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HIGHLIGHTS

A segmented mixed-effects taper model was developed in this study. 

Different combinations of random parameters were tested.

To remove autocorrelation in residuals, a variance function and CAR(1) model used.

Use of upper stem diameter measurements provided more accurate predictions.

ABSTRACT

Taper models are one of several necessary tools in modern forest inventory, giving 
information on diameter at any point along the tree stem and this information can also 
be used to estimate stem volume. In this study, we used nonlinear mixed-effects (NLME) 
modeling approach to minimize existing statistical problems in constructing taper equations. 
A segmented taper model of Max and Burkhart (1976) was fitted using this approach to 
consider for within- and between-tree variation in brutian pine (Pinus brutia Ten.) stem 
taper. Based on evaluation statistics, the model including random-effects parameters β1, 
β3 and β4 were found to be the best. Inclusion of random parameters were not completely 
eliminated heterogenous variance and autocorrelation in residuals. Incorporating variance 
function and a continuous autoregressive error structure (CAR(1)) to NLME Max and 
Burkhart model removed the heteroscedasticity and autocorrelation in residuals. Upper 
stem diameters were used to localized stem taper model to individual tree. For this, two 
different measurement scenarios were evaluated as one and two upper stem diameter 
measurements. Inclusion of random parameters were improved the predictive capability 
of taper model in particularly the middle and lower sections of stem based on upper stem 
diameter measurements. The calibration using upper stem diameter measurements can 
improve the tree-level accuracy of stem taper model is therefore recommended.

1Isparta University of Applied Sciences, Faculty of Forestry, 32260, Isparta, Turkey, ORCID: 0000-0003-2132-2589a, 
0000-0001-5798-3421b



465

CERNE

ÖZÇELIK and ALKAN

FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINE

INTRODUCTION

Brutian pine (Pinus brutia Ten.) is a one of the 
commercially tree species in the southern Turkey. This 
species has a significant share in the growing stock of 
this region, occupying an area of about 5.8 million ha. 
The corresponding standing volume of approximately 
270.09 million m3 (GDF, 2006). Its wood has suitable 
properties for building and furniture materials such as 
door, window, ceiling and floor covering and in carving 
(Bozkurt and Göker 1996). Furthermore, brutian pine 
forest are important component of the Mediterranean 
forest as ecologically and supply environmental services 
and indirect benefits such as providing habitat to wildlife 
species and different plants, protecting in soil and water 
resources, and supporting agricultural productivity 
(Boydak 2004). Therefore, we need reliable information 
regarding growth and yield of the species to sustainable 
management of brutian pine forest, but this information 
is currently lacking in Turkey. Tree volume estimation 
is one of important tools of forest growth and yield 
modeling. Moreover, merchantable volume, total volume, 
total biomass, and total carbon are highly desired forest 
attributes for forest management decisions (Pancoast 
2018). Total volume estimates are important for evaluating 
growth and yield, net primary production, stand dynamics, 
above ground biomass, and sustainable management 
of timber resources. Merchantable volume is used to 
determine economic value based on given dimensional 
specifications and market conditions. Above ground 
biomass estimations are used in carbon sequestration and 
climate change models and fuel production in place of 
traditional fossil fuel sources (Pancoast 2018).

The use of taper equations in predicting tree 
diameter, volume, and weight has recently become an 
increasingly popular trend (Klos et al. 2007; Sakıcı and 
Özdemir 2018). Taper models have an advantage over 
direct volume estimation in that they are flexible in 
predicting component biomass, in estimating upper stem 
diameters, and in merchantable volume estimation. To 
describe tree profile, different taper equations have been 
used over the years from simple forms to more complex 
forms. Three main approaches are applied: tree taper 
is described by simple taper model in the first approach 
(Kozak et al. 1969, Ormerod, 1973, Biging 1984). The 
parts of a tree stem are defined by different geometric 
solid such as neiloid frustum, paraboloid frustum, cone for 
lower, middle, and upper portions of stem, respectively in 
the second approach. Segmented equations developed by 
Max and Burkhart (1976), Clark et al. (1991), and Fang et al. 
(2000) using this approach. In the third approach, assuming 

that tree form varies from one point to another along the 
bole (Kozak 1988; Sharma and Zhang 2004; Kozak 2004).

In most of these models, dbh and total height are 
used as independent variables. In addition, inclusion of 
additional predictors such as crown variables (Valenti and 
Cao 1986, Leites and Robinson 2004, Li and Weiskittel 2010, 
Jiang and Liu 2011), upper stem diameters (Kozak 1998, 
Trincado and Burkhart 2006, Yang et al. 2009, Sabatia and 
Burkhart 2015), stand characteristics (Sharma and Parton 
2009, Jiang and Liu 2011, Liu et al. 2020), management 
practices (Tasissa and Burkhart 1998), and climatic factors 
(Liu et al. 2020) has been considered in studies. However, 
in a number of studies, little improvement (Valenti and 
Cao 1986, Leites and Robinson 2004, Li and Weiskittel 
2010, Sharma and Parton 2009, Jiang and Liu 2011) or no 
improvement (Burkhart and Walton 1985, Muhairwe et al. 
1994, Kozak 1998) was observed in model performance by 
including additional predictors as covariate. Improvements 
in performance of the model depend on the region, species, 
and precision of additional predictors measurements 
(Sharma and Parton 2009, Liu et al. 2020).

As stated by Arias-Rodil et al. (2017), among 
auxiliary variables, the most commonly evaluated 
variables have been upper-stem diameters (Trincado 
and Burkhart 2006, Cao and Wang 2015, Sabatia 
and Burkhart 2015, Arias-Rodil et al. 2015), gaining 
even more importance with the recent advances in 
instruments for measurements of upper stem diameters 
like laser technology. As also indicated by Burkhart and 
Tomè (2012), inclusion of upper stem diameters to taper 
equation is one of the best approaches of accounting for 
within-tree variance in stem taper as auxiliary variable.

In generally, data that are collected for taper 
equations are most commonly hierarchical due to multiple 
diameter measurements along different data points on 
same tree. Therefore, data collected are not independent 
and are corelated. To address this problem, the mixed-
effects models (NLME) have been used to model stem 
profile of tree because these models consider the 
correlation among multiple diameter observations on each 
individual stem. In these models, random effects which are 
specific to each subject individual, whereas fixed-effects 
parameters are common to population. Estimating the 
random effects from one or more upper-stem diameter 
measurements can be used for calibration of a mixed-
effects taper equation (Cao and Wang 2011). Therefore, 
this modeling approach captures more variation among 
and within-trees. When mixed-effects modeling did 
not completely eliminate the error autocorrelation, a 
variance function or variance function plus an appropriate 
covariance structure can be corporate into model to 
account residual autocorrelation (Liu et al. 2020). 



FITTING AND CALIBRATING A MIXED-EFFECTS SEGMENTED TAPER MODEL FOR BRUTIAN PINE

466

CERNE

ÖZÇELIK and ALKAN

The objectives of this study were to (1) develop 
a mixed-effects taper equation using model of Max and 
Burkhart (1976), (2) account for within-tree residual 
correlation and heterogeneous variance, and (3) calibrating 
taper equation based on upper stem diameters.

MATERIAL AND METHODS

Data

The data were collected from natural brutian pine 
from Bucak Forest Enterprise in Mediterranean Region of 
Turkey which represent the northern portion of brutian 
pine natural range. 280 destructively sampled brutian 
pine trees used in this study. Trees were sampled from a 
wide range of stand types, age and stand densities. The 
data were not included trees possessing broken tops, 
obvious cankers, and multiple stems. The felled trees 
were sectioned approximately 1 m intervals from stump 
to tip of tree. In addition to diameter at breast height 
(dbh), total tree height (tht), and diameter outside barks 
were measured at the stump height and at the ends of 
each section. Two diameters were measured and then 
averaged for each section. The data were divided into a 
fitting sub-sample (85% of full data set) and evaluation 
sub-sample (15% of the observation) as randomly. 
Summary statistics of trees used in fitting and evaluation 
are depicted in Table 1.

adopted the two-stage model structure that presented by 
Davidian and Giltinan (1995) to define within-and between-
individual variations. Accordance with this approach, a 
general expression for mixed-effect Max and Burkhart’s 
taper model can be written for within-tree variation as 
Trincado and Burkhart (2006) pointed out (equation 1 and 
2). Where for ith individual, Hi = tree height (m), hij = 
height (m) above the ground, Di = diameter outside bark 
(cm) at breast height, dij = diameter outside bark (cm) at 
height hij, β1i, β2i, β3i, β4i, α1i, α2i,= parameters, eij = error 
term with E(eijβi), where βi is the vector for parameters.

Data Mean S.D. Minimum Maximum
Fitting (n = 238 trees)

DBH (cm) 36.7 12.9 13.0 75.0
Total height (m) 17.90 4.70 7.50 26.80
Disk dob (cm) 24.2 13.6 1.0 79.0
Disk height (m) 9.17 5.91 0.30 26.30

Volume (m3) 0.98 0.78 0.05 3.91
Evaluation (n = 42 trees)

DBH (cm) 36.6 13.7 14.0 68.0
Total height (m) 17.50 5.30 7.50 25.50
Disk dob (cm) 24.2 14.0 1.0 79.0
Disk height (m) 9.35 6.11 0.30 25.30

Volume (m3) 0.93 0.83 0.06 3.11

FIGURE 1 Plots of relative height versus relative diameter outside 
bark for Brutian pine.

TABLE 1 Summary statistics for model fitting and validation 
data for Brutian pine.

Because the data structure for stem profiles 
represents hierarchical unbalanced repeated 
measurements made across space for an individual, the 
equation can be generalized into a vector form as , where, 
[4] and βi are assumed to follow multivariate normally 
distributed with  and variance-covariance matrix Ri(βi,ξ). 
The vector ξ represents a vector of unknown parameters 
[σ, θ’ ,p’]T common for all individuals. As suggested by 
Trincado and Burkhart (2006), if needed, the variance-
covariance matrix can be specified in general form to 
account for within-tree variance and autocorrelation 
among observations [5]. Where  (βi, θ) and Γi(p) 
are an (ni x ni) diagonal matrix that explaining the 
variance of within-tree heteroscedasticity and defines 
the correlation pattern within the observations of the ith 
tree, respectively. 

The alteration of the relative diameter and relative 
height with the loess regression line is depicted in Figure 1.

Stem taper modeling 

Based on the previous studies (Cao et al. 1980; Coble 
and Hilpp 2006; Brooks et al. 2008; Sakıcı et al. 2008), taper 
model of Max and Burkhart (1976) indicated better results 
in predicting tree diameter and volume and therefore, this 
model was chosen for further analysis. In this study, we 

[1]

[2]
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matrix were performed using the SAS macro NLINMIX 
(SAS Institute, Inc. 2011). The variance components were 
estimated with maximum likelihood (ML). The within-
individual residuals were presumed to have constant variance 
and uncorrelated errors for all mixed-effects models at this 
point. After the best model was identified, additional analyses 
were performed to detect and model the effects of variance 
heterogeneity and autocorrelation in the residuals. The fit 
evaluation criteria were a maximum likelihood estimate (ML) 
of σ2 expressed as  Akaike’s Information Criterion (AIC; 
Akaike 1974), and twice the negative log-likelihood (-2ln(L)).

Tree-level random parameters bk were computed 
using by use of an approximate Bayes estimator. 
The expression is as follows, where:  is variance-
covariance matrix for residuals and  is matrix of variance-
covariance for the random-effects. Predicting the vector 
of random parameters implies estimations Zk and ek, 
which is computed as, 11 and 12 respectively.

The previous studies have showed that even after 
the inclusion of random parameters into a model may not 
be able to eliminate of error autocorrelation completely. 
Therefore, different variance functions are evaluated to 
correct within- and between-tree heterogeneous error 
variance in this study. As suggested by Trincado and 
Burkhart (2006), for successive analysis and testing for 
inclusion in the model, two possible variance functions 6 
and 7 were selected.

The variance function (Eq.(6 and 7)) assumes 
heterogeneous within-tree variance as function of relative 
height. Contrarily, the variance function (Eq.(8, 9)) models 
both heterogeneous within- and between-tree variance 
as function of relative height and dbh similar to approach 
of Trincado and Burkhart (2006). After selecting the most 
appropriate variance function, CAR(1) was incorporated 
into the model. The statistical significance of including 
a variance function and autocorrelation structure was 
evaluated through likelihood ratio tests (LRT) in the case 
of nested models (Pinheiro and Bates, 2000).

In the case of between-tree variation, in this 
modeling approach, the parameter vector βi accounts 
for between-individual variation. This variation varies 
from tree to tree. Therefore, the vector parameter 
βi can be expanded as, where: β = vector of fixed 
population parameters of size (p x 1), bi = vector 
of random-effects and of size (p x 1), p = number of 
fixed-effects parameters, q = number of random-effects 
parameters, D = the random parameter’s variance-
covariance matrix. Furthermore, Ai and Bi are the fixed 
and random effects design matrix.

To find the best random parameters combination, 
all different combinations of parameters (β1, β2, β3 and β4) 
were evaluated using methodology applied by Trincado and 
Burkhart (2006). Three candidate models with two (β1- 

β2 and β3 - β4) and four (β1- β2 - β3 - β4) parameters failed 
to converge. Therefore, totally twelve candidate models 
including mixed-effects and a model including only fixed-
effects were fitted to stem taper data. Parameters estimates 
and subsequent analysis of the residual variance-covariance 

[3]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

Model evaluation

For this aim, the evaluation data set was divided into 10 
relative stem height classes and then the differences between 
measured and predicted stem diameter outside bark were 
computed for observations for each relative stem height. The 
mean bias and root mean square error (RMSE) within each 
class were calculated. As indicated by Xu (2102), RMSE gives 
an overall measures of model accuracy since it combines the 
mean bias and variation of the biases. Therefore, RMSE was 
used in this study as a primary criterion for model evaluation. 
To determine effects of position and number of upper stem 
diameter selected, two separate measurement scenarios 
were used and compared when choosing the upper stem 
diameter for calibration: (i) only one upper stem diameter 
at absolute stem heights of 2.3 m, 3.3 m, 4.3 m, 5.3 m, and 
6.3 m; and (ii) two upper stem diameters measured at 3.3 
and 6.3 m. Because it is more practical to obtain in forestry 
applications, absolute height was used.

RESULTS

Mixed-effects segmented taper equation

Fit statistics for a model containing only fixed 
effects and twelve models containing one, two or three 
random-effects are given in Table 2.
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Random 
Parameters

Estimated
Parameters σ2

-2LL
(smaller is 

better)

AIC
(smaller is 

better)

None 7 0.00549 -9422.5 -9420.5

β 1 9 0.00282 -11400.4 -11396.4

β 2 9 0.00265 -11613.7 -11609.7

β 3 9 0.00361 -10540.5 -10536.5

β 4 9 0.00449 -9849.7 -9845.7

β 1, β 3 10 0.00170 -12454.1 -12448.1

β 1, β 4 10 0.00157 -12913.1 -12907.1

β 2, β 3 10 0.00171 -12585.2 -12579.2

β 2, β 4 10 0.00148 -13158.0 -13152.0

β 1, β 2, β 3 13 0.00147 -13023.7 -13009.7

β 1, β 2, β 4 13 0.00090 -14435.2 -14421.2

β 1, β 3, β 4 13 0.00088 -14505.1 -14491.1

β 2, β 3, β 4 13 0.00089 -14471.9 -14457.9

TABLE 2 Selection criteria values for taper model fitted with 
various combinations of mixed parameters.

The significant differences were found between 
models containing various combinations of random-effects 
parameters in comparison to the model that considered 
only fixed-effect parameters (Table 2). In all cases those 
models including mixed-effects fit the data better than a 
model including only fixed parameter. Based on evaluation 
criteria as AIC and –2LL, the mixed-effects combination of 
β1, β3 and β4 produced the lowest AIC and  -2LL, resulting 
in the model including three estimated random-effects 
parameters was the best. The final NLME model was, 
where u1i, u2i and u3i are the random-effects parameters 
estimated by the ith tree.

The parameter estimations for Eq.(13) (Model 2) 
are given in Table 4. 

[13]

Distribution of studentized residuals displayed 
that predictions from the fixed-effects equation (Model 
1-Figure 2a) had a more heterogenous residual variance 
than selected mixed-effects model (Model 2-Figure 2b). 
However, even with the inclusion of random effects, a 
degree of heterogeneity was observed.

The use of variance functions was considered to 
be significant for both functions tested when the model 
was again fit assuming the within-trees residual variance 
is heterogeneous (Table 3). Thus, even after the inclusion 
of random effects, variance heterogeneity was still present 
and needs to be accounted for in the model. The best fit 
was obtained with taper model with variance function 
(Model 3), which included a variance function (eq.(5)) that 
simultaneously accounted for both within- and between-tree 
residual variability. The term xij (relative stem height) and Di 

TABLE 3 Fit statistics and LRT for models with different 
variance functions.

Alternatives

Variance 

function

g(θ,xij)

Parameters

(k)
AIC Ln(L) LRT p-value

1 nonea 13 -14491.1 7252.55

2 14 -15095 7561.50 617.90 <0.001

3 15 -15409 7719.50 933.90 <0.001

ahomogeneous error variance i.e. var(eij) = σ2.

FIGURE 2 Studentized residuals for the (a) fixed-effects model 
(Model 1), (b) mixed-effects model with β1, β3, and β4 
having random-effects assuming homogeneous residuals 
variance (Model 2), and (c) mixed-effects model with 
inclusion of a residual variance function (Model 3).
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Parameters
Model 1 Model 2 Model 3 Model 4

Estimate SE Estimate SE Estimate SE Estimate SE
β1 -3.5942 0.6184 -3.5751 0.2335 -3.4912 0.0898 -3.5096 0.1674
β2 1.7268 0.3427 1.7055 0.1295 1.6619 0.0496 1.6798 0.0934
β3 -1.3997 0.3282 -1.4002 0.1256 -1.4435 0.0548 -1.3490 0.0958
β4 12.5313 1.2545 11.4040 0.7289 7.1524 0.6040 14.3743 1.0154
α1 0.7768 0.0376 0.7714 0.0148 0.7522 0.0073 0.7701 0.0119
α2 0.1518 0.0075 0.1583 0.0032 0.1997 0.0063 0.1391 0.0039

Variance components
σ2 0.00549 0.00088 0.2454 0.5046

Var(b1) 0.03639 0.0334 0.0225
Var(b3) 0.1219 0.1636 0.0697
Var(b4) 72.3724 29.4264 91.6160

Cov(b1,b3) 0.05548 0.05761 0.0374
Cov(b1,b4) 0.03753 -0.06534 -0.1620
Cov(b3,b4) -0.8826 -1.1836 -0.8506

Variance structure
θ0 -1.2080 -1.2080
θ 1 -2.8987 -2.8987

Covariance structure
ρ None 0.7454
Goodness-of-fit

-2LL -9422.5 -14505.1 -15439 -16699.5
AIC -9420.5 -14491.1 -15409 -16683.5

error structure. The implication of an autocorrelation 
structure corrected the fit of the model (Model 4) as 
observed when comparing the AIC and -2LL values 
(Table 4). The significance of including an autocorrelation 
error structure was tested applying Likelihood ratio test 
(LRT). LRT showed significant improvements of model 4 
(using LRT=1260.5 was significant at α ˂ 0.001 (x1,0.001 = 
10.828), where σ2 = 0.5046, θ = [–1,2080 – 2.8987]
T and ρ = 0.7454 (Table 4). This structure presumes 
that the errors are correlated and that the within- and 
between-tree residual variances are heterogeneous.

TABLE 4 Parameter estimates for fixed-effects parameters (Model 1), fixed- and random-effects parameters (Model 2), fixed- and 
random effects parameters with variance function (Model 3), and fixed- and random effects parameters with variance 
function and CAR(1) (Model 4).

[14]
[15]

(tree size) accounted for within-tree variability and between-
tree variability, respectively. Parameter estimates of taper 
model with variance function are depicted in Table 4 for 
Model 3. After inclusion of the variance function, the new 
model (Model 3-Figure 2c) produced more homogeneous 
residual along the relative stem heights. For evaluated 
variance functions, fit statistics based on AIC and Ln(L) and 
likelihood ratio test (LRT) are given in Table 3.

As indicated by Trincado and Burkhart (2006), 
according to formula (3), the diagonal matrix that describes 
the within-individual variance can be expresses as: 

As stated by many researcher (Yang et al. 
2009; Cao and Wang 2015; Liu et al. 2020), correlated 
errors are possible, when repeated measurements are 
used, even after including random-effects parameters. 
Consequently, a more complete model is required to test 
for residual dependence. Model 3 was fitted with CAR(1) 
to eliminate autocorrelation among residuals from same 
individual, which is theoretically the most sound and 
practical structure for application (Dièguez-Aranda et al., 
2006). The fitting carried out with NLINMIX used the 
variance function of model 3 as a weighing factor for the 
residual variance of a model containing an autocorrelated 

For between-tree variation, the parameter vector 
βi for the ith individual can be expressed as 17, where β is 
a [β1, β2, β3, β4, α1, α2]

T and bi is a yi = [b1i, b3i, b4i]
T vectors 

of fixed- and random-effects, respectively. Ai= I6 is a (6 x 
6) identity matrix for the fixed effects, and Bi is a yi = [100, 

000, 010, 001, 000, 000]T  design matrix for random effects.

[16]

[17]
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FIGURE 3 Stem profile curves using NLME approach with 
non-prior (mean response) and two prior stem 
diameters (calibrated response) at 3.3 m and 
6.3 m for sample trees (dbh=68 cm and 36 cm; 
h=24.6 m and 17.8 m).

[18]

Visually, the mixed-effects equation better fits 
the stem profile than the equation including only fixed-
effects parameters (Figure 3).

Evaluation of upper stem diameter predictions

Measures of bias and RMSE for the both responses 
(mean and calibrated) using stem diameter measurements 
for different relative stem heights are presented in Table 
5. The model with the smallest values of mean bias by 
each relative stem heights was considered to be the best. 
When considering all the observations the calibrated 
response showed the lowest bias. In the lower section of 
the bole, the smallest values of bias are obtained for the 
calibrated response which considers the measurement 
of one upper stem diameter. In the lower and middle 
portions of the bole (below 80% of total height) the 
smallest values of RMSE are obtained for the calibrated 
response using two upper stem diameter measurements 
except for 10-20% of total height. Contrarily, the mean 
response presented the lowest RMSE in the upper 
section of the bole at relative heights between 80-100%. 

These results showed that two stem diameter 
measurements are required to accurately calibrate the 
taper equation for brutian pine. However, a graphical 
analysis of these errors indicated that predicting capability 
of the model was not greatly diminished when only one 
stem measurement at 6.3 m was used (Figure 4).

A graphical analysis of the RMSE indicates that 
accuracy was not greatly diminished over a relative stem 
height of 0.4 when only one stem measurement at 6.3 m 
is performed (Figure 4). These evaluations demonstrate 
that accuracy of the tree taper model can improve with 

FIGURE 4  RMSE for the mean and calibrated responses 
predictions using one (at 6.3 m) and two upper stem 
diameters (3.3 m and 6.3 m) by relative height classes.

calibration, particularly in the lower part of the stem, 
where most of the volume and value is concentrated.

DISCUSSION

A segmented taper model was developed for 
natural brutian pine stands using nonlinear mixed-effects 
modeling approach. The inclusion of random-effects 
provided better model fitting in comparison to a fixed-
effects model. Based on fit statistics, a model containing 
random-effects for the three parameters (β1, β3 and β4) 
was found to be best. 

In this work, the effects of residual variance 
heterogeneity and residual autocorrelation were 
incorporated to model the variance-covariance matrix. 
In addition, as upper stem diameter(s) were available 
an approximate Bayes estimator was obtained to 
estimate the vector of random effects for a new tree.  
Heteroscedasticity and residual autocorrelation need 
to be accounted for in taper modeling process. Based 
on results of some studies (Leites and Robinson 2004, 
Sharma and Parton 2009), use of the mixed-effects models 
including both fixed- and random-effects parameters are 
enough to remove heteroscedasticity and autocorrelation 
from residuals of the model. However, some studies have 
depicted that the autocorrelation can be diminished but 
cannot be completely eliminated by the use of random-
effects parameters (Trincado and Burkhart 2006, Yang 
et al. 2009, Gòmez-Garcia et al. 2013, Arias-Rodil et al. 
2015). The incorporation of random-effects parameters 
was not completely eliminated the error autocorrelation 
in our study. Therefore, to eliminate autocorrelation 
and heteroscedasticity in residuals, incorporation of 
variance function and CAR(1) model should be add to 
mixed-effects taper model. Based on the LTR results, 
including a variance function and CAR(1) autoregressive 
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RH
Bias RMSE

n
Mean 

response
2.3 m 3.3 m 4.3 m 5.3 m 6.3 m

3.3 m and
6.3 m

Mean 
response

2.3 m 3.3 m 4.3 m 5.3 m 6.3 m
3.3 m and

6.3 m

0.0-0.1 82 0.1459 0.1479 0.1647 0.1656 0.1242 0.1124 0.0752 1.5996 1.6100 1.6143 1.6132 1.6162 1.6158 1.5963

0.1-0.2 74 -0.1882 -0.1104 -0.1318 -0.2306 -0.3417 -0.3741 -0.2840 1.2813 1.0004 1.0184 0.9634 1.0646 1.1757 1.0300
0.2-0.3 74 0.2417 0.3416 0.3325 0.2203 0.0716 0.0304 0.1037 1.5613 1.3855 1.2641 1.1033 1.0672 1.1113 1.0090
0.3-0.4 69 0.2706 0.3581 0.3679 0.2626 0.0661 0.0373 0.0851 1.5530 1.5225 1.4452 1.3616 1.1413 0.9847 0.9539
0.4-0.5 72 0.4367 0.5463 0.5252 0.4239 0.1963 0.1083 0.1443 1.8658 2.0008 1.9053 1.9310 1.5958 1.3861 1.3778
0.5-0.6 77 0.6609 0.7554 0.7536 0.6061 0.3870 0.3078 0.3233 2.5355 2.7277 2.7006 2.6271 2.3930 2.1747 2.1573
0.6-0.7 75 0.5427 0.6875 0.6554 0.5275 0.2775 0.1581 0.1735 2.3647 2.6006 2.5507 2.5213 2.2464 2.0449 2.0358
0.7-0.8 75 0.4860 0.5928 0.6141 0.4816 0.2347 0.1488 0.1420 2.4629 2.6264 2.6304 2.6524 2.3606 2.2654 2.2521
0.8-0.9 71 -0.1785 -0.0774 -0.0927 -0.2190 -0.4304 -0.5081 -0.5060 2.1505 2.2816 2.2448 2.3065 2.2067 2.1949 2.1919
0.9-1.0 70 -0.5282 -0.4384 -0.4628 -0.5476 -0.7223 -0.7870 -0.7964 1.5769 1.5848 1.5216 1.6387 1.6902 1.8584 1.8596

All 739 0.1954 0.2859 0.2785 0.1758 -0.0054 -0.0681 -0.0461 1.8864 1.9199 1.8824 1.8717 1.7254 1.6607 1.6368

TABLE 5 Bias and RMSE for bole diameter predictions for the mean and calibrated responses by relative height classes.

covariance structure increased the evaluation statistics 
of the mixed model. The variance function selected 
clearly homogenizes residuals variances (Figure 2c). 
The different variables included in the variance function 
revealed that heterogeneous residual variance within 
and between-trees was present in the dataset (Table 3). 
This finding agrees with Trincado and Burkhart (2006) 
and Yang et al. (2009), who also specified the error 
distribution to allow for heterogeneous variance within 
and between trees of different sizes. The inclusion of 
a continuous autoregressive error structure further 
improved the fit. However, despite all parameters being 
significant, generally, the standard errors of parameters 
estimate increased in comparison to a model that 
considered uncorrelated errors (Table 4).

It seems that in the fitting process, the assumption 
of correlated errors may be relaxed without seriously 
compromising the predictive capability of the model, by 
the inclusion of random effects, and after accounting for 
heterogeneous residual variances (Kozak, 2004). 

Random effects parameters can be predicted 
using upper stem diameter measurements allowing for 
a calibrate stem profile curves to individual trees. We 
evaluated six calibration scenarios based on measuring 
additional upper stem diameter on each tree at 2.3, 3.3, 
4.3, 5.3, 6.3, and 3.3 and 6.3 m stem heights.

As reported by Calama and Montero (2006); the 
use of additional upper stem diameter measurements 
as additional predictors in stem taper or volume models 
has been a common practice in forestry. Measures of bias 
and RMSE were computed by relative height stem classes 
and used to compare the mean and calibrated response 
using one or two stem diameter measurements. The 
lower portion of the stem bole presented the lowest bias 
when one upper stem diameters at 6.3 m were used for 
calibration except for relative height between 0-10%. The 

lowest RMSE values obtained when two upper diameters 
were used for calibration. These results generally agree 
with previously reported research (Trincado and Burkhart 
2006, Sharma and Parton 2009). However, similar 
predictive capability was observed when only one stem 
diameter measurement at 6.3 m was used for calibration 
over a relative stem height of 0.4. The predictive capability 
of model was not greatly decreased when only one stem 
measurement at 6.3 m was used for calibration (Figure 4). 
The calibration of taper equations using one or two upper 
bole diameter measurements may improve stand volume 
estimations (Calama and Montero, 2006). An important 
limitation when localizing stem curves by calibration is the 
necessity of accurate upper stem diameter measurements 
on standing trees. Kozak (1998) and Arias-Rodil et al. 
(2017) concluded that measurements errors affected 
precision and bias of a taper model that included upper 
stem measurements as explanatory variables. Due to 
advances in laser technology, more accurate and affordable 
measurements of upper stem diameters are possible. 

CONCLUSIONS

A nonlinear mixed-effects taper equation 
was developed for natural brutian pine in Northern 
Mediterranean of Turkey using the Max and Burkhart (1976)’s 
segmented taper equation. Based on evaluation statistics, 
random effects were included β1, β3 and β4. With the inclusion 
of random-effects, residual variance and autocorrelation 
was not completely eliminated. Therefore, residual variance 
and autocorrelation were modelled by variance function 
and CAR(1) model and this mixed-effects model exhibited 
homogeneous residual variance for all relative stem heights. 
The mixed-effects model provided more precise upper 
stem diameter predictions than the fixed-effects model, 
especially for the lower portion of the stem bole; where 
the larger amount of stem volume is concentrated. The 
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inclusion of random-effects parameters for a new tree 
based on upper stem diameter measurements increased 
the predictive capability of the model. A calibrated response 
using two stem diameter measurements was partly better 
than using only one stem diameter for brutian pine trees.
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