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ABSTRACT: Forest management needs to evaluate various hazards where may cause 
economic or other losses to forest owners. The aim of this study is to prepare windthrow hazard 
maps based on logistic regression and random forest models in Nowshahr Forests, Mazandaran 
Province, Iran. First of all, 200 windthrow locations were identified from extensive field surveys 
and some reports. Out these, 140 (70%) locations were randomly selected as training data 
and the remaining 60 (30%) cases were used for the validation goals. In the next step, 10 
predictive variables such as slope degree, slope aspect, altitude, Topographic Position Index (TPI), 
Topographic Wetness Index (TWI), distance to roads and skid trails, wind effect, soil texture, 
forest type and stand density were extracted from the spatial database. Subsequently, windthrow 
hazard maps were produced using logistic regression and RF models, and the results were 
plotted in ArcGIS. Finally, the area under the curves (AUC) and kappa coefficient were made 
for performance purposes. The validation of results presented that the area under the curve and 
kappa have a more accuracy for the random forest (97.5%, and 95%, respectively) than logistic 
regression (96.667%, and 93.333%, respectively) model. Therefore, this technique has more 
potentiality to be applied in the evaluation of windthrow phenomenon in forest ecosystems. 
Additionally, both models indicate that the spatial distribution of windthrow incidence likelihood 
is highly variable in this region. In general, the mentioned findings can be applied for management 
of future windthrow in favor of economic benefits and environmental preservation.

PREDIÇÃO DOS PADRÕES ESPACIAIS DO FENÔMENO DE QUEDA DE 
ÁRVORES POR VENTO EM FLORESTAS TEMPERADAS DECIDUAS USANDO 
REGRESSÃO LOGÍSTICA E RANDOM FOREST

RESUMO: O manejo florestal precisa avaliar diversos riscos que podem causar prejuízos 
económicos ou outras perdas para os proprietários florestais. O objetivo deste estudo é elaborar 
mapas de risco de queda de árvores por vendo com base em regressão logística e random forest 
(RF) nas florestas de Nowshahr, província de Mazandaran, no Irã. Primeiramente, 200 locais com 
queda de árvores por vento foram identificadas por levantamentos de campo e relatórios. Destes, 
140 (70%) foram selecionados aleatoriamente como dados de treinamento e os 60 restantes 
(30%) foram usados para validação. Na etapa seguinte, 10 variáveis preditivas, sendo, inclinação, 
face de exposição, altitude, índice de posição topográfica (TPI), índice de umidade topográfico 
(TWI), distância de estradas e trilhas, efeito do vento, textura do solo, tipo de floresta e densidade 
do talhão, foram extraídos do banco de dados espacial. Posteriormente, mapas de risco de 
queda de árvores por vento foram elaborados usando regressão logística e modelos de RF, e os 
resultados foram plotados em ArcGIS. Finalmente, a área sob as curvas (AUC) e coeficiente kappa 
foram computados para fins de avaliação de desempenho. A validação dos resultados mostrou 
que a área sob a curva e índice kappa apontaram para maior precisão para RF (97,5% e 95,0%, 
respectivamente) do que a regressão logística (96,7% e 93,3%, respectivamente). Portanto, esta 
técnica tem mais potencialidade de ser aplicado na avaliação do fenômeno de queda de árvores 
por vento em ecossistemas florestais. Além disso, ambos os modelos indicaram que a distribuição 
espacial da probabilidade de incidência de queda de árvores por vento é altamente variável na 
região. Em geral, as conclusões deste artigo podem ser aplicadas para a gestão da queda de 
árvores por vendo em favor da preservação ambiental e benefícios económicos.
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INTRODUCTION

Strong wind damage is one of the most 
disturbance interacting with forest ecosystem processes 
in both managed and virgin forests (COUTAND, 2017; 
ANONYMOUS, 2016), which leads to windthrow. 
Windthrow referred to breakage and uprooting of 
trees by the wind, as a natural phenomenon in forests 
and results from the interaction among tree, stand, 
physiographic, climate and soil components (KOOCH et 
al., 2014). According to the census conducted in forest, 
range, and watershed management organization in Iran, 
it was found that timber volume more than 25% of 
the annual allowable cut was damaged by the wind in 
2016. It means that in addition to disruption in cutting 
and transporting planning, revenues from non-salvaged 
timber decreased seriously (SCHINDLER et al., 2012).

In order to decrease potential risks from wind 
regime and empower forest management against this 
disturbance, it is of major importance to understand 
the key drivers of wind disturbance. In recent years our 
quantitative understanding of disturbance processes has 
been increased regarding study improvements (SEIDL 
et al., 2011; THOM et al., 2013). These researchers 
prepared information on the historical range of variability 
of forest ecosystems to manage wind disturbance 
(KEANE et al., 2009).

Although it is difficult to control windthrow, it is 
possible to predict different hazard levels for minimizing 
wind hazards and avoid potential windthrow (BLENNOW; 
SALLNÄS, 2004). Mechanistic and empirical are two 
general approaches for predicting windthrow risk. The 
first technique is based on the calculation of the wind 
speed at a given location with single species stands 
or structurally uniform (LOCATELLI et al., 2017). In 
empirical modeling the windthrow risk mapping develops 
by remote sensing and geographic information system 
with wide range of predictor variables, depending on the 
specific characteristics of wind events in different forest 
sites (HALE et al., 2015).

The purpose of current research is to produce 
windthrow risk maps using binary logistic regression 
and random forest models (OLIVEIRA et al., 2012) 
and compare their performance in Nowshahr Forests, 
Mazandaran Province, Iran. The main difference 
between this study and the approaches described in 
the aforementioned publications is that a data-driven 
Random Forest (RF) model is prepared and the result 
is compared with Logistic Regression (LR) model in the 
study area.

MATERIAL AND METHODS

The study area is located in the western part 
of Mazandaran Province, in the north of Iran, between 
latitudes 36° 27′ 30″ to 36° 31′ 30″N, and longitudes 51° 
30′ 00″ to 51° 33′ 00″E (Figure 1). It covers an area about 
1,447 ha. The elevation of the study area ranges of 1,017 
to 2,000 meters above sea level. The climate of Nowshahr 
is temperate and mountainous type at heights, while in 
plains, temperate and semi-humid climate prevails. The 
mean annual precipitation within the study area varies 
from 900 to 1,100 mm. Based on Iranian meteorological 
organization, maximum and minimum of temperature 
was reported as 38 degrees above zero and 7 degrees 
below zero, respectively. The study area comprised of 
two type textures soil consists of clayey and silty-loamy. 
The dominant tree species are beech (Fagus orientalis 
Lipsky), hornbeam (Carpinus betulus L.), maple (Acer 
velutinum Boiss), and Alder (Alnus subcordata C.A.Mey).

FIGURE 1 Windthrow locations map with altitude map 
of the study area (The red and yellow locations 
were used for training and validation in modeling 
process, respectively).
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DATA COLLECTION

Generally, data collection and construction of a 
database of predictive factors in any research are the 
most important sections of the process (ERCANOGLU; 
GOKCEOGLU, 2002). At fi rst, windthrow occurrences 
and locations were gained from extensive fi eld surveys 
and satellite images. Out of 200 forest windthrow 
locations, 70% were used in the training and the 
remaining; 30% were used for validation (Figure 1). It 
should be noticed that 200 forest locations as without 
windthrow places were determined randomly. In order 
to windthrow hazard zonation of the study area, 10 
predictive factors were considered. These factors are 
slope degree, slope aspect, altitude, Topographic Position 
Index (TPI), Topographic Wetness Index (TWI), distance 
to roads and skid trails, wind effect, soil texture forest 
density, and forest type.

One of the most important factors in any 
windthrow hazard rating system is physiography data. In 
the literature, the impacts of slope degree, slope aspect, 
and elevation in wind behavior have been widely reported 
(CONSTANTINE et al., 2012; VACCHIANO et al., 
2016). In this study, a digital elevation model (DEM) was 
prepared by digitization of contours at a 10 m interval and 
survey base points. The DEM map has a grid size of 10m 
with 365 columns and 675 rows. Using of the mentioned 
DEM, slope degree, slope aspect, elevation, Topographic 
Position Index (TPI), Topographic Wetness Index (TWI) 
were produced. Slope map of the study area is derived 
from the DEM. Slope aspect has been categorized into 
nine classes: (1) Flat, (2) North, (3) Northeast, (4) East, 
(5) Southeast, (6) South, (7) Southwest, (8) West, and (9) 
Northwest. Additionally, the elevation map for the study 
area was produced from the DEM.

The another factor is Topographic Position Index 
(TPI) which refl ects the difference in elevation between 
a focal cell and all cells in the neighborhood, which can 
make a simple and useful means to classify the landscape 
into morphological classes. Another topographic factor is 
TWI which is defi ned based on Equation 1 (MOORE et al., 
1991), where α is the cumulative up slope area draining 
through a point and tan β Is the slope angle at the point.

Using topographic database in the study area, the 
distance to roads and skid trails were calculated. The 
roads and skid trails buffers were calculated at 50 m 
intervals. Additionally, using the meteorological database, 

[1]

the wind effect was calculated. In the present study, 
the wind effect was produced in SAGA-GIS. There are 
two types of soils such as Clayey and Silty-loamy in the 
study area. This layer was produced by digitizing the soil 
texture map of Mazandaran Province (1:100,000-scale) 
obtained from the Agriculture Department, Iran. The 
forest density (number of trees in ha) maps were 
prepared as follows <150 (low), 150-200 (moderate), 
and >200 (high). Additionally, forest type map was 
prepared as pure beech and mixed beech stands. 
Forest stand maps were provided in vector form by 
forests, range, and watershed management organization, 
Iran (1:10,000-scale).

For the application of logistic regression and 
random forest models, all the mentioned forest 
windthrow inducing factors were converted to a raster 
grid with 10m×10m pixel size.

LOGISTIC REGRESSION

Logistic regression is very popular and is often 
used for modeling in natural science (STEPHENSON et 
al., 2006). The main purpose of this model is to fi nd the 
best equation and express the relationship between a 
response variable and multiple predictive variables. In the 
current situation, the response variable is a binary variable 
representing the presence or absence of windthrow. The 
logistic model can be described in its simplest form as 
following Equation 2, where, P is the probability of an 
event (windthrow) occurrence, which varies from 0 to 
1 on an S-shaped curve; Z (Equation 3) is defi ned by the 
following equation (logistic regression model), and its value 
varies from  to +, β0 represents the intercept of the model, 
1; 2; . . .; n the partial regression coeffi cients, X1, X2, ..., Xn 
represent the independent variables. 

A full model was fi tted to the data using the 
likelihood function. Afterward, stepwise deletion or 
insertion of predictors was prepared. A backward/
forward stepwise model selection method was applied, 
starting with the full model and alternately omitting 
and re-introducing one model component at each step 
(PETERS et al., 2007). Selection stopped when no 
predictive variable deletion or insertion caused a lower 
Akaike Information Criterion value, resulting in the 
model with the lowest AIC value (PETERS et al., 2007).

[2]

[3]



CERNE | v. 23 n. 3 | p. 387-394 | 2017

                                PREDICTION SPATIAL PATTERNS OF WINDTHROW PHENOMENON IN DECIDUOUS 
TEMPERATE FORESTS USING LOGISTIC REGRESSION AND RANDOM FOREST

390

RANDOM FOREST

Random Forest is a tree-based ensemble 
technique constructed using Recursive Partitioning 
(RPART) (BREIMAN, 2001). This is a machine learning 
tool which typically grows according to the methodology 
of Classification and Regression Tree (CART), as binary 
splits recursively partition the tree into homogeneous 
terminal nodes. A good binary split forms a parent node 
to two daughter nodes with improved homogeneity. This 
procedure performed in hundreds or thousands of trees, 
where each tree is made using a bootstrap sample of the 
original data.

It should be noted that values of ntree and mtry 
area used for setting and construction of RF. ntree is the 
number of trees to grow where 1,000 was in the present 
study. Additionally, mtry is the number of variables 
randomly sampled as candidates at each split as square 
root (p) where p is the number of predictive variables.

MODELS PERFORMANCE

Of the 200 windthrows identified, 140 (70%) 
locations were used for the windthrow hazard maps as 
training, while the remaining 60 (30%) cases were used 
for the model performance. The Receiver Operating 
Characteristic (ROC curve) is a graphical plot to assess 
the performance of a binary classifier technique as its 
discrimination threshold is varied. ROC is produced by a 
trade-off between the True Positive Rate (TPR) and False 
Positive Rate (FPR) at various threshold settings. TPR 
and FPR are also known as sensitivity and probability of 
false alarm (1 – specificity), respectively. The Area Under 
the ROC Curve (AUC) can prepare as global accuracy 
statistic for the model and it is threshold independent. 
According to Yesilnacar (2005), the quantitative–
qualitative relationship between the prediction accuracy 
and the AUC value can be classified as follows: 0.5–0.6 
(poor), 0.6–0.7 (average), 0.7–0.8 (good), 0.8–0.9 (very 
good), and 0.9–1 (excellent).

Besides the Sensitivity, Specificity, and AUC, there 
is also another performance test called Kappa Cohen. 

The kappa statistic measures the proportion of correctly 
classified units after accounting for the probability of 
chance agreement. The kappa value was classified into 
five groups according to Landis and Koch (1977): < 0.2 
(Poor), 0.2-0.4 (fair), 0.4-0.6 (moderate), 0.6-0.8 (good), 
0.8-1 (very good).

SPATIAL PREDICTIONS

Spatial predictions were made in Arc GIS ver. 
9.3. Models were exported from R statistical software 
as a text file and interpreted in Arc GIS by an Avenue 
script made available with the Rcmdr and randomForest 
packages. Lookup tables describe each response curve 
point by point. The obtained pixel values were then 
classified based on natural break classification scheme in 
low, moderate, high, and very high classes.

RESULTS

Beech trees had the highest value in windthrow 
as Table 1. Descriptive statistics of quantitative predictive 
variables were shown in Table 2.

TABLE 1 Number and percentage of windthrow in each 
tree species.

Species Number Percentage
Beech 113 56.5

Hornbeam 46 23,0
Maple 14 7,0
Alder 27 13.5

TABLE 2 Descriptive statistics results of predictive variables.
Predictive Variables Minimum Maximum Mean ± SE

Slope (Degree) 0 71.01 21.69 ± 14.28
Altitude (m) 1017.96 2363.73 1656.96 ± 322.15

TWI 1.298 19.885 6.767 ± 3.048
Wind Effect 0.743 1.355 1.022 ± 0.190
Aspect (%) Flat (17.54), N (14.05), NE (33.72), E (23.18), SE (4.67), S (1.79), SW (1.45), W (0.25), NW (3.35)

TPI (%) Canyons (36.25), Slopes (20.86), Ridges (42.89)
Distance to Road (%) Buffer<50 m (18.14), B 100 m (16.10), B 150 (12.90), B>150 m (52.86)

Soil Texture (%) Clay (45.21), Silty-loamy (54.79)
Forest Density (%) Low (36.34), Moderate (28.43), High (35.23)

Forest Type (%) Pure Beech (59.61), Mixed Beech (40.39)

By using logistic regression to assess the power 
of individual variables in a statistical model, the strongest 
predictors are wind effect and stand density, followed by 
soil texture, TWI, and slope degree (Table 3). Although 
altitude and distance to roads and skid trails are weakly 
related to windthrow, they may be still important in the 
generalized linear model (Table 3). All differences in 
values of the predictive variables between windthrow 
and non-windthrow points are statistically significant at 
the 5% level based on and a χ2 test. Additionally pseudo-
R-squared, AIC and the number of fisher scoring were 
74.80%, 119.81 and 7 in logistic regression. According 
to results of current research, Z defines as Equation 4:
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TABLE 3 The most important predictor variables based on 
logistic regression.

Variables DF Deviance AIC LRT P (>Chi)

Slope 1 106.811 126.81 8.998 0.0027
Altitude 1 105.803 125.80 7.990 0.0047

TWI 1 108.021 128.02 10.208 0.0014
Wind Effect 1 139.161 159.16 41.348 0.0000
Soil Texture 1 112.357 132.36 14.544 0.0001

Forest Density 2 123.175 141.18 25.362 0.0000
Distance to Road 3 107.826 123.83 10.013 0.0185

TABLE 4 Gini coeffi cient of variables based on RF model.
Predictive Variables Mean Decrease Gini coeffi cient

Wind Effect 61.35
Altitude 22.68

Distance to Road 14.39
Soil Texture 12.23

TPI 7.99
Forest Density 7.81

Forest Type 4.12
TWI 3.63
Slope 3.23

Aspect 1.77

The fi nal random forest model for wind damages 
was constructed using the average of a bootstrap 
data set. Gini coeffi cient for each predictive variables 
is presented in Table 4.The model predicts that the 
probability windthrow is high in sets made on fl oating 
objects, when wind effect is in a range of 0.95 – 1.25 
(Figure 2a), latitude 1600 – 1750 (Figure 2b), at lower 
distance to roads and skid trails (Figure 2c), in clayey soil 
texture (Figure 2d), and when sets are made at ridges 
of the topographic position index (Figure 2e) with dense 
forest stands (Figure 2f). Whit respect to forest type 
(Figure 2g), TWI (Figure 2h), slope degree (Figure 2i) and 
slope aspect (Figure 2j), the relationship between these 
predictors and windthrow occurrence was poor or no 
clear pattern was observed.

ROC plots and kappa coeffi cient were studied to 
assess the model accuracy in training and validation (Table 
5). The comparison of predictive performance between 
logistic regression and RF indicates that the practical 
signifi cance of any differences between the models is 
interesting. The main difference observed between 
these models was in deviance explained, suggesting that 
RF model has better predictive performance compared 
to logistic regression.

Figures 3a and 3b show the spatial prediction of 
the probability of windthrow occurrence as predicted 
by logistic regression and RF models. Both models 
had nearly similar results in the spatial predictions. For 

FIGURE 2 Partial dependency plot according to random 
forest model; (a) wind effect, (b) latitude, (c) 
distance to road and skid trail, (d) soil texture, (e) 
TPI, (f) forest density, (g) forest type, (h) TWI, (i) 
slope degree, (j) slope aspect.

a. b.

c. d.

e. f.

g. h.

i. j.
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both models, the highest probability of windthrow 
hazard was predicted to occur in two regions where is 
recognized with light and dark colors. Both areas had 
similar environmental and set data, with low to the high 
presence of predictor variables. The areal extents of map 
sub-classes for both models are reported in Table 6.

TABLE 5 Gini coefficient of variables based on RF model.

Logistic Regression Random Forest

Training Validation Training Validation

Sensitivity 89.726 96.670 95.588 98.305

Specificity 93.284 96.670 93.056 95.082

AUC
91.429 

± 0.019
96.667 

± 0.019
94.286 

± 0.016
97.5 

± 0.017

Kappa
82.857 

± 0.033
93.333 

± 0.033
88.571 

± 0.028
95 

± 0.029

FIGURE 3 Windthrow hazard susceptibility map produced by 
(A)logistic regression and (B)random forest (Each 
windthrow hazard classes display the probability 
of windthrow occurrence on that special area).

TABLE 6 Covered area percentage for windthrow zones in 
sub-classes.

Models Low Moderate High Very High
Logistic Regression 36.72 17.31 13.09 32.88

RF 50.21 21.14 16.32 12.33

DISCUSSION

When studying the interaction between 
windthrow and collection of predictive variables, it is 
necessary to attend variation aspects of where, when and 
to what degree an ecosystem is affected (VALINGER; 
FRIDMAN, 2011). Therefore current study tried to 
draw a general conclusion in wind damages with great 
caution. According to our work, wind effect had the 
most impact on wind damages in both models. Wind 
effect determines the windy spots based on the terrain 
attributes (DUPONT, 2016; COUTAND, 2017). Wind 
characteristics are the first factor that can be effected on 
vulnerability to windthrow in forest stands. This factor 
can vary significantly within a specific region (HALE et 
al., 2015) as produced maps. The topographic factors of 
these ecosystems are relatively complex as mountainous 
forest and could locally add to the general occurrence 
of high winds (SCHINDLER et al., 2012). The study 
of the windthrow has observed important wind effect 
variations caused by topography. 

Altitude is a crucial physiographic variable 
associated with wind impact (RUEL, 2000). Thus, it has 
an important role in windthrow spreading (PELTOLA 
et al., 2010). The altitude map for the study area was 
prepared from the DEM and categorized into three 
classes according to expert knowledge and literature 
review, whereas wind damages prediction increased by 
increasing it (> 1,500 m).

There was some important relationship between 
distance to roads and skid trails and windthrow hazard in 
both models, especially RF. Therefore, near to roads or 
skid trails, wind blowing is funneled in the line direction and 
wind speed is increased (RUEL, 2000). Since a significant 
concentration of windthrow in study area occurred near to 
path with the damaging winds, it is likely that wind tunnel 
creates there (SUVANTO et al., 2016). 

The soil texture had a strong influence on 
windthrow hazard. In clay soil, shear resistance had 
a high level which led to root growth limitation. For 
most of the positions found in forest stands, windward 

a.

b.
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roots being uprooted will exist induced by clay texture 
in comparison with silty-loamy soils (DUPUY et al., 
2005). Stokes et al., (2005) reported storm wind built an 
extensive network of cracks in fine textured soils around 
the tree during overturning.

In the present research, windthrow has been 
found to be higher on ridges followed by slopes area. 
This behavior is not reproduced in Canyons (RUEL 
2000). Whereas, the windthrow level was lower in the 
slopes area and this could account for the fact that its 
effect was non-significant.

Stands characteristics have a significant role 
on wind damages. As shown in previous research 
(DUPUY et al., 2005), the windthrow hazard increases 
by increasing the number of trees in the hectare. In the 
dense stands increase interaction between turbulent 
airflow and trees canopy. Additionally, our study show 
that stands dominated by beech (pure beech stands) is 
at much higher risk than beech mixed stands. According 
to previous studies, the mixed stands have been found 
to be, in general, less prone to damage than pure stands 
during the windstorm (VALINGER; FRIDMAN, 2011). It 
also appears that some species in mixed stands such as 
maple would be less vulnerable than beech. This species 
would possess a desirable rooting system and is less 
prone to decay (SCHELHAAS, 2008).

The forest sites with high TWI can be more 
prone to windthrow during storms. TWI has a generally 
potential in windthrow hazard rating systems which 
root system morphology is being strongly affected by 
it. However, results are contrary to expectations since 
wind damages were more impacted than low TWI level. 
This could probably be explained by an underestimation 
of wind effect in these regions.

A windstorm is common in mountainous forest, 
it is important to study the impact of slope degree on 
windthrow, stability in order to refine our predictive models. 
Trees in this study were more resistant to overturning in 
slope degree > 15°. Analysis of these data using our models 
indicated that the gentler slopes were attributable to a 
better root Anchorage (PELTOLA et al., 2010). 

In the case of slope aspect, high values for north 
and northeastern facing slopes show that this category 
has a positive spatial association with windthrow. By the 
way, the effect of local and regional dominant winds of 
Mediterranean Sea in N, and NE of the area is caused to 
the mentioned facing slopes are prone and susceptible to 
windthrow occurrence.

This study presented an application of two different 
models (logistic regression and RF) to predict windthrow 
hazard. The RF model appeared to be a valuable tool 

providing reasonable predictions in forest stands. The 
overall better validation of the random forest technique 
could be assigned to a significantly higher proportion of 
correct predictions for windthrow. Modern modeling 
techniques such as RF can improve model fitting and 
provide a better prediction for the response variable 
than the logistic model. Therefore it produces a more 
accurate map for the hazard susceptibility as the logistic 
model does. These findings are in agreement with Hale 
et al., (2015) and Suvanto et al., (2016).

CONCLUSION

Nowshahr forests are the area of Mazandaran 
province with highest windthrow incidence. Wind 
damages density has an irregular distribution in space and 
time. The probability of a windthrow to occur depends 
on the interactions among the stand characteristics, 
terrain attributes, soil properties and human variables 
that affect the spread of windthrow. In this research, the 
likelihood of windthrow occurrence was predicted using 
two different methods consisting Logistic Regression and 
Random Forest. There was found a higher accuracy in 
RF whereas spatial autocorrelation model residuals and 
existence nonlinear trends. Unfortunately, at the world 
level, the lack of detailed information in windthrow 
occurrences cause natural disturbances such as winds 
or storms not be used for forest management. The 
importance of this research is to develop advanced 
techniques for forest management prior to windthrow 
in future. Besides the environmental protection, it can 
prevent huge economic losses in both plantation and 
natural forests.
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