accuracy – is 
the percentage of correctly classifi ed data (equation 
2); ii) Sensitivity – the probability of a occurrence 
species presence be correctly predicted; (equation 3), 
iii) Specifi city - the probability of occurrence species 
absence be correctly predicted (equation 4); iv) Cohen’s 
Kappa – is widely used to measure the correctly predict 
occurrence rates (equation 5); v) True skill statistic (TSS) 
(equation 6) and vi) Area under the receiver operating 
curve (AUC).

 Kappa’s statistics ranges from -1 to +1, where 
+1 indicates perfect agreement and values of zero or 
less indicate a performance no better than random. The 
advantages of Kappa are its simplicity, the fact that both 
commission and omission errors are accounted for in 
one parameter. However, Kappa’s statistics is dependent 
on prevalence data, introducing bias and statistical 
artefacts to estimate models’ accuracy (Mouton et 
al. 2010). Due this fact we also applied the true skill 
statistic (TSS) which is a Kappa variation and avoid this 
prevalence dependency (ALLOUCHE et al., 2006). The 
AUC was used to evaluate the classifi ers effectiveness in 
the classifi cation of presence/absence data. To construct 

[1]

Artifi cial Neural Networks are techniques inspired 
on the structure, processing method and learning ability 
of the brain.  They are composed for connected neurons 
(simple processing units) disposed in one or more layers. 
Each neuron is connected to one or more units through 
weighted connections, which simulate the biological 
synapses. Each input layer neuron receives xi independent 
variables values.    Random weights wi   are also given to 
these values and the sum of these weights wi and their 
attributes xi are input values for the activation function. 
The neurons output of the initial layer act as input to the 
following layer neurons and so on. The output of the last 
neuron layer is the fi nal Artifi cial Neural Network (ANN) 
classifi cation yi. The ANN learning consists to of adjusting 
the weights to approximate the outputs of the ANN to 
the desired outputs known from the training data di. The 
most used learning algorithm is backpropagation, which 
propagates the error of the fi nal layer for the initial layers 
through error derivatives. The structure and operation 
of ANNs is well discussed by a number of authors 
(FAUSETT, 1994; HAYKIN, 1994; OZESMI et al., 2006).

We used a multilayer-perceptron type of Artifi cial 
Neural Network with 12 independent variables (9 
numeric and 3 categorical) and one output (presence or 
absence). The optimal parameters (number of hidden 
layers and neurons within them, learning rate, momentum 
and activation function) were determined empirically by 
creating multiple networks, with all other parameters 
held constant. By trial and error the following parameters 
range were tested: 1-2 hidden layers, 1-15 neurons in 
each hidden layer, 0.01-0.9- learning rate and momentum. 
Threshold function was chosen as activation function 
since it limits the output between 0 or 1 (presence or 
absence). Network performance can be sensitive to 
the random initial weight values set prior to training 
(OZESMI et al., 2006). For this reason, 10 networks 
were run based on the same architecture, after resetting 
the initial weights, and performance was assessed based 
on the averaged predictions across all runs by the area 
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a ROC curve we ploted the 1-specifi city on the x-axis 
and sensitivity on the y-axis. These metrics were derived 
from the confusion matrix, where a, is the number of 
presences correctly classifi ed; b, the number of points 
where the specie was not found but the algorithm 
predicted its presence; c, the number of points where 
the specie was found but the algorithm predicted its 
absence; d, the number of absences correctly classifi ed; 
n, the total number of data.

Topography is another variable used to distinguish 
species habitats. The slope attributes (plane and soft 
wavy) were most observed in the presence areas. 
However, the sloping areas (33% wavy and 10% strong 
wavy) were most preferred by Croton fl oribundus, which 
concentrates in the southern areas. This specie had a 
habitat preference for higher elevations (average 940 
m) and rainfall (1,484.7 mm mean per year) despite its 
preference for mild temperatures (19.5°C). Casearia 
sylvestris and Tapirira guianensis had similar habitat 
according to thevariables observed. However, Tapirira 
guianensis showed slightly more tolerance for areas with 
higher temperature and less rainfall. The intensity of all 
topographic aspects can model each specie occurrence.  
Copaifera langsdorffi , for example, tolerates low altitudes 
(758.7 meters), higher temperatures (21.4° C) and 
1,361.6 mm/year rainfall on average. It is possible to 
evaluate the pressure from geoclimatic variables that 
affects the species, as shown in Table 2.

Among the standard deviation of geoclimatic 
variables (environmental variation), Croton fl oribundus has 
a more restricted ecological niche and can survive properly 
only in a narrow range of environmental conditions. While 
the widespread species, Casearia sylvestris, Copaifera 
langsdorffi i and Tapirira guianensis, take another strategy to 
get success in a large geographic and environmental space.  

Regarding the interaction of environmental 
aspects, the dispersion seed strategy adopted by each 
species and its successional group also infl uences their 
natural occurrence (OLIVEIRA-FILHO et al., 2006; 
SILVESTRINI; SANTOS, 2015). Croton fl oribundus 
seasonally produces large number of seeds, however, 
this specie has an autochoric dispersion, which reduces 

[2]

[3]

[4]

[5]

[6]

RESULTS AND DISCUSSION

Occurrence species areas

The natural geographical distribution of Casearia 
sylvestris, Copaifera langsdorffi i and Tapirira guianensis 
demonstrated a wide occurrence throughout the 
whole state area (Figure 2). On the other hand, Croton 
fl oribundus showed limited geographic distribution with 
high occurrence in the southern area and only 24% of 
the total inventoried areas. The number of areas with 
occurrence of Casearia sylvestris, Copaifera langsdorffi , 
Croton fl oribundus and Tapirira guianensis, was of 109, 
130, 48 and 92, respectively. The absence occurrence 
was of 88, 67, 149 and 105 following the same order.

The occurrence of species has been attributed to a 
range of factors, including mainly environmental attributes. 
The soil variable is responsible to explain more than 60% 
of the presence areas, where latosol is predominant. 
Oppositely, cambisol and litholic neosol are able to explain 
just 10% and 8%, respectively. The moisture soil regime 
contains 44% occurrence of udic (the water moves 
through the soil in all months) and 53% ustic (seasonal 
drainage) for Casearia sylvestris and Tapirira guianensis. 
Furthermore, Copaifera langsdorffi  showed preference 
for ustic soils (62%), whereas Croton fl oribundus showed 
greater occurrence in udic soils (72%).

FIGURE 2 Occurrence of all target species quantifi ed from 
inventory.



CERNE | v. 23 n. 2 | p. 229-240 | 2017

                                    MODELING ECOLOGICAL NICHE OF TREE SPECIES IN BRAZILIAN TROPICAL AREA

234

the seed dispersal range. Complementarily, the seed 
germination only occurs in sites with aspecific range of 
temperature variation (VÁLIO; SCARPA, 2001).

Casearia sylvestris and Tapirira guianensis are 
widespread in the Brazilian territory. The distribution 
pattern extends from the Amazonian to the Atlantic 
forests through middle lands in Brazil (OLIVEIRA; 
RATTER, 1995). According to literature, these species 
does not grow on swampy ground, nor excessively 
drained sites, but they are able to survive in annually 
flooded areas (RATTER et al., 2003; OLIVEIRA-FILHO et 
al., 2005). Just as Croton floribundus, these species occur 
mainly in primary successional stage forests, being shade 
intolerant species. However, its dispersal is zoochoric 
allowing a wider dispersion (AQUINO; BARBOSA, 2009). 
Copaifera langsdorffii was the most widespread species in 
our study area. It has a large distribution range in South 
America, which includes areas from northern Argentina, 
southern Bolivia and the Brazilian Savanna (OLIVEIRA-
FILHO; RATTER, 1995; RATTER et al., 2003). Moreover, 
the seed tolerance to high temperatures (SOUZA et al., 
2015), its zoochoric dispersal (SEBBENN et al., 2011) 
and its shade tolerance (AQUINO; BARBOSA, 2009) 
corroborates with its wide geographic distribution.

Algorithms assessment

Regarding the overall accuracy, the RF algorithm 
numerically surpassed ANN for all evaluated species, but 
with significant differences only for Croton floribundus 
(Table 3). It was observed that the overall accuracy 
varied according to the species modeled, as observed in 
previous studies (SEGURADO; ARAÚJO, 2004; ELITH 
et al., 2006). Croton floribundus obtained the highest 
percentage of correctly classified data compared to other 
species, with an accuracy of 90.4% of data achieved by 
RF. It is possible to verify the metrics for each species 
achieved by RF and ANN algorithms in Table 3.

In general, the overall accuracy values   achieved are 
within the range obtained in previous studies (FUKUDA 
et al., 2013). Overall accuracy larger than 90% is 

commonly found in modeling work using large database 
from satellite images (GARZÓN et al., 2006; WANG et 
al., 2016). The high performance of Croton floribundus is 
related to its concentrate area of   occurrence. According 
to Stockwell and Peterson (2002) and Segurando and 
Araújo (2004), species with a widespread occupancy 
area show greater overall errors.

The probability of correct presence prediction 
(sensitivity) was higher for Copaifera langsdorffii and 
Croton floribundus (0.88 and 0.80 respectively). Tapirira 
guianensis and Casearia sylvestris obtained only 0.74 of 
this metric when modeled by ANN, which was inferior 
to RF. The algorithms’ performance ranged between 
species although without differences by the t-test (95%). 
On the other hand, the specificity values obtained by the 
algorithms for Copaifera langsdorffii were the smallest 
among the species studied (0.53 for both methods). 
Croton floribundus again showed better metrics, with 
statistically superior performance achieved by RF with 
0.94. In comparison with ANN this algorithm also 
achieved superior performance according to the t test 
for Tapirira guianensis, which classified correctly 69% of 
absences. The same pattern was observed for Casearia 
sylvestris, but without differences between the algorithms.

Copaifera langsdorffii achieved a high rate of 
correctly classified presences and therefore high overall 
accuracy. This fact is related to the high presence (130) 
against absence (67) in the database. Usually, when 
the database favors some occupancy pattern, the 
results should be overestimated. The high number of 
presences induced the overestimation for occurrence 
locals by the algorithms tested. This panorama coincides 
with observations that sensitivity (true positive rate) 
was higher for widespread species and lowers for 
restricted-range species, while specificity (true negative 
rate) was lower for widespread species and higher for 
restricted-range species (SEGURADO; ARAÚJO, 2004, 
MOUNTON et al., 2010).

The high sensitivity and specificity values for Croton 
floribundus indicates the algorithms skills to distingue the 

TABLE 2 Environmental Information of natural occurrence species with the mean values and their standard deviation (in 
brackets), for temperature (T°C) and rain precipitation (P mm).

Environmental variables Casearia sylvestris Copaifera langsdorffii Croton floribundus Tapirira guianensis

Altitude (m) 808.55 (252.28) 758.75 (219.53) 940.56 (163.17) 808.39 (259.50)

T (°C)
maximum 28.96 (2.19) 29.55 (1.93) 27.57 (1.22) 29.02 (2.18)

mean 20.82 (19.96) 21.42 (1.75) 19.49 (1.16) 20.94 (2.37)
minimum 10.21 (2.15) 10.96 (1.94) 8.86 (1.52) 10.63 (2.22)

P (mm)
maximum 272.55 (34.50) 263.78 (38.21) 286.71 (25.16) 272.97 (38.09)
minimum 13.10 (6.89) 10.91 (6.80) 16.67 (4.75) 12.46 (7.30)

anual mean 1377.14 (189.26) 1306.12 (208.14) 1484.75 (114.49) 1361.65 (200.33)
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presence or absence classes correctly. Therefore, it is 
possible to assume a more restricted and homogeneous 
ecological niche for this species when compared to 
others. The result is corroborated with the real and 
limited geographical cover areas for this species. Casearia 
sylvestris and Tapirira guianensis became a hard task for 
all algorithms to split the presence/absence classes. The 
widespread species distribution is usually arduous work 
and similar results were found by Segurado and Araújo 
(2004), Cluter et al. (2007) and Wang et al. (2016). On 
the other side, Copaifera langsdorffi assumed the opposite 
tends because the large number of presences data which 
amplify the sensitivity. Moreover, the overall accuracy of 
the models is influenced by the prevalence of data. 

Lower imbalance between classes resulted in 
worse accuracy as observed in Casearia sylvestris and 
Tapirira guianensis. This result also can be explained due to 
similarities between the occurrence data. Data for absence 
and presence sites may have been similar, which promoted 
a hard task to dissociate tendencies for these species. In 
many cases, the absence of species is usually not defined 
only by environmental characteristics, but scattering 
factors and human colonization history (PULLIAM, 2000). 

The AUC results from RF demonstrated high 
performance for Casearia sylvestris, Copaifera langsdorffii 
and Tapirira guianensis (0.7< AUC <0.8) and excellent 
performance for Croton floribundus (0.9< AUC <1). 
The same pattern was observed for ANN except for 
Tapirira guianensis (0.6< AUC <0.7). In all cases, the RF 
was numerically superior than ANN in terms of AUC. 
According to Phillips and Dudik (2008), models with 
AUC values above 0.75 are considered potentially useful.

Kappa and TSS results showed similar tendency 
and suggest that all model outputs are no randomly 
effect (Kappa and TSS >0). Once again, the algorithms 
showed higher perform for Croton floribundus and lower 
for Tapirira guianensis. The assessment classification 
proposed by Monserud and Leemans (1992) indicated a 

poor performance for both algorithms except for Croton 
floribundus. Cluter et al. (2007) employed RF to model 
four invasive species (Verbascum thapsus, Urtica dioica, 
Cirsium vulgare and Marrubium vulgare) distribution, with 
8,251 occurrence data. The mean Kappa values obtained 
were ranging from 0.607 to 0.809 and the authors 
considered excellent performance for all species. The 
high number of observations was associated to the 
high performance achieved. Moisen et al. (2006) while 
modeling 13 trees species derived from 1,930 sample 
plots obtained average of 0.87 for AUC while the 
Kappa ranged from 0.19 to 0.75. Motloung et al. (2014), 
modeling the distribution of 15 trees species obtained 
an overall TSS of 0.15, sensitivityof 0.80 and specificity 
of 0.35. The hypothesis to understanding the algorithm 
performance is associated to environmental gradients 
and species, not only the size of the database. The 
experimental area from the present work includes a 
huge landscape with diverse gradients.   

The algorithms’ performance is essential to 
understand the method’s limitations to predict occurrence 
species. In others words, this statistical analysis supports 
the results to be spatial and geographical validated into 
the maps. The superiority of the RF against ANN was 
clear, although this difference, in some instances, was 
not confirmed by the t-test. This high performance was 
also supported by different authors (ELITH et al., 2006; 
GARZON et al., 2006; LORENA et al., 2011). Fukuda 
et al. (2013) suggested RF as an accurate method to 
model the species distribution when compared with 
other 6 algorithms. However, they found inconsistencies 
between different performance measures, showing that 
different models may obtain a high score on a particular 
aspect and perform worse on other aspects. Rodrigues-
Galiano et al. (2015) applied Artificial Neural Networks, 
Random Forest, Regression Trees and Support Vector 
Machines to model mineral prospectivity and also 
corroborate with this same trend.

TABLE 3  Statistical results to assess the predictive accuracy of Random Forest (RF) and Artificial Neural Networks (ANN) algorithms.
Species Algorithm Overall accuracy (%) Specificity Sensitivity AUC Kappa TSS

Casearia 
sylvestris

RF 70.61 (4.11) 0.67 (0.09) 0.73 (0.07) 0.79 (0.04) 0.41 (0.08) 0.41 (0.08)

ANN 69.24 (5.49) 0.64 (0.12) 0.74 (0.08) 0.77 (0.06) 0.37 (0.11) 0.37 (0.13)

Copaifera 
langsdorffii

RF 76.03 (3.30) 0.53 (0.11) 0.88 (0.04) 0.79 (0.05) 0.43 (0.09) 0.41 (0.09)

ANN 71.73 (5.32) 0.53 (0.13) 0.81 (0.08) 0.75 (0.06) 0.35 (0.12) 0.34 (0.12)

Croton
 floribundus

RF 90.40 (2.81)** 0.94 (0.03)** 0.80 (0.09) 0.96 (0.02)** 0.74 (0.08) 0.74 (0.09)

ANN 82.69 (4.44) 0.82 (0.06) 0.84 (0.10) 0.88 (0.03) 0.59 (0.09) 0.67 (0.09)

Tapirira
 guianensis

RF 64.97 (4.66) 0.69 (0.07)** 0.60 (0.09) 0.72 (0.05)** 0.29 (0.10) 0.29 (0.09)

ANN 61.27 (4.40) 0.50 (0.14) 0.74 (0.14) 0.64 (0.05) 0.24 (0.09) 0.26 (0.09)

() - standard deviations, ** mean values for significant difference between methods (α=0.05)
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The superior performance of RF can be linked 
to the fact that tree-based (discrete) models (like RF) 
may be able to distinguish presence and absence cases 
better than models with continuous outputs such as 
Support Vector Machines and ANN (FUKUDA et al. 
2013). Furthermore, the ANN training is complex and 
requires definition of their structure and parameters 
set, which is a time consuming task. Moreover, the 
results are strongly sensitive to parameters’ variations 
(RODRIGUES-GALIANO et al., 2015).

Ecological niche predicted maps 

Instead, based on algorithm performance, we 
applied only RF to predict the potential distribution of 
all species. The predicted ecological niches are showed 
in Figure 3. The percentage of cover area was of 19% 
for Croton floribundus (117,654 km²), 54% for Casearia 
sylvestris (327,677 km²), 57% for Tapirira guianensis 
(343,538 km²) and 80% for Copaifera langsdorffii (486,851 
km²) of the Minas Gerais state. 

their natural occurrence in the state cover a small 
environmental variation when compare with other 
species. Casearia sylvestris and Tapirira guianensis covered 
a similar predicted area (Figure 3). This suggests their 
niche is overlapping itself and the conservation and 
managements rules must be associated.

Raes (2012) suggested that partial model including 
artificial boundaries does not reflect the real species 
occurrence. Probably, the data from a larger geographical 
area (full model), i.e. South America, would increase our 
species predicted areas from Minas Gerais state. We 
understand that species doesn´t follow the geographical 
state boundary and it should “check-mate” our model 
predicting area, but we also believe that by using only 
presence data the overestimation of area is possible.  

There are a plenty of uses for these potential 
species distribution maps, which includes greater scientific 
knowledge about biogeography, evolutionary ecology and 
conservation. The ecological niche modeling allows the 
extrapolation of this information to a geographical plan, 
being a tool of great practical value for many goals and 
decision support. This may be particularly important when 
choosing the right species for reforestation plans and to 
guarantee environmental suitability (HIDALGO et al., 
2008; COELHO et al., 2016). This strategy may increase 
the success and feasibility of reforestation. The method 
can be associated to future reforestation plans when using 
scenarios of climate projection. Climate changes are an 
important deal to predicting impact in forests and for 
selecting suitable tree species to match future climates for 
afforestation and restoration (WANG et al., 2016).  These 
maps can be also used to conservation purposes in case 
of rare or endangered species (MCCUNE, 2016), seed 
collection purposes (BREED et al., 2013) and when finding 
new populations (WILLIAMS et al., 2009).

CONCLUSIONS

Casearia sylvestris, Copaifera langsdorffii and 
Tapirira guianensis are widespread in the Minas Gerais 
state, covering a broad range of environmental 
conditions. Croton floribundus exhibited restricted 
geographic occurrence in the south of the state, showing 
a narrow environmental variation. Modeling ecological 
niche strategy is more affected when environmental and 
occurrence species data doesn´t have defined gradients. 
The algorithm Random Forest performed better 
for distribution modeling of all species, although the 
results varied for each metric and species. The species 
distribution predicted maps are powerful output to 
guide reforestation programs and biogeography studies 
in tropical areas.

FIGURE 3 Potential distribution predicted by Random Forest 
for species Casearia sylvestris, Copaifera langsdorffii, 
Croton floribundus and Tapirira guianensis in Minas 
Gerais state.

The geographical area of Copaifera langsdorffii 
(Figure 3) is comprehends almost the entire map studied, 
except in the extreme parts, such as the southern and 
northern of Minas Gerais state. This wide distribution in 
the state was expected, since the species is considered of 
generalist habitat, occurring in various forest formations 
in the Cerrado and Mata Atlântica, provinces included 
in the study area (LOPES et al., 2012). In contrast, we 
recognized a short clustering area for Croton floribundus 
despite the literature also describing it as a widespread 
pioneer species (SILVESTRINI et al., 2015). However, 
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