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ABSTRACT: Several methods have been proposed to perform site classification for timber 
production. However, there is frequent need to assess site productive capacity before 
forest establishment. This has motivated the application of Artificial Neural Networks 
(ANN) for site classification. Hereby, the traditional guide curve (GC) procedure was 
compared to the ANN with no stand measures as input. In addition, different ANN settings 
were tested to assess the best setting. The variables used to train the ANN were: climatic 
variables, soil types, spacing and genetic material. The results from the ANN and the GC 
methods were compared to the observed classes, which were defined using the observed 
dominant high at the age of seven years. The comparison was performed using the Kappa 
coefficient (K) and descriptive analysis. The results showed that the cost function “Cross 
Entropy” and the output activation function “Softmax” were the best for this purpose. 
The ANN classification resulted in substantial agreement with the observed indices against 
a moderate agreement of the GC procedure. The change in growth patterns throughout 
the rotation may have hindered the proper classification by the CG method, which does 
not happen with the ANN. Moreover, the GC method shows efficiency on classification 
in cases which data from stands at the age close to the reference age are available. Also, it 
could be possible to improve its accuracy if another advanced regression techniques were 
applied. However, the ANN method presented here is not sensible to growth instability 
and allows classifying sites with no plantation history. 

CLASSIFICAÇÃO DE SÍTIO PARA POVOAMENTOS DE EUCALIPTO 
UTILIZANDO REDES NEURAIS ARTIFICIAIS BASEADA EM VARIÁVEIS 
AMBIENTAIS E DE MANEJO

RESUMO: Vários métodos têm sido propostos para realizar a classificação de sítio para 
produção de madeira. No entanto, há necessidade frequente de se obter a capacidade 
produtiva do local antes mesmo do estabelecimento da floresta. Isto motivou a aplicação das 
Redes Neurais Artificiais (RNA) para classificação de sítio. Desta forma, o método tradicional 
da curva guia (CG) foi comparado com a RNA sem medidas do povoamento como variáveis 
preditivas. Além disso, diferentes configurações de RNA foram testadas. As variáveis utilizadas 
para treinamento da RNA foram: variáveis climáticas, tipos de solo, espaçamento e material 
genético. Os resultados obtidos pela RNA e CG foram comparados com as classes de 
referência, definidas utilizando altura dominantes de povoamentos observadas no sétimo ano 
de idade. A comparação foi realizada utilizando o coeficiente Kappa (K) e análise descritiva. 
Os resultados mostraram que a função de custo “entropia cruzada” e a função de ativação 
da camada de saída “softmax” foram melhores para este propósito. A classificação pela RNA 
resultou em uma “concordância substancial” com a classificação observada, contra uma 
“concordância moderada” gerada pela CG. A mudança no padrão de crescimento das árvores 
durante o tempo dificultou a classificação pela CG. Entretanto, este método mostrou alta 
eficiência na classificação quando dados em idades próximas à de referência estão disponíveis. 
Além disso este método pode ser aprimorado se outras técnicas avançadas de regressão 
forem aplicadas. Porém o método da RNA apresentado aqui não é sensível à instabilidade do 
crescimento e permite classificar locais sem registro de plantios anteriores.
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INTRODUCTION

The evaluation of the potential for timber production 
in forest sites is an age-old interest, accompanying the 
history of forest production and receives attention from the 
scientific community until nowadays (e.g. FERRAZ FILHO 
et al., 2011; PAULO et al., 2014; BONTEMPS; BOURIAUD, 
2014; ADAMEC; DRÁPELA, 2016; MARCATTI et al. 2017; 
SCOLFORO et al., 2017). 

These assessments may be based on the 
relationships between a few or several elements that 
influence the development of trees. Modeling these 
relationships is a way to integrate them, quantifying the 
site quality. For that, several models of different nature 
(statistical, mechanistic and computational intelligence) 
have been developed aiming at an accurate estimation of 
productivity level of forest lands. 

 As presented by Skovsgaard and Vanclay (2008), 
the methods for these site productivity assessments can 
be divided into two types: dendrocentric and geocentric. 
The first is based on information from the stand itself, 
usually one or a combination of several easily measured 
tree or stand variables. The second uses environmental 
data related to the site, such as precipitation, air 
temperature, physiography and pedology. Moreover, 
these methods can be used simultaneously to 
complement the evaluation, based on variables related 
directly or indirectly to site productivity.

In general, the dendrocentric assessment is the 
most widely used and site potential productive capacity is 
synthetized into what is known as “site index”. This index 
is based on the concept of dominant and codominant 
height (Hdom), which is the average height of the 100 
thickest trees per hectare at a given age (ASSMANN, 
1970). However, this concept is based on the assumption 
that the trees present the same growth behavior over 
the years (WALTERS et al., 1989), which is not always 
observed in fast growing tree crops, frequently used in 
the tropical regions (ALDER, 1980). 

The quantification of the site index is most 
commonly obtained through the guide curve (GC) 
procedure after fitting a linear or non-linear regression 
model in which mean dominant height is regressed against 
stand age. This is the most common procedure due to its 
simple application and given the vast available literature 
(e.g. BURKHART; TOMÉ, 2012; CAMPOS; LEITE, 
2013). Besides site classification and area mapping, this 
index is frequently used in production prognosis such as 
in Clutter’s model (CAMPOS; LEITE, 2013).

On the other hand, when inventory data are not 
available, the productive potential can be assessed by 

geocentric methods. Lately, process-based models like 
CABALA (MIEHLE et al., 2009) and specially the 3-PG 
model have been more intensively applied in forestry 
(e.g. LANDSBERG, SANDS, 2011; BORGES et al., 2012). 
These types of models allow to access the site quality 
in the absence of inventory data or even before the 
establishment of tree plantations. As a result, they can be 
used as decision support tool for forest managers when 
planning the production or land management.

However, processed-based models involve 
quantified cause-effect relationships between the 
variables embedded in the sub-models and a thorough 
parameterization to generate accurate predictions. 
Because a general parameterization may not work in 
specific areas and because of the time and labor-consuming 
effort for new parameterizations, ecophysiological 
models may not be accessible for medium or small-sized 
companies and government agencies.   

An alternative to the above-mentioned forest site 
classification methods is the use of technics based on 
Computational Intelligence (CI). This type of technique, 
especially the Artificial Neural Networks (ANN), has 
been applied in several studies in forestry (e.g. BINOTI 
et al., 2013; CASTRO et al., 2013; BINOTI et al., 2015; 
DIAMANTOPOULOU et al., 2015; REIS et al., 2016). 
This methods allows to extract information from a 
massive database consisting of continuous and categorical 
variables in order to recognize patterns between the 
input variables and a variable of interest.  

The ANN can be seen as a parallel system 
composed of processing units (nodes), usually organized 
in layers, where a mathematical equation operates in 
order to transmit a signal across connections (axons) 
to another layer (BRAGA et al., 2007). Those axons are 
associated with weights which ponder the associations 
between a node and the layers. There are several types 
of neural networks, but the most used is the Multilayer 
Perceptron (MLP). The first layer is not computing 
and is represented by the input data. It will serve as an 
information source for subsequent layers. In this layer, 
each continous variable is represented by a single node, 
whereas for the categorical variables (converted into 
binary variable), each category is represented by a node. 

Next, there is the middle layer (hidden layer), 
which will process the information through the activation 
functions of each node. These functions, usually non-
linear, normalizes the sum of the initial values, multiply 
them by their respective weights, and transmit that new 
sinapsis to the last layer. Finally, the last neuronal layer 
(output layer) processes the informations over again 
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and produces the output, which can be quantitative 
(values) or qualitative (classes). The number of neurons 
in the final layer is equal to the number of variables to be 
estimated or the number of the classification categories 
(HAYKIN, 2001).

 During training, the data presented are 
processed by the network with the initial parameters 
determined randomly and the estimative errors returned 
to the neural net to adjust their weights. A new cycle of 
training proceeds in an iterative process until the error is 
minimized according to a cost function .

One advantage of ANN is the possibility to 
use several continuous and/or categorical predictors 
(variables in the input layer), providing high precision 
estimates or classifications (e.g. GÖRGENS et al., 
2009; AERTSEN et al., 2010; LEITE et al.,  2011; 
SANQUETTA et al., 2017). This can be done without 
the problem of multicollinearity,  regression assumptions 
or even without well-known processes (a priori) or 
cause-effect relationships involving these variables as in 
ecophysiological models, so that variable as dominant 
height could be replaced by another related one do 
predict site quality. Furthermore, in a previous study of 
CI use for classification of production capacity, Cosenza 
et al. (2015) concluded that the ANN is able to perform 
this kind of task. However, in their work the training 
data was the classification generated by the guide curve, 
which hinders inference about the ANN efficiency over 
the usual GC method. 

In this context, this study aimed at assessing the 
application of artificial neural networks to perform site 
classification for eucalypt stands based on environmental 
and silvicultural information to answer the following 
questions: what is the best network setting for site 
classification? Is the ANN method with no stand feature 
as input more accurate than the traditional GC method?

MATERIAL AND METHODS

 The database used to perform the analysis 
is coming from a continuous forest inventory of 474 
eucalypt stands located in Rio Doce valley in Minas Gerais 
states, Brazil. This region has national-wide importance 
concerning wood production for the pulp and charcoal 
market. These stands have, on average, 0.3 km² of area 
and they are at a maximum distance of 270 km from each 
other, covering a considerable environmental variability. 

We used the average dominant and co-dominant 
tree height at a referecence age as a proxy for site 
productive capacity. For that, the total tree height of 
the four thickest trees in 400-m² inventory plots was 

measured (ASSMANN, 1970), being one plot per stand. 
Each plot was measured once a year and all of them occur 
between the ages of two and ten years, with one of those 
measures taken at the age of seven years. This process 
generated a datasset with 2018 plot mean dominan 
heights. We chose the age of seven years as reference 
age, commonly used in short rotation of eucalypt stands 
in Brazil (CAMPOS; LEITE, 2013). 

In order to compare the results of the GC and 
ANN methods and assess their accuracy, a reference 
classification of the stands was established based on the  
observed dominant height at seven years old, which is 
the observed site index.Thus, each measure of a given 
stand received the same class determined in its reference 
age. With the range of site indexes, we established two 
classification types usually applied on area mapping: 
three and four classes, with amplitudes of 5.5 m and 4.0 
m, respectively (Table 1). 

TABLE 1 Site classifications based on the observed site index 
for short-rotation eucalypt stands. Class limits, 
mean dominant height and standard deviation (sd) 
are given in meters; n is the number of observations.

Class
3 Classes 4 Classes

Class limits n
Mean 
(m)

sd Class limits n
Mean
 (m)

sd

A 32 - 37.5 458 29.29 5.50 33 - 37 278 30.11 5.38
B 26.5 - 31.9 1512 24.97 5.30 29 - 32.9 1068 26.26 5.39
C 21 - 26.4 138 20.27 4.96 25 - 28.9 707 23.34 5.07
D - - - - 21 - 24.9 55 19.13 4.83

The site classes resulted from these two 
classifications were the output variables in the training of 
the ANN. As input variables we used: genetic material, 
spacing, rotation, soil type and climatic information. The 
levels of the variable “genetic material” may represent 
either a single genotype (stands planted with cuttings 
originated from vegetative propagation of a single 
genotype) or a species (stands planted with seedlings 
from sexual propagation). 

 A rotation is the period between the plantation 
(or coppice regeneration, no coppice data was present 
in our dataset) and the harvest. Therefore the variable 
“rotation” implies how many times the stand was grown, 
including the current stand. Soil type was defined based 
on the Brazilian Soil Classification System (EMBRAPA, 
2013) and was distinguished until the fourth category. 
As some stands presented more than one soil type, we 
used the two most abundant as two separate variables: 
“major” and “secondary” soil type. If a stand presented 
only one soil type in the records, this type was entered as 
both the major and the secondary soil type. The climatic 
information was collected from nine automatic agro-
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meteorological stations (Campbell model, CAMPBELL 
SCIENTIFIC INC., 2017) distributed throughout the 
planted area. We used annual averages from the data 
collected between 2006 and 2013 (Table 2).

tested cost functions were the sum of squares and cross-
entropy (Table 3). At this stage, the data were divided in 
three parts, 70% of the data were used for training the 
ANN, 15% for testing and the other 15% for validation. 
We selected among the 200 trained networks the one 
that had the highest percentage of agreement between 
the estimated and the observed classifi cation (hereafter 
called “hit”). If more than one ANN presented the same 
highest overall hit, we gave preference to that one with 
the least number of nodes in the hidden layer to avoid 
overfi tting. 

TABLE 2 Climatic variables used as inputs in the training of 
the artifi tial neural networks.

Variable Unit Minimum Average Maximum
Annual Rainfall mm 994.8 1348.9 1785.1
Annual Rainfall standard 
deviation

mm 217.5 336.4 511.6

Hydric defi cit mm 14.2 14.2 24.7
Maximum Temperature ºC 21.0 23.9 29.7
Medium Temperature ºC 16.0 19.3 22.8
Minimum Temperature ºC 14.7 16.5 19.4

Photosynthetically active 
radiation 

mmol.m-² 31231.1 33042.0 34998.9

Relative Humidity of air % 72.7 78.0 81.7

Total daily solar radiation MJ.m-².day-1 12.8 14.5 17.4

Vapour Pressure Defi cit hPa 4.1 5.8 8.4
Wind speed m/s 1.3 3.1 4.3

Since the study area is extensive for just nine weather 
stations, we decided to interpolate the information from 
the stations to the plots by using Thiessen polygons, with 
the aid of ArcGIS software, so that each stand received 
information from the nearest station. For the plots located 
in the border of two or more polygons, the arithmetic 
mean of the respective polygons was assigned. The reason 
for the use of this approach is its easy application and 
comprehension, and the fact that it allows interpolating all 
climatic variables simultaneously.

The data related to soil type, spacing, genetic 
material and rotation were obtained for each stand. 
There were in total 17 soil types, 49 genotypes and 
eight spacings,  with distances betwee trees and rows 
varing from 2m to 4m . We highlight that the focus of 
this study is not the effect of the variables itself, but the 
classifi cation. Therefore, further characterization of the 
variables is not provided since it is beyond the scope of 
our objective.  

For each classifi cation type (three and four 
classes), 200 networks of the Multilayer Perceptron 
(MLP) type for classifi cation were trained using the 
software Statistica 12 (STATSOFT INC., 2017) which 
uses the training algorithm Broyden-Fletcher-Goldfarb-
Shanno (BFGS), an update of Quasi-Newton method 
(BISHOP, 1995). Multiple architectures were tested with 
respect to the number of neurons in the hidden layer, 
cost function and activation functions. The numbers of 
neurons in the hidden layer ranged from 15 to 30 units; 
the tested types of activation function of the hidden and 
output layer tested were the logistic function, identity, 
exponential, hyperbolic tangent and softmax; and the 

TABLE 3 Description of the activation and cost functions.
Activation functions* Cost functions

Identity:

Logistic: Cross Entropy:

Exponential:

Hyperbolic tangent: Sum of Squares:

Softmax:

*a is the signal received by the a node; aj is the signal received by the node j in 
the output layer; and k is the total number of neurons in the output layer; n is the 
number of training data; yi is an estimate of the observed value ti;

The training data is used to adjust the network 
weights. Because of that, setting a large percentage of 
data as the trainning data is recommended so that it 
covers the range of variability of all variables and their 
categories. Through the testing data, new classifi cation 
errors are obtained for each iteration, but it is not 
directly related to the weights adjustment. As presented 
by Haykin (2001), this error tend to decrease at the 
beginning of trainning and to grow as the network 
becomes more specifi c to the trainning data. Based on 
this fact, the software stops the iterations before the 
test error starts to grow, avoiding the occurrence of 
overfi tting (STATSOFT INC., 2017). 

The validation data is used to calculate the network 
generalization error after the training is complete. This 
parameter serves as another way to assess the network 
quality (STATSOFT INC., 2017). Even though these two 
data partitions (test and validation) comprise a smaller 
part of the dataset (30%), they still cover a substantial 
volume of occurrences.

Once selected, the best ANN (one for each 
classifi cation type) were applied to the entire database 
to asses their classifi cation accuracy. To evaluate the 
effect of  the data partition percentage on the training, 
the confi guration of the two selected networks 
was used to build new ANN with diferent training 
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partition. With the selected confi gurations, 20 new 
ANN were trained using ten percentages of trainning 
data from 100%, with 10% reduction, down to 10%. 
Consequently, the remaining fraction of data used for 
testing was 0%, 10%, up to 90%, with no partitioning 
for validation. These different data partitionings for 
training were compared by their average hits ( average 
estimated classifi cation matching the observed data 
in 20 repetitions for each percentage level of training 
data) for each class.

The ANN method was compared with the 
site classifi cation via the guide curve method. The 
Schumacher’s equation  was used to relate dominant 
height (Hdom, in meters) to age (t, in months). The 
parameters α and β were estimated via Levenberg-
Marquardt algorithm and  goodness-of-fi t was analyzed 
through the statistics bias and root mean squared error 
(RMSE), calculated as Campos and Leite (2013), and 
through the residuals analysis plots.

The results of each classifi cation approach (neural 
network and guide curve) were compared through 
the Kappa analysis (COHEN, 1960; CONGALTON; 
MEAD, 1983) which gives a measure of classifi cation 
agreement (Table 4). 

RESULTS

The classifi cation based on the observed site index 
shows that as the stand age distances from the reference 
age, plots of a given class may change to another class. In our 
data, this happened especially for periods of time before the 
reference age, and the further they are from the reference 
age, more variable the classifi cation becomes. This is 
depicted in Figure 1a and 1b, where the mean dominant 
heights of all measurements were plotted together with the 
observed site index (at age seven years old).

The summary of the selected networks is 
presented in Table 5. In accordance with the result 
found by Cosenza et al. (2015), for both the selected 
networks, the cost function was the “Cross Entropy” 
and the activation function was the softmax (both of 
these functions are discribed in Bishop (1995), which 
makes its use advisable for this type of task. 

With these confi gurations, the neural networks 
presents probabilistic properties which assumes a 
multinomial distribution of classes (STATSOFT INC., 
2017).  Each one of the output neuron presents a value 
equivalent to the probability of being selected as the best 
classifi er for a certain stand, to which the class of the highest 
value neuron will be assigned. The ANN site classifi cation 
for each stand measurement is shown in Figures 1c and 1d. 

The classifi cation through the guide curve method 
is shown in Figure 1e and 1f. The adjusted equation 
presented good accuracy (bias = 0.013; RMSE = 9.23%) 
and well distributed residuals (Figure 2).

The absolute value for each class obtained by the 
ANN method was closer to the number of cases in each 
reference class than the GC method (Table 6), for both 
classifi cation types (three and four classes). However, this 
value itself does not distinguish the misclassifi cations, so that 
this parameter cannot be considered without an analysis 
of the percentage of errors and the Kappa coeffi cients. 
According to these parameters, the ANN can be considered 
more accurate than the GC method, especially in the three-
class division, presenting a substantial agreement (Table 4) 
with the reference class, while GC has a moderate accuracy. 
There was greater percentage of error in the extremity 
classes in the three-class division, indicating smaller sensitivity 
of the methods to distinguish them. 

TABLE 4 Classifi cation level of Kappa coeffi cient (LANDIS; 
KOCH, 1987).

Kappa coeffi cient Strength of Agreement

<0.00 Poor
0.00-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost Perfect

The comparison between two Kappa coeffi cients 
(equation 1) was performed through the Z test (equation 
2) to verify the alternative hypotesis H1: K1 ≠ K2, with 5% 
signifi cance, in each classifi cation type (three and four 
classes). Those coeffi cients were computed from the 
error matrices of each classifi cation method through the 
set of equations described by Hudson and Ramm (1987) 
as follows [1], [2],[3], [4] where =Kapa coeffi cient 
estimative; σ2[K]=variances estimated for the Kappa 
estimatives, being   and  the variance for   and 

respectively; N= total number of observations; r= 
number of classes; Xii= number of correct classifi cations; 
Xi+= marginal total of row i; X+i= marginal total of column 
i; Xij= observations on row i and column j; Xj+= marginal 
total of column j.

[1]

[2]

[3]

[4]
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Regarding the test of different percentage of 
data during the training phase, in both cases (three and 
four classes), the percentage of hits was lower for the 
extremity classes in all levels of training (Figure 3). In 
addition, the accuracy level increased with the size of 
the training data and the precision became stable from 
the 60% level onwards.

Considering the total hits, both of the 
classifi cations estabilized around the level of 60%. 
However, the increase in percentage of hits was steeper 
when four classes were established.

In order to evaluate the potential of the two 
methods of classifi cation in the reference age, the 
database was fi ltered, selecting the measures occurring 
between the 81th and 87th months, which represents the 
reference age (84th month) with three months tolerance. 
This selection corresponded to 474 observations, and 
the results are presented in Table 7.

Different from what was observed with the full 
data classifi cation (plots throughout age), the guide curve 
was more accurate than the neural networks, drastically 
reducing the misclassifi cations and increasing the Kappa 
coeffi cient to an almost perfect level of agreement with 
the reference data. On the other hand, the ANN had 
errors with similar proportions as for the entire data 
tested previously and the same Kappa coeffi cients.

Another difference observed between the two 
methods is the variation of stand class throughout the years 
when the guide curve was applied, mainly at ages distant 
from the reference age. This fact is discussed by Walters et 
al. (1989) as a technical limitation of the guide curve, which 
assumes that the site index of a given stand will be the same 
for all ages. According to these authors, this premise may 
be inconsistent since in the case of an average site index, 
changing this average could cause biased curves.

That situation is exemplifi ed in Figure 4 for a single 
stand in the three-class division. The stand changed its 
class three times throughout the years, which could be 
better observed through the position of site index line 
(black dotted line) on the colored box. At the third year, 
this stand was classifi ed as Class A and jumps to the 
Class B. In the next year, it is classifi ed as Class C and 
then it goes back to Class B, becoming quite close to the 
dominant height. This explains the lower classifi cation 
accuracy of this technique when applied in the full 

TABLE 5 Artifi cial neural networks confi guration for site classifi cation of Eucalyptus stands in southeastern Brazil.

Classifi cation type Architecture*
Overall classifi cation result (%)

Cost Function
Activation function

Training Test Validation Hidden layer Output payer
3 Classes MLP 103-19-3 91.53 90.19 89.87 Cross entropy Logistic Softmax
4 Classes MLP 103-30-4 85.98 82.91 83.86 Cross entropy Tang. Hyperbolic Softmax

*Distribution of neurons in the input, hidden and output layer respectively.

FIGURE 1 Site classifi cation for short rotation eucalypt 
stands in the state of Minas Gerais, southeastern 
Brazil. Classifi cation based on the observed site 
index with three (a) and four (b) classes, ANN 
classifi cation with three (c) and four (d) classes and 
GC classifi cation with three (e) and four classes (f).

FIGURE 2 Residual dispersion (a) and frequency histogram 
(b) for the model fi tted for the guide-curve site 
classifi cation procedure in Eucalyptus stands in 
southeastern Brazil.
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database in comparison with the data in the reference 
age.  That misclassifi cation may not occur because of 
the chosen model itself, but due to the instability of the 
dominant height growth throughout rotation or even 
data collection mistakes, which would probably result in 
a certain degree of accuracy error if any growth-theory 
based technique was applied to model the relationship 
between age and dominant height .

For both divisions, three and four classes, there 
were respectively 225 (47%) and 130 (27%) reclassifi ed 
stands. This did not occur with the ANN because the 
variables used as input training did not vary within the 
sites, only among them. In the case of the stand presented 
on Figure 4, all measurements were correctly classifi ed 
as Class B by the ANN.

DISCUSSION

The overlap of reference classes of some stands 
(Figure 1a and 1b) occurs due to the change in the 
growth rate over the years for the different measured 
plots, which infl uences the average dominant height 
of the plots and/or the stands. Therefore, this fact has 
contributed to increasing the misclassifi cation with the 
guide curve in early or old ages.

The precise explanation for the changes in average 
dominant height and the growth rate for the studied 
stands goes beyond to the objectives of this work. There 
are several factors that infl uence tree development 
that might have caused it, such as edaphic and climatic 
factors, occurrence of pests and diseases, genetic issues 
and cultural treatments (e.g. ALMEIDA et al., 2007;  
BINKLEY  et al., 2010; FORRESTER et al., 2010; STAPE 
et al., 2010; BARTHOLOMÉ et al., 2013). Furthermore, 
Alder (1980) brings out that, in tropical regions, uniform 
stands of fast-growing species can have variations in the 
growth rate, so that the dominant height may cease to 
be a good indicator of productivity. However, our study 
suggests that the choice of the reference age for this 
evaluation methodology is very important in the defi nition 

TABLE 6 Agreement of the site classifi cation based on the observed site index (reference) and classifi ed using artifi cial neural 
networks (ANN) and the guide-curve procedure (GC).

Class

3 classes 4 classes

Reference ANN
ANN error

(%)
GC GC error Reference ANN ANN error GC

GC error
(%)

A 458 427 18 527 29% 278 304 14% 336 32
B 1512 1574 4 1423 17% 1068 1,045 14% 1101 24
C 138 107 30 158 30% 707 722 15% 588 37
D - - - - - 55 37 33% 83 25

Overall 2108 2108 10 2108 21% 2108 2,108 15% 2108 30
Kappa* 0.79a 0.55b - - 0.72a - 0.52b -

*Coeffi cients superscriped by same letters for each class division do not differ.

FIGURE 3 Site classifi cation for short rotation eucalypt 
stands in the state of Minas Gerais, southeastern 
Brazil. Classifi cation based on the observed site 
index with three (a) and four (b) classes, ANN 
classifi cation with three (c) and four (d) classes and 
GC classifi cation with three (e) and four classes (f).

FIGURE 4 Observed mean dominant height (black full line), 
site index estimated by the guide-curve (black 
dotted line), dominant height class limits for the 
guide-curve (gray lines) and site classes based on 
the observed calculated site index (colored stripes).
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of site classes, being more susceptible to misclassification 
as more distant is the time between the reference year 
and the stand age.

The classification made by the neural network 
also generated overlaps, possibly due to the nature of 
the training data. Nonetheless, the system could classify 
the areas with relatively low errors, of 10% and 15% 
for the division of three and four classes respectively, 
and with a substantial agreement. Therefore, the ANN 
method was more precise than the guide curve and with 
no class changing between measurements of a same 
stand, since the categorical variables used for prediction 
do not changes over time and the climatic variables were 
the annual averages over eight years.

It must be highlighted that after training the ANN 
no tree measures were used to apply it, only environmental 
and silvicultural information. This advantage allows regions 
to be mapped according to their environmental features 
and even to simulate management options to be adopted 
and modifying them to boost productivity.

However, when it comes to classifying stands 
with measures near the reference age, the guide curve 
method was more precise, presenting 3% and 5% of 
misclassification and an almost perfect agreement with the 
reference data, whereas the ANN showed the same error 
pattern and Kappa coefficients. Therefore, if measurements 
near the reference age are available, preference should be 
given to the guide curve method rather than using ANN 
with only environmental and silvicultural information.

Both the ANN and the guide curve can be 
potentially improved by including other variables in the 
models. For example, regarding the ANN, Blackard and 
Dean (1999) included several physiographic variables 
to predict seven forest cover types in the Roosevelt 
National Forest (Colorado, USA) and reached 70.58% 
of accuracy. Among the used variables, there was the 
elevation, aspect (azimuth from the true north), slope 
and distance from water bodies, and of known fire 
ignition points. Also, Hilbert and Van Den Muyzenberg 
(1999) included climatic and physiographic variables to 
classify 15 forest types in a tropical rainforest in Australia 

which resulted in an ANN overall accuracy of 75% and 
Kappa coefficient of 0.676. An interesting variable used 
by them was the soil water index (SWI), calculated from 
the digital terrain model (DTM), which is related to the 
soil wetness. In summary, each one of those features 
were related in some way to the forest production and 
probably would influence site quality, so that they could 
be included in the networks training.

On the other hand, adding environmental and 
silvicultural covariates in regression model could also 
improve the guide curve method. For example, Scolforo 
et al. (2013) used exploratory data analysis to select 
climatic variables and use it as input on Chapman and 
Richards model so that it increased its precision in 33%. 
Like the ANN, this kind of modified models can be 
potentially used to simulate site capacity with no planting 
history or in case of climatic changes. It is also important 
to emphasize that, in our work, no distinction among 
genotypes and plots was made during the fitting process, 
so that the Hdom-curve was fitted using the full dataset. 
Thus, advanced regression techniques such as mixed 
models could be applied to improve site index estimation, 
since they can embody these factors and can correct for 
residual serial autocorrelation caused by using longitudinal 
data of permanent plots (e.g. CALEGARIO et al., 2005). 
An advantage of this methods is the possibility to draw 
statistical inferences regarding the regression parameters, 
which cannot be made for ANN. Furthermore, even 
though the guide curve is widely used, the permanent plot 
could violate the residual independence assumption, so 
that  other approach as algebraic differential models could 
be applied to build the site index curves (BURKHART; 
TOMÉ, 2012; CAMPOS; LEITE, 2013).

Also, we believe that more weather stations 
associated to other interpolation technics, such as Kriging 
or the Inverse Distance Weighted (IDW), could improve 
the prediction performance of the ANN by incorporating 
climatic variations on the terrain in a smaller scale. 

Regarding the proportion of training data we 
found that, from 60% on, there is little variation on the 
estimates accuracy, since the remaining data is used as 

TABLE 7 Site classification at the reference age of seven years based on the observed site index (Reference) and classified using 
artifitial neural networks (ANN) and the guide-curve procedure (GC).

Class
3 classes 4 classes

Real ANN ANN error GC GC error Real ANN ANN error GC GC error
A 118 115 15% 116 5% 74 79 14% 74 4%
B 330 339 5% 331 2% 242 235 14% 245 4%
C 26 20 31% 27 8% 148 153 14% 145 7%

10 7 30% 10 0%
Overall 474 474 9% 474 3% 474 474 15% 474 5%
Kappa* 0.79a 0.93b 0.77a 0.92b

*Coefficients superscriped by same letters for each class division do not differ.
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test. As presented by Jain et al. (1996), the number of 
training patterns is determined by the sample complexity. 
In this way, this result implies that the variability in the 
training data, which allows the ANN to learn, is more 
important than the amount of data itself. 

If a reduced training data is used, the range of 
variability can be unrepresentative and could be a great risk 
of a given characteristic not to be detected by the network 
(underfitting), reducing the network generalization capacity 
for situations not displayed during the training phase. 
On the other hand, greater percentages of training data, 
besides not improving the quality of the training process, 
may increase the processing time.

Therefore, we highlight that the optimum training 
data obtained in this research will not necessarily be the 
same in other datasets. A test must be performed for 
each database because the training proportion probably 
will be bigger in situations of higher variability and smaller 
in less variable datasets.

This work reinforces the potential of the artificial 
neural networks to be applied to forest modeling. 
The classification of the productive potential based on 
environmental and management variables was shown to be 
a good technique for site mapping and, therefore, can be 
used as a support tool for forest managers, when deciding 
about management prescriptions or land management.

In addition, we encourage more research to assess 
the sensitivity of the variables used in networks so that the 
less influential variables on prediction may be excluded. 
Reducing the quantity of predictors will potentially reduce 
the computational cost of training and facilitate their 
application, especially in situations where some variables 
may not be available or difficult to be obtained. Additional 
studies are warranted to improve the use of the technique 
to make it more precise and more practical, including with 
application to other locations and forestry species. We 
emphasize that, like all decision support tools, its results 
must undergo the scrutiny of the manager and other 
agents involved in the production process to minimize the 
occurrence of mistakes.

CONCLUSION

 The best artificial neural network (ANN) setting 
comprised a number of hidden units equal to a fifth of 
input neurons in a Multilayer Perceptron neural network 
(MLP) with the cross entropy cost function and the 
logistic and Softmax activation functions in the hidden 
and output layer, respectively. Decreasing the amount 
data used for training down to 60% did not result in 
considerable change in classification accuracy.  

For both Guide Curve (GC) and ANN procedure, 
using three site classes results in more accurate 
classification then using four site classes. In general, the 
ANN using only environmental and silvicultural inputs 
provides better classification accuracy than the GC 
method, which allows that methodology to be applied 
in absence of dominant height data or stand history 
provided there is an ANN previously trained for it. 
However, in the case of established stands with age near 
the reference year, the GC should be prioritized for site 
classification, given its better precision. ANN provides 
better classification accuracy than traditional GC method 
when plantations with age far from the reference age.
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