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STRATEGIES FOR STEM MEASUREMENT SAMPLING: A STATISTICAL 
APPROACH OF MODELLING INDIVIDUAL TREE VOLUME

ABSTRACT: The aim of this paper was to evaluate different criteria for stem measurement 
sampling and to identify the criterion with best performance for developing individual 
tree volume equations. Data were collected in eucalyptus stands 58 to 65 months old. 
Schumacher-Hall model was applied using five sampling criteria with nine variations (45 
in total): 1) number of trees per diameter class, being (a) fixed number, (b) proportional 
to the diameter class of the sample, or (c) proportional to the standard deviation of the 
sample; and 2) the width of the diameter class, which ranged from 1.0 up to 5.0 cm. We 
used the equations generated from each of the five sampling criteria to estimate stem 
volume of trees reserved for validation. This allowed us to obtain standard errors of 
estimates from this data-set. In addition, residuals of volume estimates were examined 
by means of statistical tests of bias, autocorrelation and heteroscedasticity. Better 
performances of volume equations occurred when smaller diameter class widths were 
used, i.e., when the sample size increased. There was no clear trend in increasing/decreasing 
residual autocorrelation and/or heteroscedasticity. Both methods of sampling proportional 
to the frequency of diameter class had the best performances, inclusive using only 36 trees. 
The ones where choice of trees was proportional to the standard deviation had the worst. 
In conclusion, the selection proportional to the frequency of the diameter class, under the 
condition that at least two trees per class are sampled, provides models statistically better 
than all the other criteria. 

ESTRATÉGIAS DE AMOSTRAGEM DE FUSTES PARA MEDIÇÃO: UMA ABORDAGEM 
ESTATÍSTICA DA MODELAGEM DO VOLUME DE ÁRVORE INDIVIDUAL

RESUMO: O objetivo deste trabalho foi avaliar diferentes critérios para amostragem 
de fustes para medição e identificar o critério mais adequado para a modelagem do 
volume de árvore individual. Os dados foram coletados em povoamentos de eucalipto 
com idade entre 58 e 65 meses. O modelo de Schumacher-Hall foi aplicado em cinco 
critérios de amostragem, com nove variações (45 no total): 1) número de árvores por 
classe diamétrica, sendo (a) número fixo, (b) proporcional à distribuição do diâmetro 
amostral, ou (c) proporcional ao desvio padrão da amostra; 2) tamanho da amplitude 
da classe diamétrica, que variou de 1,0 a 5,0 cm. As equações geradas em cada critério 
foram usadas para estimar o volume de fuste de árvores reservadas para validação. Isso 
permitiu calcular erros padrões da estimativa para esse conjunto de dados. Além disso, 
os resíduos das estimativas de volume foram examinados por meio de testes estatísticos 
para viés, autocorrelação e heteroscedasticidade. Os resultados mostraram melhores 
performances de equações de volume usando menores amplitudes. Não houve uma clara 
tendência em aumentar/reduzir a autocorrelação e/ou heteroscedasticidade dos resíduos. 
Aquelas amostragens com proporção à frequência da classe diamétrica apresentaram as 
melhores performances, inclusive usando apenas 36 árvores. Aquelas cuja escolha de 
árvores foi proporcional ao desvio padrão tiveram os piores resultados. Como conclusão, 
a seleção proporcional à frequência da classe diamétrica, sob condição de amostrar pelo 
menos duas árvores por classe, fornece modelos estatisticamente superiores aos demais 
quanto aos critérios sugeridos no estudo.
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INTRODUCTION

Linear and non-linear models have an extensive 
usage in forest mensuration, in large part because they 
provide reliable estimates of independent variables. 
Besides, the availability of software for obtaining 
coeffi cients, and their ease of application are good reason 
for using regression models.

The formulation of models corresponds to an 
important step in independent variable estimation, 
since it is desirable for the sample estimators to have 
predictions and confi dence intervals that are unbiased 
and accurate. For this to occur, some assumptions of 
the classical linear regression model must be satisfi ed to 
obtain unbiased, consistent and effi cient estimators, also 
known as Best Linear Unbiased Estimator (BLUE). The 
properties of Ordinary Least Squares (OLS) estimators 
require that the residues (  ) possess average equal to 
zero, be non-autocorrelated and present fi xed variance, 
i.e., homoscedastic and independence (GUJARATI; 
PORTER, 2009; LISTA, 2014).

Due to the fact that accurate wood volume 
estimation is one of the most important variables of 
interest in a forest inventory, it is highly desirable that 
volume equations present BLUE estimators. Volume 
regression models require a set of tree (felled or not) 
measurements sampled from the forest inventory 
population of interest. These measurements must come 
from a well-representative sample. Thus, the selection 
of trees for scaling is an important step in modelling 
individual tree volume, besides being a costly one. 

In Brazilian forest inventories, usually the selection 
of trees for scaling is done throughout the population 
being inventoried and traditionally the number of trees 
to be scaled is fi xed by diameter class (CAMPOS; LEITE, 
2013), ranging from 4 to 6 trees per class (SOARES et al., 
2011). Empirically there are suggestions of up to 10 trees 
if the width of the diameter class is 5 cm (MUGASHA 
et al., 2016). In fact, there is a lack of evaluation 
concerning number of trees to be sampled and how 
this affects volume model capabilities. Perhaps such 
recommendations are conclusions of empirical methods 
and stabilization of coeffi cient of variation.

However, this sampling criterion of equal 
numbers of trees selected by diameter class corresponds 
probabilistically to a rectangular distribution. Thereby, we 
observe that there is not a concordance between such 
criterion of choosing trees and the Gaussian distribution 
observed in even-aged stands (BINOTI et al., 2015).

The traditional approach to sampling presents 
the interesting advantage of including the variability of stem 

form across all diameter classes. Operationally, one of 
the disadvantages found on the traditional sampling is the 
requirement of fi nding and measuring trees that are less 
frequent, i.e, trees in extreme classes (PICARD et al., 2012).

On the other hand, proportional-to-frequency 
sampling may require less time and labor cost because 
most of the measured trees occur more frequently. 
Assuming a normal diameter distribution, this sampling 
favors trees sampled closer to the average, since it 
disfavors trees in extreme classes. In addition, this 
sampling contemplates those classes most frequently 
found in the forest population. Thus, it forces the 
estimators to converge in values closer to the populational 
estimators, due to the weighting of the tree frequency by 
diameter class (PICARD et al., 2012).

We initiated this study assuming the following 
hypothesis: the criteria for choosing sampled trees for 
stem volume affects the accuracy of individual tree 
volume equations. The aim of this paper was to select a 
criterion for stem measurement sampling which has best 
performance for modelling individual tree volume.

MATERIAL AND METHODS

Study area and data collection

The database came from a forest inventory 
carried out in a hybrid eucalyptus forest (Eucalyptus grandis 
W. Hill ex Maiden x Eucalyptus urophylla S. T. Blake), 58 to 
65 months old. The planted area corresponds to 558.7 ha, 
located in north of the state of Bahia, Brazil. The forest 
present a mean density of 1,111 plants.ha-1.

We used data from 57 permanent plots of 471.4 
m² each. The variables scaled in the inventory were 
diameter at breast height, total height and stem volume. 
The main descriptive statistics of these variables are 
presented in Table 1.

TABLE 1  Descriptive statistics of the data set used in analysis.
Descriptive

statistics
dbh
(cm)

Total height
(m)

Volume
(m³)

Age
(months)

Minimum 6.1 10.8 0.0188 58.0
Maximum 23.4 29.0 0.5724 65.0
Average 14.0 20.9 0.1827 64.5
Median 14.0 21.0 0.1473 63.6
CV(%) 30.7 22.7 72.3031 27.2

dbh: diameter at breast height; CV: coeffi cient of variation.

require that the residues (  ) possess average equal to 

We measured diameters along the bole of the 
sampled trees, which allowed us to calculate stem 
volume using Smalian’s formula [1], where: vi = volume 
of the log section, in m³, D1  = major diameter of section 
i, in cm; d1= minor diameter of section i, in cm; L = log 
length, in m.
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Criteria for tree measurement sampling

The proposal of this work consisted of statistically 
analyzing the effect of different sampling criteria 
for tree measurement on modelling individual tree 
volume. Equations generated for each criterion were 
used to estimate stem volume of trees reserved to 
validate the equations, allowing us to reach conclusions 
about the goodness of fit, biases, autocorrelation and 
heteroscedasticity of the residuals.

We sampled six trees per diameter class.  
Furthermore, within a class trees are chosen to represent 
the lower, mid and upper limit of each diameter class. 
In this paper, we refer to this criterion of selection as 
“traditional sampling”.

Basing on our initial hypothesis, we formulated 
alternative sampling procedures with the objective 
of developing a better sampling criteria for individual 
tree volume modelling. Thus, the criterion named as 
“traditional sampling” was compared with the following 
alternative criteria:

“Proportional sampling (a)”: the number of trees 
sampled per diameter class depends on the diameter 
distribution of the forest population. Thereby, the ratio 
of the number of trees per class and the total number 
was used as the weighting factor for each class;

“Proportional sampling (b)”: similar to the 
previous criterion, however we added the condition that 
ensures at least 2 trees are sampled per class;

“Average ±1 deviation sampling”: it consists 
of selecting only the trees inside the interval of ±1 
standard deviation around the average diameter of 
the sample. Therefore, the minimum and maximum 
diameter classes reach the average minus and plus one 
standard deviation, respectively;

“Average ±2 deviations sampling”: similar to the 
criterion previously described, but using two rather than 
one standard deviation.

These five criteria (traditional and the alternatives) 
were repeated nine times, since we tested arbitrarily nine 
diameter class widths that ranged from 1.0 up to 5.0 cm, 
resulting in 45 strategies for stem measurement sampling. 
Table 2 presents the number of trees and diameter classes 
in each strategy.  Each diameter class width implies in 
varying the number of felled-tree samples.

The “traditional sampling” criterion always 
sampled six trees per diameter class, since it is a 
common practice used by many companies. This ceiling 

number was also used to establish the number of trees 
per class in the criteria with standard deviation, in order 
to permit a better comparison with the “traditional 
sampling” criterion.

TABLE 2  Number of trees and of diameter classes (in brackets) of 
criteria for stem measurement sampling.

Criterion for
sampling

Diameter class width (cm)
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Traditional
84 

(14)
60 

(10)
42 
(7)

36
 (6)

36 
(6)

30
 (5)

30 
(5)

24 
(4)

24 
(4)

Proportional (a)
84

 (14)
60 

(10)
42 
(7)

36
 (6)

36 
(6)

30 
(5)

30 
(5)

24
 (4)

24
 (4)

Proportional (b)
84 

(14)
60 

(10)
42
(7)

36
 (6)

36
 (6)

30
 (5)

30 
(5)

24
 (4)

24 
(4)

Average ±1 sd
36 
(6)

24 
(4)

24 
(4)

18 
(3)

18 
(3)

12 
(2)

18 
(3)

12 
(2)

12 
(2)

Average ±2 sd
60 

(10)
42 
(7)

36 
(6)

24 
(4)

24 
(4)

24 
(4)

18 
(3)

18 
(3)

12 
(2)

sd: standard deviation

In the criteria with standard deviation, the number 
of classes depended on the value of such statistical 
estimator. Two standard deviations around the average 
will encompass more classes than one standard deviation, 
mainly when the diameter class width is a small value.

Therefore, both sampling based on standard 
deviation as the “traditional sampling” are equivalent in 
number of trees per class but different in total number of 
trees sampled. Similarly, the traditional and proportional 
sampling criteria are equivalent in total number of trees but 
different in number of trees per class, as shown in Table 2.

For example, Figure 1 illustrates the sampling 
frequency by diameter class considering a diameter class 
width of 1.0 cm. Bars indicate the relative frequency of 
trees established on the criterion and the lines indicate 
the real relative frequency of trees observed in the forest.

There is a criterion for sampling usually adopted in 
forest inventories, but not employed by us, which consists 
of measuring more trees in classes with high diameter 
variations. We opted not to test such method because the 
variation by diameter class is higher in classes belonging to 
small trees, whose value of logs is much low comparing to 
the bigger ones. Therefore, it is more important to sample 
larger trees for enhancing their estimates.

Volume model and comparison of coefficients

After creating data sets for each of the five 
different sampling criteria and their nine variations, we 
fitted the model of Schumacher-Hall using a database 
related to each sampling strategy, thus obtaining 45 
equations of stem volume. We took the logarithm of the 
original model (VIBRANS et al., 2015), resulting in the 

2 2
i i

i
(D d )

v L
80000

+
= P [1]
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linear model [2], where: ln = natural logarithm; v=stem 
volume in m³; dbh=diameter at breast height in cm; 

0 1 2 iln(v) ln(dbh) ln(h)= b + b + b + e [2]

h=total height in m; β0 to β2 = parameters of the model 
to be estimated; εi= random error.

We estimated the parameters using the Ordinary 
Least Squares (OLS) method. Coeffi cients of equations 
obtained with the “traditional sampling” had their 
confi dence intervals estimated by means of Student t-test 
at 95% probability level. They were plotted in graphs 
along with the coeffi cients of all criteria. This comparison 
helps identify discrepancies between equations belonging 
to each sampling criterion.

Validation of the methodology

In order to validate the equations, we created a 
validation database with 28 felled and scaled trees that 
were not used in the equation development. The number 
of trees per diameter class in this validation database 
were randomly selected and had the same diameter 
distribution frequency as that in the forest inventory 
population, i.e., the frequency of trees per class was 
proportionally equivalent to the diameter distribution. 

The comparisons and statistics to evaluate 
residuals and goodness of fi t (equations 3 to 6) were all 
calculated and based on these validation data.

Evaluation of estimated residuals and goodness 
of fi t 

We evaluated the estimated residuals by means 
of statistics that detect problems of bias, autocorrelation 
and heteroscedasticity. We applied the Durbin and 
Watson (1951) test [3] to detect residual autocorrelation. 
The calculation is given as follows (DAVID et al., 2015), 

iê r̂

n 2
i i 1i 2

n 2
ii 1

(ˆ ˆ )
DW

ˆ

-=

=

e - e
=

e

å
å

[3]

where:   = Residuals of ith observation;    = Pearson 
correlation coeffi cient; n = number of observations.

Knowing that ranges from -1 to +1, DW test 
may assume values between 0 and 4. The test takes into 
account critical values that divide this interval in zones 
(0 to 4), being: one positive autocorrelation and one 
negative autocorrelation zone, one non-autocorrelation 
zone and two indecision zones. The conclusion about the 
autocorrelation depends on the zone in which the DW 
value fi ts.

The hypotheses to be tested are:
H0: No positive autocorrelation;
H0*: No negative autocorrelation;
Ha: Residual autocorrelation.

or DW 2(1 )ˆ= -r


i = 1, 2,..., n

A.Traditional sampling

B.Proportional sampling 

C. Proportional sampling 

D. Average ±2 deviations sampling

E. Average ±2 deviations sampling

FIGURE 1 Frequency of trees by diameter class used in criteria 
for stem measurement sampling.
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To evaluate the heteroscedasticity, i.e., if the 
residual variance is nonconstant, we applied the White 
(1980) statistic [4]. This test consists of fi tting an auxiliary 
model using as dependent variable the squared residuals 
from the original regression, and the original X variables, 
combined or not, as explanatory variables (DAVID et al., 
2015). Where: = Residuals of ith observations; αi = artifi cial 

The similarity of the results is highest with the 
“proportional sampling (B)” and “proportional sampling 
(C)” criteria. Across all nine class widths, only the class 
width equal to 4.5 cm had coeffi cients exceeding the limits.

Knowing that the “proportional sampling (C)” 
criterion was defi ned to have at least two trees per 
class, we could expect that all the coeffi cients were 
inside the confi dence intervals, due to its closer similarity 
to the “traditional sampling” criterion. However, such 
condition was not enough to obtain statistic equality of 
all the coeffi cients.

Concerning the “Average ±1 deviation sampling” 
criterion, almost all the diameter class widths had at least 
one coeffi cient that exceeded the confi dence intervals 
from the coeffi cients of the “traditional sampling”. The 
exception occurred only for the class width of 4.0 cm, in 
which all the coeffi cients were inside the limits.

In the of 4.0 and 5.0 cm diameter class widths 
the number of trees were equal for both of the standard 
deviation sampling criteria (Table 2). Therefore, the same 
trees were selected for modelling and the coeffi cients 

k k
in s ij ikj 1 k j

ˆ x x v
= =

e = a + a +å å
i = 1,..., n; j = 1,…, k; s = 1,…, k.(k+1).2-1

[4]

coeffi cients; x = dependent variable; v = artifi cial residual; 
k = number of variables, n = number of observations.

Homoscedasticity is detected when nR2 <  ,      
otherwise the residuals are heteroscedastic; where: n = 
number of observations; R² = coeffi cient of determination; 
χ² = chi-squared; DF = number of parameters of the 
artifi cial model (without intercept).

We also evaluated the accuracy of the individual 
tree volume equations using the standard error of the 
estimate (SEE%) [5]. Moreover, we used residual (  %) 
[6] graphs to detect presence of bias, where: yi and = 
observed and estimated variables of the ith observation;  
= average of observed variable; n = number of 

ê

2
DFc

n 2
ii 1

ˆ(y y ) 100
SEE(%) .

n p y
=

-
=

-
å [5]

i iˆ(y y )
ˆ(%) .100

yi
-

e = [6]

observations; p = number of coeffi cients excluding the 
intercept.

RESULTS AND DISCUSSION

Coeffi cients of individual tree volume equations

In order to answer the hypothesis of this study, 

we compared the sampling criteria with the traditional 

method. At fi rst, we plotted the estimated coeffi cients 

β0, β1 and β2 (Figure 2), as well as the confi dence intervals 
obtained with the “traditional sampling”.  

Except in a few cases, a high number of model 

coeffi cients from the alternative sampling strategies 

occurred within the “traditional sampling” confi dence 

intervals across all diameter class widths.This result 

shows the similarity of tree volume equation estimators 
regardless of the sampling criterion.

A.

B.

D.

FIGURE 2 Coeffi cients from the volume equations fi tted 
to criteria for stem measurement sampling. 
Graylines: confi dence intervals of coeffi cients of 
the “traditional sampling”. The numbers inside the 
graphs represent the diameter class width.

A. B. C.

D. E.
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are identical. Considering the other seven diameter class 

widths, the “Average ±2 deviations sampling” criterion 

presented coeffi cients statistically within the confi dence 

limits of those obtained in the “traditional sampling”.

Examination of the residuals

Figure 3 presents scatterplots of residuals in 
relation to diameters at breast height.   Each row of graphs is 
associated with a particular diameter class width, and each 
column is associated with a particular sampling criterion.

FIGURE 3 Residuals from the estimated volumes. X axis: Dbh (cm); Y axis: (Residual error in %).

A. Traditi onal sampling B. Proportional sampling C. Proporti onal sampling D.Average ±1 deviati on E. Average ±2 deviati ons
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Even though the criteria differ in the total number 
of measured trees and in sampling criterion, these 
differences did not result in biased estimations in the 
majority of cases. The worst situations were seen in the 
diameter class width of 5.0 cm, in which the criteria using 
standard deviation presented wider dispersions and 
smooth positive correlations (Figure 3). 

The “traditional sampling” and “proportional 
sampling (a) and (b)” criteria presented equations with 
the best unbiased estimators, even for the diameter class 
width of 5.0 cm (Figure 3).

The “Average ±1 deviation sampling” criterion 
had performance worse than the one with two standard 
deviations. Moreover, except for the diameter class width 
of 5.0 cm, the “Average ±2 deviations sampling” criterion 
presented performance similar to the “proportional 
sampling” criteria.

Basing on Figure 3, the number of sampled 
trees had less effect on the residual dispersion than the 
sampling criterion itself. For example, the samplings with 
deviations and using class width of 5 cm contemplate 
12 sampled trees. This sample number also was used 
in other class widths, where the residual dispersion had 
better behavior (Table 2).

In fact, if we analyze the equal sample numbers 
presented (Table 2) and compare them with their 
residual graphs (Figure 3), some situations like this occur 
in other class widths too.

Regarding to the heteroscedasticity and 
autocorrelation of the residuals, Table 3 presents the 

results of the Durbin-Watson and White tests for the five 
criteria for sampling in each class width.

As a complementary analysis, heteroscedasticity 
was also examined by means of scatterplots presented in 
Figure 3. This is possible because the bias of estimates is 
an indication of this problem (GUJARATI; PORTER, 2009).

The autocorrelation of the residuals, in turn, 
may be detected by the scatterplots showed in Figure 
4. Each row of graphs is associated with a particular 
diameter class width, and each column is associated with 
a particular sampling criterion.

The diameter class width of 1.0 cm had the 
best performance to avoid heteroscedasticity and 
autocorrelation of the residuals (Table 3). This was the 
only diameter class width free of this problem regardless 
of the criterion for sampling. On the other hand, the 5.0 
cm diameter class width was the worst alternative for 
avoidance of such problems.

 However, heteroscedasticity and autocorrelation 
of the residuals were present in all criteria, at least in two 
diameter class widths; therefore, we must be aware 
that no criterion is absolutely free of this problem. The 
“Average ±1 deviation sampling” was the most prone to 
such problems and this corroborates the results already 
presented in Table 3.

The stronger autocorrelations of residuals were 
identified in cases with biased estimations such as the 
ones presented in the diameter class width of 5.0 cm, 
as well as in the “Average ±1 deviation sampling” 
criterion (Figure 4).

TABLE 3 Tests of autocorrelation and heteroscedasticity of the residuals for the stem measurement sampling criteria.

Class width Test Criterion for sampling
Traditional (A) Proportional (B) Proportional (C) Average ±1 sd (D) Average ±2 sd (E)

1.0
DW No autocorrelation No autocorrelation No autocorrelation No autocorrelation No autocorrelation
W Homoscedastic Homoscedastic Homoscedastic Homoscedastic Homoscedastic

1.5
DW No autocorrelation No autocorrelation No autocorrelation No autocorrelation No autocorrelation
W Heteroscedastic Homoscedastic Homoscedastic Homoscedastic Heteroscedastic

2.0
DW No autocorrelation Indecision zone No autocorrelation Pos. auto-correlation Indecision zone
W Homoscedastic Homoscedastic Homoscedastic Heteroscedastic Homoscedastic

2.5
DW Indecision zone No autocorrelation No autocorrelation Pos. auto-correlation Indecision zone
W Homoscedastic Homoscedastic Homoscedastic Homoscedastic Homoscedastic

3.0
DW No autocorrelation No autocorrelation No autocorrelation Indecision zone No autocorrelation
W Heteroscedastic Homoscedastic Homoscedastic Heteroscedastic Homoscedastic

3.5
DW No autocorrelation No autocorrelation No autocorrelation Pos. auto-correlation Indecision zone
W Homoscedastic Heteroscedastic Homoscedastic Heteroscedastic Heteroscedastic

4.0
DW No autocorrelation No autocorrelation Pos. auto-correlation No autocorrelation No autocorrelation
W Heteroscedastic Homoscedastic Heteroscedastic Homoscedastic Homoscedastic

4.5
DW Pos. auto-correlation No autocorrelation No autocorrelation No autocorrelation Indecision zone
W Heteroscedastic Homoscedastic Homoscedastic Homoscedastic Heteroscedastic

5.0
DW Indecision zone Pos. auto-correlation Pos. auto-correlation Pos. auto-correlation Pos. auto-correlation
W Homoscedastic Heteroscedastic Heteroscedastic Heteroscedastic Heteroscedastic

DW: Durbin-Watson test; W: White test; sd: standard deviation.
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FIGURE 4 Current residuals related to lagged residuals of volume equations. X axis: ui; Y axis: ui-1.

A. Traditi onal sampling B. Proportional sampling C. Proporti onal sampling D.Average ±1 deviati on E. Average ±2 deviati ons
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Gujarati and Porter (2009) elucidate that the 
consequences of the presence of heteroscedasticity and 
autocorrelation, although the OLS estimators are linear, 
unbiased and normally distributed, under both problems, 
are no longer minimum variance among all linear unbiased 

better than the “proportional sampling (a)” for diameter 
class widths of 3.5 and 5.0 cm, but with respect to 
“proportional sampling (b)”, the better performance was 
seen only in the class width of 4.0 cm. Therefore, the 
condition that ensures at least two measured trees per 
diameter class, adopted in “proportion sampling (b)”, 
was a way to enhance the “proportion sampling (a)”.

Regarding the sampling strategies involving 
standard deviation, though they presented occasional 
superiorities in relation to the other sampling strategies, 
in general the “Average ±1 deviation sampling” had 
the worst performance, followed by the “Average ±2 
deviations sampling”. 

Likewise, if we compare the class widths, the 
ones lower than 3.5 cm had the smaller errors. Even 
though most of the standard errors of the estimate 
ranged around 6% to 9%, we obtained values exceeding 
10%, reaching up to 16.7%, as seen in diameter class 
widths of 4.5 and 5.0 cm (Table 4).

There was a trend in reducing the standard error 
to the extent that increases the number of measured 
trees, which is inversely proportional to the size of the 
class width (Table 2).

Such relation may be weaker or stronger 
depending on the criterion for sampling. Indeed, the 
number of trees affected the performance of the volume 
model, but it was mainly observed when few trees were 
sampled. More precisely, the larger variations of SEE(%) 
occurred in those class widths encompassing less than 
36 trees (Figure 5), remembering that the minimum 
was 12 trees for the criteria with standard deviation and 
24 trees for the others. Silva et al. (2007) found similar 
results, but for diameter-height relationship in eucalyptus 
stands. These authors concluded that the model has no 
significant improvement in accuracy when the sample 
size is larger than 27 trees.

We detected stronger correlations between 
SEE(%) and number of measured trees for the criteria 
involving standard deviation. Such behavior seems to 
be caused by its low total number of trees adopted 
in the regression, mainly in the sampling with one 
standard deviation.

Due to these two samplings also have six trees per 
class (such as the “traditional sampling”), the results indicate 
the serious problem caused by neglecting extreme diameter 
classes, since these sampling strategies contemplate only 
one or two standard deviation around the average.

In respect to the proportional sampling (a) and (b), 
its weaker relation between the SEE (%) and number of 
measured trees may be associated to the weighting by 
frequency of diameter classes. In both cases, the errors 

0i i i
0 1

i i i i

xy x
b . b .

e
= + +

s s s s
[7]

estimators. Therefore, the usual Student’s t-test, F-test 
and  may not be valid.

i

* * * * * *
i 0 0 1 i iy b x b x= + + e [8]

For fixing this problem, Gujarati and Porter (2009) 
explain that the error variance  of the model may have 
its variables transformed using the Generalized Least 
Square method. The transformation of the variables can 
be done as follows [7] and [8]:

Biased estimators bi become BLUE, in which are 
represented by  in Model [7.2]:

TABLE 4  Standard errors of the estimate of the regression 
models to estimate stem volume using different 
criteria for stem measurement sampling.

Sampling 
criterion

Diameter class width (cm)
Average1.0

(%)
1.5
(%)

2.0
(%)

2.5
(%)

3.0
(%)

3.5
(%)

4.0
(%)

4.5
(%)

5.0
(%)

Traditional 6.4 8.4 6.6 5.9 8.0 6.8 8.5 13.0 6.6 7.8

Proportional 
(a)

5.7 6.6 6.2 5.8 6.7 7.0 6.9 6.2 11.1 7.0

Proportional 
(b)

6.2 5.8 5.8 5.8 5.5 5.6 9.1 6.0 8.2 6.4

Average ±1 sd 6.3 5.6 9.3 8.5 7.2 9.6 6.4 7.5 16.7 8.6

Average ±2 sd 6.3 7.4 6.1 6.2 6.2 8.8 6.4 8.3 16.7 8.0

Average 6.2 6.8 6.8 6.5 6.7 7.6 7.5 8.2 11.9 7.6

sd: standard deviation

Accuracy of individual tree volume equations

 The last analysis concerns the behavior of the 
standard error of the estimate (SEE), whose calculation 
was based on the stem volume estimates from the 
trees of the validation database. The coefficients of the 
volume equations are those presented in Figure 2. The 
standard errors of the estimate for all sampling criteria 
and diameter class widths are showed in Table 4.

Comparing the errors among the criteria, in 
general, the “proportional sampling (a) and (b)” provide 
better model performance, i.e., the smaller error 
averages (Table 4). The “traditional sampling” was 
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become stable from 36 measured trees, however, such 
trend was not so clear in the other criteria. Therefore, 
the results reveal to be more interesting to fi t the volume 
model with proportional sampling, with no requirement 
of increasing the number of measured trees.

Leal et al. (2015) also obtained a trivial effect of 
the number of sampled trees on the accuracy of volume 
models, however, they used a minimum number of 48 
trees when they evaluated proportional samplings.

Main highlights of the tree sampling strategies

 There are few researches dealing with strategies 
for tree measurement sampling. Some cautions must 
be taken when volume equations are applied, since the 
residuals may have problems that lead to misleading 
conclusions about statistical tests.

Regression models presenting problems of 
residual heteroscedasticity and autocorrelation generate 
similar consequences on estimates. Estimators of the 
volume model with overestimated variance is one of the 
problems. In practice, confi dence interval of the volume is 
a desirable statistic, however, it is misleading in presence 
of residual heteroscedasticity and autocorrelation.

Comparing all the criteria presented here, 
traditional sampling possesses the disadvantage of 
requiring the scaling of many less frequent trees, making 
the sampling procedure slower and more expensive 
operationally. Furthermore, when the demand of sample 
trees is high, cutting down many larger trees is may not 
be acceptable by companies, mainly due to its high added 
value of these trees.

 This problem can be mitigated using the 
sampling proportional to the tree frequency of diameter 
class. In fact, both alternative sampling procedures seem 
to make this step (log scaling) of the forest inventory 
relatively cheaper and faster than when the traditional 
sampling is used.

However, these are not the only advantages, 
since the accuracy of the volume model also was 
pointed out as a positive contribution given by the 
proportional samplings. Leal et al. (2015) also obtained 

better performances in stem volume equations with use 
of sampling proportional  to the diameter distribution. 
They obtained very close accuracies in equations 
using what we named “traditional sampling” and 
“proportional sampling (a)”.

In our case, the performance obtained in the 
“Proportional sampling (b)” was even better than the 
“Proportional sampling (a)”, in which both are more 
accurate than the “traditional sampling” when class 
widths lower than 3.5 cm are used. Unfortunately Leal 
et al. (2015) did not present variations of class widths, 
which prevents us to make possible comparisons.

Even though the proportional samplings do not 
favor an equal coverage in all diameter class, they do not 
provoke biases on the volume estimates. Furthermore, 
most estimators of the volume equations were statistically 
equal to those obtained in the traditional sampling. 

Proportional samplings comply with random 
sampling cited by Picard et al. (2012). These authors 
showed the limitation of this procedure for reducing 
the number of sampled trees, in relation to another 
optimized sampling, of which needs less trees to obtain 
a same modeling precision. However, we showed that 
proportional-to-the-frequency sampling was enough to 
achieve good accuracy with small sample size. 

Finally, sampling with use of standard deviation 
in the most cases presented accuracy and behavior of 
the residuals worse than the other sampling strategies. 
Therefore, this type of sampling strategy is not 
recommended, mainly in class widths larger than 4.0 cm. 
Evidently, these statements are done for young trees 
and the researches are needed to assess older stands, 
since age affects strongly tree volume relationship 
(RUCHA et al., 2010).

CONCLUSIONS

Some important considerations should be taken 
into account to obtain accurate individual tree volume 
equations in eucalyptus forests. Tree measurement 
sampling with proportion to diameter distribution, i.e., 
proportional to the number of trees per diameter class, 

A. Traditi onal sampling B. Proportional sampling C. Proporti onal sampling D.Average ±1 deviati on E. Average ±2 deviati ons

FIGURE 5 Standard error of the estimate related to the number of measured trees. Solid line: real observations. Dotted line: linear trend.
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is more advantageous than the sampling with same 
number of trees per diameter class.

The measurement of at least 36 trees is enough 
to obtain good accuracy in stem volume estimations. In 
situations in which it is not possible to scale 36 trees, 
proportional sampling also can be used, but with 
condition of measuring at least 2 trees per diameter class.
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