DIFFERENT PLANT BIOMASSES CHARACTERIZATION FOR BIOCHAR PRODUCTION

Main Article Content

Tais Regina Lima Abreu Veiga José Tarcísio Lima Anelise Lima de Abreu Dessimoni Matheus Felipe Freire Pego Jenaina Ribeiro Soares Paulo Fernando Trugilho

Abstract

The use of biomass for biochar production is already a reality. However, little is known about its structure and composition, mainly by the changes occurred during the heat treatment. This information is crucial since it will have an immediate impact on the quality and applicability of the material produced. Therefore, this study aimed to analyze different biomasses, characterizing their potential for biochar production. Woods from Eucalyptus urophylla and Corymbia citriodora and coffee husk were assessed. The biomass was ground and sieved, and then stored under controlled conditions of temperature and humidity. Subsequently, the materials characterization were performed through chemical analysis, elementary, immediate chemistry, thermal gravimetric and infrared vibrational spectroscopy (FTIR). In general, all biomasses presented potential to be used in the production of biochar, where low ratios of H/C and O/C were found. The coffee husk have higher lignin, extractives, ash and fixed carbon, which certainly contributed to its greater thermal stability. The FTIR analysis showed the presence of bands related to recalcitrant chemical groups such as carboxylic and phenolic in the spectra of all biomasses. The profile of the thermograms of wood of C. citriodora and E. urophylla were similar to each other, and different from the coffee husk, which showed higher thermal stability.

Article Details

How to Cite
VEIGA, Tais Regina Lima Abreu et al. DIFFERENT PLANT BIOMASSES CHARACTERIZATION FOR BIOCHAR PRODUCTION. CERNE, [S.l.], v. 23, n. 4, p. 529-536, jan. 2018. ISSN 2317-6342. Available at: <http://cerne.ufla.br/site/index.php/CERNE/article/view/1585>. Date accessed: 21 feb. 2018.
Keywords
Biochar, biomass, carbon immobilization, soil conditioner, charcoal
Section
Article

References

ABREU, H. S.; OERTEL, A. C. Estudo químico da lignina de Paullinia rubiginosa. Cerne, Viçosa, MG, v. 5, n. 1, p. 52-60, 1999.

AMONETTE, J. E.; JOSEPH, S. Characteristics of biochar: microchemical properties. In: LEHMANN, J.; JOSEPH, S. (Ed.). Biochar for environmental management science and technology. London: Earthscan, 2009. p. 34-51.

ANGIN, D. Effect of pyrolysis temperature and heating rate on biochar obtained frompyrolysis of safflower seed press cake. Bioresource Technology, Oxford, v. 128, p. 593-587, Jan. 2013.

ARANTES, M. D. C. et al. Gaseificação de materiais lignocelulósicos para geração de energia elétrica. Ciencia Florestal, Santa Maria, v. 18, n. 4, p. 525-533, 2008.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8112: carvão vegetal: análise imediata. Rio de Janeiro, 1986. 5 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14853: madeira: determinação do material solúvel em etanol-tolueno e em diclorometano e em acetona. Rio de Janeiro, 2010. 3 p.

BRITO, J. O.; BARRICHELO, L. E. G. Correlações entre características físicas e químicas da madeira e a produção de carvão vegetal: I., densidade e teor de lignina da madeira. IPEF, Piracicaba, v. 14, n. 14, p. 9-20, 1977.

BRAND, M. A. Energia de biomassa florestal. Rio de Janeiro: Interciência, 2010. 131 p.

BRUM, S. S. Caracterização e modificação química de resíduos sólidos do beneficiamento do café para produção de novos materiais. 2007. 138 p. Dissertação (Mestrado em Agroquímica)-Universidade Federal de Lavras, Lavras, 2007.

CARRIER, M. et al. Comparison of slow and vacuum pyrolysis of sugar cane bagasse. Journal of Analytical and Applied Pyrolysis, Amsterdam, v. 90, n. 1, p. 18-26, 2011.

CASTRO, G. R. Síntese, caracterização e aplicação de celulose funcionalizada com ligante p-Aminobenzoico em pré-concentração de íons metálicos. 2003. 57 p. Dissertação (Mestrado em Química Analítica)-Universidade de São Paulo, São Paulo, 2003.

CHEN, D. et al. Bamboo pyrolysis using TG-FTIR and a lab-scale reactor: analysis of pyrolysis behavior, product properties, and carbon and energy yields. Fuel, London, v. 148, p. 79-86, May 2015.

CIMO, G. et al. Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure. Environmental Science & Technology, Washington, v. 62, n. 8, p. 1912-1918, 2014.

COMPANHIA NACIONAL DE ABASTECIMENTO. Indicador agropecuário: fechamento de edição. Brasília, 2016. 100 p.

CONZ, R. F. Caracterização de matérias-primas e biochars para aplicação na agricultura. 2015. 132 p. Dissertação (Mestrado em Solos e Nutrição de Plantas)-Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, 2015.

COUTO, A. M. et al. Qualidade do carvão vegetal de Eucalyptus e Corymbia produzido em diferentes temperaturas finais de carbonização. Scientia Forestalis, v. 43, n. 108, p. 817–831, 2015.

COUTO, A. M. et al. Multivariate analysis applied to evaluation of Eucalyptus clones for bioenergy production. Cerne, Lavras, v. 19, n. 4, p. 525-533, 2013.

COUTO, G. M. et al. Use of sawdust Eucalyptus sp. in the preparation of activated carbons. Ciência e Agrotecnologia, Lavras, v. 36, n. 1, p. 69-77, jan./fev. 2012.

GANI, A.; NARUSE, I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy, Oxford, v. 32, n. 4, p. 649-661, 2007.

GLASER, B. et al. The “Terra Preta” phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, Berlin, v. 88, n. 1, p. 37-41, 2001.

GLASER, B.; LEHMANN, J.; ZECH, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biology and Fertility of Soils, Berlin, v. 35, n. 4, p. 219-230, 2002.

GOLDSCHIMID, O. Ultraviolet spectra. In: SARKANEN, K. V.; LUDWIG, C. H. (Ed.). Lignins: occurrence, formation, structure and reactions. New York: J. Wiley Interprice, 1971. p. 241-298.

HERGERT, H. L. Lignins: occurrence, formation, structure and reactions. New York: J. Wiley, 1971. 297 p.

IBRAHIM, N. A. et al. Effect of fiber treatment on mechanical properties of kenaf fiber-ecoflex composites. Journal of Reinforced Plastics and Composites, Westport, v. 29, n. 14, p. 2192-2198, July 2010.

INDÚSTRIA BRASILEIRA DE ÁRVORES. Anuário estatístico da IBÁ: ano base 2015. Brasília, DF, 2015. 80 p.

KIM, H. S. et al. Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta, Amsterdam, v. 451, n. 1/2, p. 181-188, 2006.

KLOSS, S. et al. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, Madison, v. 41, n. 4, p. 990-1000, July/Aug. 2012.

LEE, Y. et al. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource Technology, Oxford, v. 148, p. 196-201, Nov. 2013.

MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2. ed. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato, 1997. 319 p.

NANDA, S. et al. Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. BioEnergy Research, New York, v. 6, n. 2, p. 663- 677, 2012.

PAULA, L. E. R. E. et al. Characterization of residues from plant biomass for use in energy generation. Cerne, Lavras, v. 17, n. 2, p. 237-246, 2011.

PROTÁSIO, T. de P. et al. Correlações canônicas entre as características químicas e energéticas de resíduos lignocelulósicos. Cerne, Lavras, v. 18, n. 3, p. 433-439, 2012.

PROTÁSIO, T. D. P. et al. Thermal decomposition of torrefied and carbonized briquettes of residues from coffee grain processing. Ciência e Agrotecnologia, Lavras, v. 37, n. 3, p. 221-228, maio/jun. 2013.

OUAJAI, S.; SHANKS, R. A. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability, Essex, v. 89, n. 2, p. 327-335, Aug. 2005.

ROCHA, F. C. et al. Casca de café em dietas para vacas em lactação: consumo, digestibilidade, produção e composição de leite. Revista Brasileira de Zootecnia, Viçosa, MG, v. 35, p. 2163-2171, 2006.

RAVEENDRAN, K.; GANESH, A.; KHILAR, K. C. Pyrolysis characteristics of biomass and biomass componentes. Fuel, London, v. 75, n. 8, p. 987-998, Jan. 1996.

SANTOS, L. C. et al. Propriedades da madeira e estimativas de massa, carbono e energia de clones de Eucalyptus plantados em diferentes locais. Revista Árvore, Viçosa, MG, v. 36, n. 5, p. 971-980, 2012.

SHAFIZADEH, F. Pyrolytic reactions and products of biomass. In: Fundamentals of Biomass thermochemical conversion. London: Elsevier, 1985. p. 183-217.

SEYE, O.; CORTEZ, L. A. B.; GÓMEZ, E. O. Estudo cinético da biomassa a partir de resultados termogravimétricos. Energia no Meio Rural, Campinas, ano 3, 2003. Disponível em: . Acesso em: 19 out. 2009.

TRUGILHO, P. F.; LIMA, J. T.; MORI, F. A. Correlação canônica das características químicas e físicas da madeira de clones de Eucalyptus grandis e Eucalyptus saligna. Cerne, Lavras, v. 9, n. 1, p. 81-91, 2003.

VALE, A. T. do et al. Charactherization of biomass energy and carbonization of coffee grains (Coffea arabica, L) and (Cedrelinga catenaeformis), duke wood residues. Cerne, Lavras, v. 13, p. 416-420, 2007.

ZENG, K. et al. The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood. Bioresource Technology, Essex, v. 182, p. 114-119, Feb. 2015.

ZHAO, L. et al. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, Amsterdam, v. 256/257, p. 1-9, July 2013.

ZHENG, H. et al. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technology, Essex, v. 130, p. 463-471, 2013.